code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import torch from torch import nn class lowercase__( nn.Module ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : int=False ) -> Optional[Any]: super().__init__() lowercase_ = n_token lowercase_ = d_embed lowercase_ = d_proj lowercase_ = cutoffs + [n_token] lowercase_ = [0] + self.cutoffs lowercase_ = div_val lowercase_ = self.cutoffs[0] lowercase_ = len(self.cutoffs ) - 1 lowercase_ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowercase_ = nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase_ = nn.ModuleList() lowercase_ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase ) ) ) else: self.out_projs.append(_lowerCamelCase ) self.out_layers.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) else: for i in range(len(self.cutoffs ) ): lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase ) ) ) self.out_layers.append(nn.Linear(_lowerCamelCase , r_idx - l_idx ) ) lowercase_ = keep_order def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: if proj is None: lowercase_ = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase_ = nn.functional.linear(_lowerCamelCase , proj.t().contiguous() ) lowercase_ = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> int: if labels is not None: # Shift so that tokens < n predict n lowercase_ = hidden[..., :-1, :].contiguous() lowercase_ = labels[..., 1:].contiguous() lowercase_ = hidden.view(-1 , hidden.size(-1 ) ) lowercase_ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: lowercase_ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowercase_ = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowercase_ = labels != -1_0_0 lowercase_ = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) lowercase_ = ( -nn.functional.log_softmax(_lowerCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase_ = nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) else: # construct weights and biases lowercase_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = self.out_layers[0].weight[l_idx:r_idx] lowercase_ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase_ = self.out_layers[i].weight lowercase_ = self.out_layers[i].bias if i == 0: lowercase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCamelCase ) biases.append(_lowerCamelCase ) lowercase_ = weights[0], biases[0], self.out_projs[0] lowercase_ = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase_ = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) if labels is None: lowercase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase_ = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) lowercase_ = 0 lowercase_ = [0] + self.cutoffs for i in range(len(_lowerCamelCase ) - 1 ): lowercase_ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase_ = (labels >= l_idx) & (labels < r_idx) lowercase_ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase_ = labels.index_select(0 , _lowerCamelCase ) - l_idx lowercase_ = head_logprob.index_select(0 , _lowerCamelCase ) lowercase_ = hidden.index_select(0 , _lowerCamelCase ) else: lowercase_ = hidden if i == 0: if labels is not None: lowercase_ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowercase_ = head_logprob[:, : self.cutoffs[0]] else: lowercase_ = weights[i], biases[i], self.out_projs[i] lowercase_ = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase_ = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) lowercase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowercase_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase_ = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: if self.n_clusters == 0: lowercase_ = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) else: # construct weights and biases lowercase_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = self.out_layers[0].weight[l_idx:r_idx] lowercase_ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase_ = self.out_layers[i].weight lowercase_ = self.out_layers[i].bias if i == 0: lowercase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCamelCase ) biases.append(_lowerCamelCase ) lowercase_ = weights[0], biases[0], self.out_projs[0] lowercase_ = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase_ = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) lowercase_ = [0] + self.cutoffs for i in range(len(_lowerCamelCase ) - 1 ): lowercase_ = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase_ = head_logprob[:, : self.cutoffs[0]] else: lowercase_ = weights[i], biases[i], self.out_projs[i] lowercase_ = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase_ = nn.functional.log_softmax(_lowerCamelCase , dim=1 ) lowercase_ = head_logprob[:, -i] + tail_logprob_i lowercase_ = logprob_i return out
30
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]="attention" ): """simple docstring""" a :Optional[int] = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] a :int = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=False ): """simple docstring""" if split_mlp_wi: a :int = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] a :Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] a :Dict = (wi_a, wi_a) else: a :Optional[Any] = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] a :Dict = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __lowerCamelCase ( UpperCAmelCase_ : dict , *, UpperCAmelCase_ : int , UpperCAmelCase_ : bool ): """simple docstring""" a :str = traverse_util.flatten_dict(variables['''target'''] ) a :Any = {'''/'''.join(UpperCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a :Any = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCAmelCase_ ) a :Optional[Any] = collections.OrderedDict() # Shared embeddings. a :Union[str, Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase_ ): # Block i, layer 0 (Self Attention). a :Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''pre_attention_layer_norm''' ) a , a , a , a :Optional[int] = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''attention''' ) a :List[Any] = layer_norm a :str = k.T a :Dict = o.T a :int = q.T a :Optional[Any] = v.T # Block i, layer 1 (MLP). a :Tuple = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , '''pre_mlp_layer_norm''' ) a , a :List[Any] = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''encoder''' , UpperCAmelCase_ ) a :Any = layer_norm if split_mlp_wi: a :Any = wi[0].T a :Tuple = wi[1].T else: a :List[str] = wi.T a :List[Any] = wo.T a :Union[str, Any] = old[ '''encoder/relpos_bias/rel_embedding''' ].T a :Optional[Any] = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase_ ): # Block i, layer 0 (Self Attention). a :List[str] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) a , a , a , a :List[Any] = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''self_attention''' ) a :List[Any] = layer_norm a :Tuple = k.T a :int = o.T a :Any = q.T a :Optional[int] = v.T # Block i, layer 1 (Cross Attention). a :str = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) a , a , a , a :Any = tax_attention_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''encoder_decoder_attention''' ) a :str = layer_norm a :Optional[Any] = k.T a :Any = o.T a :Dict = q.T a :Optional[Any] = v.T # Block i, layer 2 (MLP). a :Optional[int] = tax_layer_norm_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , '''pre_mlp_layer_norm''' ) a , a :List[Any] = tax_mlp_lookup(UpperCAmelCase_ , UpperCAmelCase_ , '''decoder''' , UpperCAmelCase_ ) a :Optional[int] = layer_norm if split_mlp_wi: a :int = wi[0].T a :Tuple = wi[1].T else: a :str = wi.T a :Dict = wo.T a :Any = old['''decoder/decoder_norm/scale'''] a :Optional[Any] = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a :Union[str, Any] = old['''decoder/logits_dense/kernel'''].T return new def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : bool ): """simple docstring""" a :List[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a :Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a :Tuple = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) a :Optional[Any] = state_dict['''shared.weight'''] return state_dict def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :Tuple = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) a :Optional[int] = convert_tax_to_pytorch(UpperCAmelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase_ ) a :Tuple = make_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): """simple docstring""" a :List[Any] = TaConfig.from_json_file(UpperCAmelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a :Any = TaEncoderModel(UpperCAmelCase_ ) else: a :List[str] = TaForConditionalGeneration(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase_ ) print('''Done''' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) snake_case : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
94
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase: Dict = 16 _lowercase: Optional[Any] = 32 def a( A : Accelerator , A : int = 16 ) -> List[Any]: """simple docstring""" a = AutoTokenizer.from_pretrained("bert-base-cased" ) a = load_dataset("glue" , "mrpc" ) def tokenize_function(A : Any ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 16 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , drop_last=lowerCamelCase__ ) a = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def a( A : List[str] , A : int ) -> Optional[Any]: """simple docstring""" a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config["num_epochs"] ) a = int(config["seed"] ) a = int(config["batch_size"] ) a = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation a = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a = batch_size // MAX_GPU_BATCH_SIZE a = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase__ ) a = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a = model(**lowerCamelCase__ ) a = outputs.loss a = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**lowerCamelCase__ ) a = outputs.logits.argmax(dim=-1 ) a = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase__ ) def a( ) -> Optional[Any]: """simple docstring""" a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
354
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: Optional[Any] = logging.get_logger(__name__) _lowercase: Any = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "git_vision_model" def __init__(self , lowerCamelCase_=768 , lowerCamelCase_=3072 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=3 , lowerCamelCase_=224 , lowerCamelCase_=16 , lowerCamelCase_="quick_gelu" , lowerCamelCase_=1E-5 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , **lowerCamelCase_ , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads a = num_channels a = patch_size a = image_size a = initializer_range a = attention_dropout a = layer_norm_eps a = hidden_act @classmethod def UpperCamelCase_ (cls , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase_ ) a , a = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": a = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "git" def __init__(self , lowerCamelCase_=None , lowerCamelCase_=30522 , lowerCamelCase_=768 , lowerCamelCase_=6 , lowerCamelCase_=12 , lowerCamelCase_=3072 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1024 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-1_2 , lowerCamelCase_=0 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=101 , lowerCamelCase_=102 , lowerCamelCase_=None , **lowerCamelCase_ , ): """simple docstring""" super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: a = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) a = GitVisionConfig(**lowerCamelCase_ ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = tie_word_embeddings a = num_image_with_embedding a = bos_token_id a = eos_token_id def UpperCamelCase_ (self ): """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = self.vision_config.to_dict() a = self.__class__.model_type return output
71
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''informer''' _lowerCamelCase: Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Union[str, Any] ,A_ : Optional[int] = None ,A_ : Optional[int] = None ,A_ : str = "student_t" ,A_ : str = "nll" ,A_ : int = 1 ,A_ : List[int] = None ,A_ : Optional[Union[str, bool]] = "mean" ,A_ : int = 0 ,A_ : int = 0 ,A_ : int = 0 ,A_ : int = 0 ,A_ : Optional[List[int]] = None ,A_ : Optional[List[int]] = None ,A_ : int = 64 ,A_ : int = 32 ,A_ : int = 32 ,A_ : int = 2 ,A_ : int = 2 ,A_ : int = 2 ,A_ : int = 2 ,A_ : bool = True ,A_ : str = "gelu" ,A_ : float = 0.05 ,A_ : float = 0.1 ,A_ : float = 0.1 ,A_ : float = 0.1 ,A_ : float = 0.1 ,A_ : int = 100 ,A_ : float = 0.02 ,A_ : Tuple=True ,A_ : str = "prob" ,A_ : int = 5 ,A_ : bool = True ,**A_ : Any ,) -> Dict: # time series specific configuration A = prediction_length A = context_length or prediction_length A = distribution_output A = loss A = input_size A = num_time_features A = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A = scaling A = num_dynamic_real_features A = num_static_real_features A = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A = cardinality else: A = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A = embedding_dimension else: A = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] A = num_parallel_samples # Transformer architecture configuration A = input_size * len(self.lags_sequence ) + self._number_of_features A = d_model A = encoder_attention_heads A = decoder_attention_heads A = encoder_ffn_dim A = decoder_ffn_dim A = encoder_layers A = decoder_layers A = dropout A = attention_dropout A = activation_dropout A = encoder_layerdrop A = decoder_layerdrop A = activation_function A = init_std A = use_cache # Informer A = attention_type A = sampling_factor A = distil super().__init__(is_encoder_decoder=A_ ,**A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
74
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def a__ ( ) -> str: """simple docstring""" UpperCAmelCase_ : Optional[Any] = 10 UpperCAmelCase_ : List[str] = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(_SCREAMING_SNAKE_CASE ) ), } , features=_SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files _lowerCamelCase = """\ Text data. Second line of data.""" @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" UpperCAmelCase_ : List[str] = FILE_CONTENT with open(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" import bza UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" UpperCAmelCase_ : str = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with bza.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" import gzip UpperCAmelCase_ : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) UpperCAmelCase_ : Dict = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with gzip.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" UpperCAmelCase_ : Tuple = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with lza.frame.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(_SCREAMING_SNAKE_CASE , "w" ) as archive: archive.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" import tarfile UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" import lzma UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" UpperCAmelCase_ : List[Any] = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with lzma.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" import zipfile UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" UpperCAmelCase_ : List[str] = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with zstd.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = tmp_path_factory.mktemp("data" ) / "file.xml" UpperCAmelCase_ : Optional[Any] = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename _lowerCamelCase = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] _lowerCamelCase = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] _lowerCamelCase = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } _lowerCamelCase = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] _lowerCamelCase = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="session" ) def a__ ( ) -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = datasets.Dataset.from_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: UpperCAmelCase_ : Any = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(_SCREAMING_SNAKE_CASE , "w" , newline="" ) as f: UpperCAmelCase_ : int = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(_SCREAMING_SNAKE_CASE , "w" , newline="" ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: """simple docstring""" import bza UpperCAmelCase_ : Dict = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(_SCREAMING_SNAKE_CASE , "rb" ) as f: UpperCAmelCase_ : List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ : str = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) UpperCAmelCase_ : List[Any] = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(_SCREAMING_SNAKE_CASE , "wb" ) as f: UpperCAmelCase_ : Dict = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=_SCREAMING_SNAKE_CASE ) writer.write_table(_SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) UpperCAmelCase_ : Optional[Any] = {"data": DATA} with open(_SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) UpperCAmelCase_ : List[Any] = {"data": DATA_DICT_OF_LISTS} with open(_SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA_312: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase_ : int = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA_STR: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" import gzip UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(_SCREAMING_SNAKE_CASE , "rb" ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , "wb" ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: """simple docstring""" import gzip UpperCAmelCase_ : int = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(_SCREAMING_SNAKE_CASE , "rb" ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , "wb" ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Any = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("nested" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.join("nested" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Any = ["0", "1", "2", "3"] UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ["0", "1", "2", "3"] UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = ["0", "1", "2", "3"] UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : int = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename("unsupported.ext" ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) UpperCAmelCase_ : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def a__ ( ) -> List[str]: """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def a__ ( ) -> Dict: """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" UpperCAmelCase_ : str = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
67
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> str | Literal[False]: """simple docstring""" UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase_ : List[str] = "_" if count > 1: return False else: return "".join(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : list[str] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : List[str] = [] while True: UpperCAmelCase_ : Any = ["$"] * len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase_ : Union[str, Any] = "*" UpperCAmelCase_ : List[Any] = "*" temp.append("X" ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_SCREAMING_SNAKE_CASE ) == 0: return pi UpperCAmelCase_ : str = list(set(_SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Sequence[float] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] for minterm in minterms: UpperCAmelCase_ : Optional[Any] = "" for _ in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_SCREAMING_SNAKE_CASE ) return temp def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[str] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : str = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[int] = -1 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase_ : Any = j if count == 1: UpperCAmelCase_ : Any = 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : int = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase_ : List[str] = count_n UpperCAmelCase_ : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : int = 0 def a__ ( _SCREAMING_SNAKE_CASE : list[str] , _SCREAMING_SNAKE_CASE : list[str] ) -> list[list[int]]: """simple docstring""" UpperCAmelCase_ : Dict = [[0 for x in range(len(_SCREAMING_SNAKE_CASE ) )] for x in range(len(_SCREAMING_SNAKE_CASE ) )] for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Optional[int] = prime_implicants[i].count("_" ) for j in range(len(_SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = 1 return chart def a__ ( ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = int(input("Enter the no. of variables\n" ) ) UpperCAmelCase_ : Tuple = [ float(_SCREAMING_SNAKE_CASE ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] UpperCAmelCase_ : int = decimal_to_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = check(_SCREAMING_SNAKE_CASE ) print("Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = prime_implicant_chart(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = selection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print("Essential Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
67
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class A_ ( snake_case__ ): _lowercase : Union[str, Any] = 'speech_to_text_2' _lowercase : List[Any] = ['past_key_values'] _lowercase : Any = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[str] , UpperCAmelCase : List[Any]=1_0_0_0_0 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : Optional[Any]=2_0_4_8 , UpperCAmelCase : int=4 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]="relu" , UpperCAmelCase : Optional[Any]=2_5_6 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Any=2 , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Any=2 , UpperCAmelCase : Tuple=1_0_2_4 , **UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[Any] = vocab_size __lowerCAmelCase: List[str] = d_model __lowerCAmelCase: List[str] = decoder_ffn_dim __lowerCAmelCase: Optional[Any] = decoder_layers __lowerCAmelCase: Optional[Any] = decoder_attention_heads __lowerCAmelCase: List[Any] = dropout __lowerCAmelCase: Union[str, Any] = attention_dropout __lowerCAmelCase: str = activation_dropout __lowerCAmelCase: str = activation_function __lowerCAmelCase: Tuple = init_std __lowerCAmelCase: Optional[Any] = decoder_layerdrop __lowerCAmelCase: str = use_cache __lowerCAmelCase: Dict = decoder_layers __lowerCAmelCase: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase: str = max_target_positions super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , )
322
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowerCAmelCase: Dict = logging.get_logger(__name__) class a__( lowerCamelCase__ ): lowercase__ = CLIPConfig lowercase__ = ["""CLIPEncoderLayer"""] def __init__( self : Dict , __snake_case : CLIPConfig ): super().__init__(__snake_case ) a : Optional[int] = CLIPVisionModelWithProjection(config.vision_config ) a : List[str] = nn.Linear(config.vision_config.projection_dim , 1 ) a : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowercase_ ( self : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Tuple=0.5 , __snake_case : Optional[int]=0.5 ): a : Any = self.vision_model(__snake_case )[0] a : Tuple = self.p_head(__snake_case ) a : Optional[Any] = nsfw_detected.flatten() a : Optional[int] = nsfw_detected > p_threshold a : Union[str, Any] = nsfw_detected.tolist() if any(__snake_case ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(__snake_case ): if nsfw_detected_: a : Tuple = np.zeros(images[idx].shape ) a : List[Any] = self.w_head(__snake_case ) a : Dict = watermark_detected.flatten() a : str = watermark_detected > w_threshold a : int = watermark_detected.tolist() if any(__snake_case ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(__snake_case ): if watermark_detected_: a : Dict = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
350
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCamelCase__ ( _A , _A , _A=0 ): # Format the message. if name is None: a : Tuple = None else: a : Dict = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' a : Tuple = fmt.format(_A ) # Print and recurse (if needed). if isinstance(_A , _A ): if msg is not None: print(_A ) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2 ) elif isinstance(_A , torch.Tensor ): print(_A , ':' , val.size() ) else: print(_A , ':' , _A ) def lowerCamelCase__ ( _A , _A , _A , _A , _A ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. a : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] a : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] a : int = param.view(*_A ) a : List[str] = param.transpose(0 , 2 ) a : Union[str, Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] a : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] a : List[str] = param.view(*_A ) a : Union[str, Any] = param.transpose(0 , 1 ).contiguous() a : List[Any] = param.view(*_A ) return param def lowerCamelCase__ ( _A , _A , _A ): # The converted output model. a : Optional[Any] = {} # old versions did not store training args a : Dict = input_state_dict.get('args' , _A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) a : Union[str, Any] = ds_args.padded_vocab_size a : str = ds_args.max_position_embeddings a : Dict = ds_args.hidden_size a : Union[str, Any] = ds_args.num_layers a : Dict = ds_args.num_attention_heads a : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. a : Any = config.n_head # The hidden_size per head. a : Tuple = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): a : Any = input_state_dict['checkpoint_version'] else: a : Any = 0.0 # The model. a : Optional[int] = input_state_dict['model'] # The language model. a : Optional[Any] = model['language_model'] # The embeddings. a : List[str] = lm['embedding'] # The word embeddings. a : List[Any] = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. a : Dict = word_embeddings[: config.vocab_size, :] a : int = word_embeddings # The position embeddings. a : Tuple = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] a : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. a : Optional[Any] = pos_embeddings # The transformer. a : Union[str, Any] = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. a : List[Any] = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. a : Optional[Any] = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. a : Tuple = layer_re.match(_A ) # Stop if that's not a layer if m is None: break # The index of the layer. a : Union[str, Any] = int(m.group(1 ) ) # The name of the operation. a : Optional[int] = m.group(2 ) # Is it a weight or a bias? a : Optional[int] = m.group(3 ) # The name of the layer. a : Any = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): a : str = 'ln_1' if op_name.startswith('input' ) else 'ln_2' a : Tuple = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. a : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _A , _A ) a : Optional[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. a : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) a : List[str] = masked_bias a : Union[str, Any] = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. a : int = out_val.transpose(0 , 1 ).contiguous() # Store. a : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": a : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A ) # Store. No change of shape. a : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": a : Tuple = megatron_to_transformers[op_name] a : List[str] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": a : Dict = megatron_to_transformers[op_name] a : Optional[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. a : str = transformer['final_layernorm.weight'] a : List[str] = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. a : Optional[int] = word_embeddings # It should be done! return output_state_dict def lowerCamelCase__ ( ): # Create the argument parser. a : Dict = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_A , help='An optional config json file describing the pre-trained model.' , ) a : Union[str, Any] = parser.parse_args() # Extract the basename. a : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: a : Union[str, Any] = torch.load(_A , map_location='cpu' ) else: a : Any = torch.load(args.path_to_checkpoint , map_location='cpu' ) a : List[Any] = input_state_dict.get('args' , _A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: a : int = 'gelu_fast' elif ds_args.openai_gelu: a : Dict = 'gelu_new' else: a : Any = 'gelu' else: # in the very early days this used to be "gelu_new" a : Any = 'gelu_new' # Spell out all parameters in case the defaults change. a : Tuple = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: a : str = GPTaConfig.from_json_file(args.config_file ) a : Any = ['GPT2LMHeadModel'] # Convert. print('Converting' ) a : Union[str, Any] = convert_megatron_checkpoint(_A , _A , _A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: a : Union[str, Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": a : Tuple = 'gpt2' elif tokenizer_type == "PretrainedFromHF": a : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: a : Optional[Any] = 'gpt2' a : Tuple = AutoTokenizer.from_pretrained(_A ) a : str = type(_A ).__name__ a : List[str] = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_A ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_A ) # Store the state_dict to file. a : Optional[int] = os.path.join(_A , 'pytorch_model.bin' ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_A , _A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
96
0
def _SCREAMING_SNAKE_CASE ( a ) -> list[int]: __A : List[Any] = [0 for i in range(len(a ) )] # initialize interval's left pointer and right pointer __A , __A : List[Any] = 0, 0 for i in range(1 , len(a ) ): # case when current index is inside the interval if i <= right_pointer: __A : Optional[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __A : Dict = min_edge while go_next(a , a , a ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __A , __A : Optional[Any] = i, i + z_result[i] - 1 return z_result def _SCREAMING_SNAKE_CASE ( a , a , a ) -> bool: return i + z_result[i] < len(a ) and s[z_result[i]] == s[i + z_result[i]] def _SCREAMING_SNAKE_CASE ( a , a ) -> int: __A : Union[str, Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __A : Optional[Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(a ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
280
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : Dict = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def _SCREAMING_SNAKE_CASE ( a , a , a=8 ) -> Tuple: __A : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __A : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _SCREAMING_SNAKE_CASE ( a , a=5_12 , a=5_12 ) -> int: __A : Optional[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __A : Union[str, Any] = np.array(pil_image.convert('RGB' ) ) __A : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 __A : int = np.transpose(a , [2, 0, 1] ) __A : Tuple = torch.from_numpy(a ).unsqueeze(0 ) return image class _A( snake_case__ ): """simple docstring""" def __init__( self , _A , _A , _A , ): super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __A : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self , _A , _A , _A ): # get the original timestep using init_timestep __A : Optional[int] = min(int(num_inference_steps * strength ) , _A ) __A : Dict = max(num_inference_steps - init_timestep , 0 ) __A : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A=None ): if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}""" ) __A : Union[str, Any] = image.to(device=_A , dtype=_A ) __A : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: __A : int = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_A )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(_A , _A ): __A : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] __A : str = torch.cat(_A , dim=0 ) else: __A : List[str] = self.movq.encode(_A ).latent_dist.sample(_A ) __A : Tuple = self.movq.config.scaling_factor * init_latents __A : Optional[int] = torch.cat([init_latents] , dim=0 ) __A : Union[str, Any] = init_latents.shape __A : List[str] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents __A : Optional[Any] = self.scheduler.add_noise(_A , _A , _A ) __A : Optional[int] = init_latents return latents def UpperCAmelCase_ ( self , _A=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __A : Optional[int] = torch.device(F"""cuda:{gpu_id}""" ) __A : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase_ ( self , _A=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __A : List[Any] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __A : int = None for cpu_offloaded_model in [self.unet, self.movq]: __A , __A : Optional[int] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __A : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self , _A , _A , _A , _A = 512 , _A = 512 , _A = 100 , _A = 4.0 , _A = 0.3 , _A = 1 , _A = None , _A = "pil" , _A = True , ): __A : List[Any] = self._execution_device __A : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __A : Optional[Any] = torch.cat(_A , dim=0 ) __A : Tuple = image_embeds.shape[0] if isinstance(_A , _A ): __A : List[Any] = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: __A : Union[str, Any] = image_embeds.repeat_interleave(_A , dim=0 ) __A : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) __A : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): __A : List[Any] = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) __A : Dict = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) __A : Any = image.to(dtype=image_embeds.dtype , device=_A ) __A : Tuple = self.movq.encode(_A )['latents'] __A : int = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) __A , __A : int = self.get_timesteps(_A , _A , _A ) __A : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __A , __A : Any = downscale_height_and_width(_A , _A , self.movq_scale_factor ) __A : Tuple = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __A : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __A : Dict = {'image_embeds': image_embeds} __A : List[str] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __A , __A : Dict = noise_pred.split(latents.shape[1] , dim=1 ) __A , __A : Optional[Any] = noise_pred.chunk(2 ) __A , __A : List[str] = variance_pred.chunk(2 ) __A : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __A : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __A , __A : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __A : List[str] = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __A : List[Any] = self.movq.decode(_A , force_not_quantize=_A )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __A : List[str] = image * 0.5 + 0.5 __A : List[str] = image.clamp(0 , 1 ) __A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __A : Any = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
280
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: str = StableDiffusionControlNetImgaImgPipeline A: Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} A: Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A: List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"}) A: Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCamelCase__ : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase__ : Dict = CLIPTextModel(lowerCamelCase__ ) UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ : List[str] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple=0 ) -> int: '''simple docstring''' if str(lowerCamelCase__ ).startswith('''mps''' ): UpperCamelCase__ : Any = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ : Dict = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCamelCase__ : Any = 2 UpperCamelCase__ : List[str] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase__ , device=torch.device(lowerCamelCase__ ) , ) UpperCamelCase__ : List[Any] = floats_tensor(control_image.shape , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCamelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ : List[str] = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : List[Any] ) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Any = StableDiffusionControlNetImgaImgPipeline A: Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} A: Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A: Optional[int] = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCAmelCase__ ( self : Any ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCamelCase__ : Any ): if isinstance(lowerCamelCase__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCamelCase__ : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase__ ) torch.manual_seed(0 ) UpperCamelCase__ : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase__ ) torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) UpperCamelCase__ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase__ : Tuple = CLIPTextModel(lowerCamelCase__ ) UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ : Union[str, Any] = MultiControlNetModel([controlneta, controlneta] ) UpperCamelCase__ : Dict = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any]=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('''mps''' ): UpperCamelCase__ : Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ : Optional[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = 2 UpperCamelCase__ : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase__ , device=torch.device(lowerCamelCase__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase__ , device=torch.device(lowerCamelCase__ ) , ), ] UpperCamelCase__ : Optional[Any] = floats_tensor(control_image[0].shape , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCamelCase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ : Union[str, Any] = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCAmelCase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : int = self.get_dummy_components() UpperCamelCase__ : Dict = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = 10.0 UpperCamelCase__ : int = 4 UpperCamelCase__ : Tuple = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ : int = steps UpperCamelCase__ : Union[str, Any] = scale UpperCamelCase__ : Union[str, Any] = pipe(**lowerCamelCase__ )[0] UpperCamelCase__ : str = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = steps UpperCamelCase__ : Optional[int] = scale UpperCamelCase__ : Union[str, Any] = pipe(**lowerCamelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCamelCase__ : List[str] = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ : int = steps UpperCamelCase__ : Dict = scale UpperCamelCase__ : Dict = pipe(**lowerCamelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCamelCase__ : Dict = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ : str = steps UpperCamelCase__ : List[Any] = scale UpperCamelCase__ : Dict = pipe(**lowerCamelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : str ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCamelCase__ ) except NotImplementedError: pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Any = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) UpperCamelCase__ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCamelCase__ , controlnet=lowerCamelCase__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = '''evil space-punk bird''' UpperCamelCase__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) UpperCamelCase__ : Optional[Any] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) UpperCamelCase__ : Optional[int] = pipe( lowerCamelCase__ , lowerCamelCase__ , control_image=lowerCamelCase__ , generator=lowerCamelCase__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCamelCase__ : List[str] = output.images[0] assert image.shape == (512, 512, 3) UpperCamelCase__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
51
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Any=False ): """simple docstring""" UpperCamelCase__ : str = '''backbone.''' if is_semantic else '''''' UpperCamelCase__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", '''beit.embeddings.cls_token'''), (F"{prefix}patch_embed.proj.weight", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"{prefix}patch_embed.proj.bias", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"{prefix}pos_embed", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=False ): """simple docstring""" for i in range(config.num_hidden_layers ): UpperCamelCase__ : Union[str, Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCamelCase__ : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : List[str] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) UpperCamelCase__ : Tuple = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) UpperCamelCase__ : List[str] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : Optional[int] = q_bias UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCamelCase__ : List[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) UpperCamelCase__ : List[str] = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) UpperCamelCase__ : Any = gamma_a UpperCamelCase__ : str = gamma_a def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase__ : Optional[Any] = dct.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = val def _a ( ): """simple docstring""" UpperCamelCase__ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" UpperCamelCase__ : Optional[Any] = False if '''rvlcdip''' in checkpoint_url else True UpperCamelCase__ : str = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE , use_mask_token=SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCamelCase__ : List[str] = 1024 UpperCamelCase__ : Union[str, Any] = 4096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCamelCase__ : Any = 16 UpperCamelCase__ : Optional[int] = '''huggingface/label-files''' UpperCamelCase__ : Union[str, Any] = '''rvlcdip-id2label.json''' UpperCamelCase__ : Dict = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Optional[Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ : int = idalabel UpperCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCamelCase__ : Optional[int] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] UpperCamelCase__ : str = create_rename_keys(SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) # load HuggingFace model UpperCamelCase__ : Tuple = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image UpperCamelCase__ : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = prepare_img() UpperCamelCase__ : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) UpperCamelCase__ : Union[str, Any] = encoding['''pixel_values'''] UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = outputs.logits # verify logits UpperCamelCase__ : Dict = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: UpperCamelCase__ : Any = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCamelCase__ : Optional[Any] = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __UpperCamelCase : Dict = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
51
1
import math import flax.linen as nn import jax.numpy as jnp def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 1 , SCREAMING_SNAKE_CASE : float = 1 , SCREAMING_SNAKE_CASE : float = 1.0E4 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : float = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even" UpperCamelCase__ : List[str] = float(embedding_dim // 2 ) UpperCamelCase__ : Optional[int] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCamelCase__ : List[Any] = min_timescale * jnp.exp(jnp.arange(SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCamelCase__ : Tuple = jnp.expand_dims(SCREAMING_SNAKE_CASE , 1 ) * jnp.expand_dims(SCREAMING_SNAKE_CASE , 0 ) # scale embeddings UpperCamelCase__ : str = scale * emb if flip_sin_to_cos: UpperCamelCase__ : str = jnp.concatenate([jnp.cos(SCREAMING_SNAKE_CASE ), jnp.sin(SCREAMING_SNAKE_CASE )] , axis=1 ) else: UpperCamelCase__ : str = jnp.concatenate([jnp.sin(SCREAMING_SNAKE_CASE ), jnp.cos(SCREAMING_SNAKE_CASE )] , axis=1 ) UpperCamelCase__ : Union[str, Any] = jnp.reshape(SCREAMING_SNAKE_CASE , [jnp.shape(SCREAMING_SNAKE_CASE )[0], embedding_dim] ) return signal class __magic_name__ ( nn.Module): A: int = 3_2 A: jnp.dtype = jnp.floataa @nn.compact def __call__( self : Optional[int] , lowerCamelCase__ : Any ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(lowerCamelCase__ ) UpperCamelCase__ : int = nn.silu(lowerCamelCase__ ) UpperCamelCase__ : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(lowerCamelCase__ ) return temb class __magic_name__ ( nn.Module): A: int = 3_2 A: bool = False A: float = 1 @nn.compact def __call__( self : List[str] , lowerCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' return get_sinusoidal_embeddings( lowerCamelCase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
146
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCamelCase : Dict = trt.Logger(trt.Logger.WARNING) __UpperCamelCase : Union[str, Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCamelCase : int = logging.getLogger(__name__) __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __UpperCamelCase : Dict = parser.parse_args() if args.tokenizer_name: __UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __UpperCamelCase : Union[str, Any] = args.per_device_eval_batch_size __UpperCamelCase : List[str] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCamelCase : Tuple = True __UpperCamelCase : Union[str, Any] = "temp_engine/bert-fp32.engine" if args.fpaa: __UpperCamelCase : str = "temp_engine/bert-fp16.engine" if args.inta: __UpperCamelCase : int = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __UpperCamelCase : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCamelCase : Optional[Any] = [network.get_input(i) for i in range(network.num_inputs)] __UpperCamelCase : Optional[int] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCamelCase : List[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCamelCase : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCamelCase : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ : Optional[int] = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) UpperCamelCase__ : str = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) UpperCamelCase__ : Optional[Any] = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE ) # start time UpperCamelCase__ : Union[str, Any] = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time UpperCamelCase__ : List[Any] = time.time() UpperCamelCase__ : int = end_time - start_time UpperCamelCase__ : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCamelCase : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCamelCase : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCamelCase : str = raw_datasets["validation"].column_names __UpperCamelCase : List[Any] = "question" if "question" in column_names else column_names[0] __UpperCamelCase : Dict = "context" if "context" in column_names else column_names[1] __UpperCamelCase : str = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCamelCase : List[Any] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __UpperCamelCase : List[str] = min(args.max_seq_length, tokenizer.model_max_length) def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" UpperCamelCase__ : Dict = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. UpperCamelCase__ : List[Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. UpperCamelCase__ : int = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. UpperCamelCase__ : List[Any] = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). UpperCamelCase__ : Dict = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. UpperCamelCase__ : Optional[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. UpperCamelCase__ : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __UpperCamelCase : str = raw_datasets["validation"] # Validation Feature Creation __UpperCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __UpperCamelCase : Union[str, Any] = default_data_collator __UpperCamelCase : List[str] = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __UpperCamelCase : Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]="eval" ): """simple docstring""" UpperCamelCase__ : List[str] = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: UpperCamelCase__ : List[str] = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: UpperCamelCase__ : Optional[Any] = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] UpperCamelCase__ : int = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) __UpperCamelCase : int = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. __UpperCamelCase : Any = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCamelCase : List[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCamelCase : Any = cuda.mem_alloc(h_outputa.nbytes) __UpperCamelCase : List[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCamelCase : Union[str, Any] = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") __UpperCamelCase : str = 0.0 __UpperCamelCase : int = 0 __UpperCamelCase : List[Any] = timeit.default_timer() __UpperCamelCase : List[str] = None for step, batch in enumerate(eval_dataloader): __UpperCamelCase , __UpperCamelCase : Optional[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCamelCase , __UpperCamelCase : Optional[Any] = outputs __UpperCamelCase : List[str] = torch.tensor(start_logits) __UpperCamelCase : Optional[Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCamelCase : int = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCamelCase : List[Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCamelCase : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCamelCase : Optional[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCamelCase : int = nested_truncate(all_preds, len(eval_dataset)) __UpperCamelCase : Dict = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) __UpperCamelCase : int = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCamelCase : Union[str, Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
146
1
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _SCREAMING_SNAKE_CASE = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = '''cpu''' _SCREAMING_SNAKE_CASE = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _SCREAMING_SNAKE_CASE = '''path-to-your-trained-model''' _SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _SCREAMING_SNAKE_CASE = pipe.to(device) # to channels last _SCREAMING_SNAKE_CASE = pipe.unet.to(memory_format=torch.channels_last) _SCREAMING_SNAKE_CASE = pipe.vae.to(memory_format=torch.channels_last) _SCREAMING_SNAKE_CASE = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _SCREAMING_SNAKE_CASE = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _SCREAMING_SNAKE_CASE = torch.randn(2, 4, 6_4, 6_4) _SCREAMING_SNAKE_CASE = torch.rand(1) * 9_9_9 _SCREAMING_SNAKE_CASE = torch.randn(2, 7_7, 7_6_8) _SCREAMING_SNAKE_CASE = (sample, timestep, encoder_hidden_status) try: _SCREAMING_SNAKE_CASE = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _SCREAMING_SNAKE_CASE = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _SCREAMING_SNAKE_CASE = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _SCREAMING_SNAKE_CASE = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _SCREAMING_SNAKE_CASE = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _SCREAMING_SNAKE_CASE = 6_6_6 _SCREAMING_SNAKE_CASE = torch.Generator(device).manual_seed(seed) _SCREAMING_SNAKE_CASE = {'''generator''': generator} if args.steps is not None: _SCREAMING_SNAKE_CASE = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _SCREAMING_SNAKE_CASE = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
366
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
217
0
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1.0E4 , lowerCAmelCase__ = False , lowerCAmelCase__ = 1.0 , ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" UpperCAmelCase__ : List[str] = float(embedding_dim // 2 ) UpperCAmelCase__ : Optional[Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCAmelCase__ : Optional[int] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase__ , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCAmelCase__ : Union[str, Any] = jnp.expand_dims(lowerCAmelCase__ , 1 ) * jnp.expand_dims(lowerCAmelCase__ , 0 ) # scale embeddings UpperCAmelCase__ : List[Any] = scale * emb if flip_sin_to_cos: UpperCAmelCase__ : Tuple = jnp.concatenate([jnp.cos(lowerCAmelCase__ ), jnp.sin(lowerCAmelCase__ )] , axis=1 ) else: UpperCAmelCase__ : str = jnp.concatenate([jnp.sin(lowerCAmelCase__ ), jnp.cos(lowerCAmelCase__ )] , axis=1 ) UpperCAmelCase__ : Tuple = jnp.reshape(lowerCAmelCase__ , [jnp.shape(lowerCAmelCase__ )[0], embedding_dim] ) return signal class lowerCamelCase_ ( nn.Module ): lowerCAmelCase__ = 3_2 lowerCAmelCase__ = jnp.floataa @nn.compact def __call__( self : Tuple , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(_A ) UpperCAmelCase__ : int = nn.silu(_A ) UpperCAmelCase__ : Optional[int] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(_A ) return temb class lowerCamelCase_ ( nn.Module ): lowerCAmelCase__ = 3_2 lowerCAmelCase__ = False lowerCAmelCase__ = 1 @nn.compact def __call__( self : List[Any] , _A : str ): '''simple docstring''' return get_sinusoidal_embeddings( _A , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
181
'''simple docstring''' import math class lowerCamelCase_ : def lowercase_ ( self : Optional[Any] , _A : list[list[float]] , _A : list[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = 0.0 UpperCAmelCase__ : Union[str, Any] = 0.0 for i in range(len(_A ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase_ ( self : Dict , _A : list[list[int | float]] , _A : list[int] , _A : int , _A : float ): '''simple docstring''' for i in range(len(_A ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def a__ ( ) -> None: # Training Examples ( m, n ) UpperCAmelCase__ : Optional[Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCAmelCase__ : str = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCAmelCase__ : Optional[Any] = SelfOrganizingMap() UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : Dict = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample UpperCAmelCase__ : Optional[int] = training_samples[j] # Compute the winning vector UpperCAmelCase__ : str = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector UpperCAmelCase__ : int = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample UpperCAmelCase__ : str = [0, 0, 0, 1] UpperCAmelCase__ : int = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
181
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> List[str]: """simple docstring""" UpperCamelCase :Optional[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase :Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase :List[str] = 0.01 with locka.acquire(): with pytest.raises(__magic_name__ ): UpperCamelCase :Optional[Any] = time.time() locka.acquire(__magic_name__ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase :Union[str, Any] = """a""" * 1000 + """.lock""" UpperCamelCase :List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(__magic_name__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCamelCase :Tuple = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__magic_name__ ): locka.acquire(0 )
369
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any=7 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : int=[0.5, 0.5, 0.5] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=1 / 255 , __lowerCamelCase : str=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase :List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} UpperCamelCase :Tuple = parent UpperCamelCase :int = batch_size UpperCamelCase :str = num_channels UpperCamelCase :Dict = min_resolution UpperCamelCase :Any = max_resolution UpperCamelCase :int = do_resize UpperCamelCase :str = size UpperCamelCase :Dict = do_normalize UpperCamelCase :Tuple = image_mean UpperCamelCase :Optional[int] = image_std UpperCamelCase :Tuple = do_rescale UpperCamelCase :Optional[Any] = rescale_factor UpperCamelCase :List[Any] = do_pad def _A ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=False ): if not batched: UpperCamelCase :Optional[Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): UpperCamelCase , UpperCamelCase :Union[str, Any] = image.size else: UpperCamelCase , UpperCamelCase :Optional[int] = image.shape[1], image.shape[2] if w < h: UpperCamelCase :int = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase :Tuple = self.size["""shortest_edge"""] elif w > h: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = self.size["""shortest_edge"""] else: UpperCamelCase :List[Any] = [] for image in image_inputs: UpperCamelCase , UpperCamelCase :int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :int = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] UpperCamelCase :Tuple = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[int] = DeformableDetrImageProcessor if is_vision_available() else None def _A ( self : Optional[Any] ): UpperCamelCase :str = DeformableDetrImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Dict ): UpperCamelCase :int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : str ): UpperCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) UpperCamelCase :int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def _A ( self : List[Any] ): pass def _A ( self : Dict ): # Initialize image_processing UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase :str = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) UpperCamelCase :int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Tuple ): # Initialize image_processing UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Dict = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Any ): # Initialize image_processing UpperCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _A ( self : Optional[Any] ): # prepare image and target UpperCamelCase :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase :str = json.loads(f.read() ) UpperCamelCase :List[Any] = {"""image_id""": 39_769, """annotations""": target} # encode them UpperCamelCase :Optional[int] = DeformableDetrImageProcessor() UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Union[str, Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify orig_size UpperCamelCase :Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) ) @slow def _A ( self : str ): # prepare image, target and masks_path UpperCamelCase :Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase :Any = json.loads(f.read() ) UpperCamelCase :int = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} UpperCamelCase :Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase :Tuple = DeformableDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify masks UpperCamelCase :Union[str, Any] = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __lowerCamelCase ) # verify orig_size UpperCamelCase :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) )
62
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): while b: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = b, a % b return a def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return a if b == 0 else euclidean_gcd_recursive(A_ , a % b ) def __SCREAMING_SNAKE_CASE ( ): print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
106
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
83
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : int = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( _a ): UpperCamelCase__ = ['''pixel_values'''] def __init__( self :List[str] , __magic_name__ :bool = True , __magic_name__ :Dict[str, int] = None , __magic_name__ :PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ :bool = True , __magic_name__ :Dict[str, int] = None , __magic_name__ :bool = True , __magic_name__ :Union[int, float] = 1 / 255 , __magic_name__ :bool = True , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :bool = True , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**snake_case_ ) a = size if size is not None else {"""shortest_edge""": 224} a = get_size_dict(snake_case_ , default_to_square=snake_case_ ) a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} a = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name="""crop_size""" ) a = do_resize a = size a = resample a = do_center_crop a = crop_size a = do_rescale a = rescale_factor a = do_normalize a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a = image_std if image_std is not None else OPENAI_CLIP_STD a = do_convert_rgb def lowerCamelCase__ ( self :Any , __magic_name__ :np.ndarray , __magic_name__ :Dict[str, int] , __magic_name__ :PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :List[str] , ): '''simple docstring''' a = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) a = get_resize_output_image_size(snake_case_ , size=size["""shortest_edge"""] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :np.ndarray , __magic_name__ :Dict[str, int] , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :str , ): '''simple docstring''' a = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(snake_case_ , size=(size["""height"""], size["""width"""]) , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self :str , __magic_name__ :np.ndarray , __magic_name__ :Union[int, float] , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :Optional[Any] , ): '''simple docstring''' return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :np.ndarray , __magic_name__ :Union[float, List[float]] , __magic_name__ :Union[float, List[float]] , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :Dict , ): '''simple docstring''' return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :ImageInput , __magic_name__ :bool = None , __magic_name__ :Dict[str, int] = None , __magic_name__ :PILImageResampling = None , __magic_name__ :bool = None , __magic_name__ :int = None , __magic_name__ :bool = None , __magic_name__ :float = None , __magic_name__ :bool = None , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :bool = None , __magic_name__ :Optional[Union[str, TensorType]] = None , __magic_name__ :Optional[ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ :Tuple , ): '''simple docstring''' a = do_resize if do_resize is not None else self.do_resize a = size if size is not None else self.size a = get_size_dict(snake_case_ , param_name="""size""" , default_to_square=snake_case_ ) a = resample if resample is not None else self.resample a = do_center_crop if do_center_crop is not None else self.do_center_crop a = crop_size if crop_size is not None else self.crop_size a = get_size_dict(snake_case_ , param_name="""crop_size""" , default_to_square=snake_case_ ) a = do_rescale if do_rescale is not None else self.do_rescale a = rescale_factor if rescale_factor is not None else self.rescale_factor a = do_normalize if do_normalize is not None else self.do_normalize a = image_mean if image_mean is not None else self.image_mean a = image_std if image_std is not None else self.image_std a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: a = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. a = [to_numpy_array(snake_case_ ) for image in images] if do_resize: a = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: a = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: a = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: a = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] a = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] a = {"""pixel_values""": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
371
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :int ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = FlaxRobertaModelTester(self ) @slow def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
347
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: if isinstance(_A , collections.abc.Iterable ): return x return (x, x) @require_tf class lowercase_ : """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int: pass def SCREAMING_SNAKE_CASE_ ( self ) ->str: pass def SCREAMING_SNAKE_CASE_ ( self ) ->str: pass def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase = TFVisionTextDualEncoderModel(__lowerCamelCase ) lowerCAmelCase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCAmelCase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase = {'''vision_model''': vision_model, '''text_model''': text_model} lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) lowerCAmelCase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCAmelCase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) lowerCAmelCase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) lowerCAmelCase = after_output[0].numpy() lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1e-5 ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCAmelCase = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase = to_atuple(vision_model.config.image_size ) lowerCAmelCase = to_atuple(vision_model.config.patch_size ) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Dict: lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(__lowerCamelCase , __lowerCamelCase , F"Difference between torch and flax is {diff} (>= {tol})." ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.get_pretrained_model_and_inputs() lowerCAmelCase = model_a(**__lowerCamelCase ) lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowerCamelCase ) lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) lowerCAmelCase = model_a(**__lowerCamelCase ) lowerCAmelCase = after_outputs[0].numpy() lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1e-5 ) @require_tf class lowercase_ ( A__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) lowerCAmelCase = 13 lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase = random_attention_mask([batch_size, 4] ) lowerCAmelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = TFViTModel(__lowerCamelCase , name='''vision_model''' ) lowerCAmelCase = TFBertModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = TFViTModelTester(self ) lowerCAmelCase = TFBertModelTester(self ) lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = vision_config_and_inputs ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase_ ( A__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->str: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) lowerCAmelCase = 13 lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase = random_attention_mask([batch_size, 4] ) lowerCAmelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: lowerCAmelCase , lowerCAmelCase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCAmelCase = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase = to_atuple(vision_model.config.image_size ) lowerCAmelCase = to_atuple(vision_model.config.patch_size ) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase = TFDeiTModel(__lowerCamelCase , name='''vision_model''' ) lowerCAmelCase = TFRobertaModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = TFDeiTModelTester(self ) lowerCAmelCase = TFRobertaModelTester(self ) lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = vision_config_and_inputs ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase_ ( A__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) lowerCAmelCase = 13 lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase = random_attention_mask([batch_size, 4] ) lowerCAmelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase = TFCLIPVisionModel(__lowerCamelCase , name='''vision_model''' ) lowerCAmelCase = TFBertModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = TFCLIPVisionModelTester(self ) lowerCAmelCase = TFBertModelTester(self ) lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase = vision_config_and_inputs ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowercase_ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__lowerCamelCase ) lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors='''np''' ) lowerCAmelCase = model(**__lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowerCamelCase , atol=1e-3 ) )
338
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase : int = logging.getLogger(__name__) UpperCAmelCase : List[Any] = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase : List[str] = {"facebook/bart-base": BartTokenizer} def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=__lowerCAmelCase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__lowerCAmelCase , ) parser.add_argument( """--config_name""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=__lowerCAmelCase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Where to store the final ONNX file.""" ) lowercase_ = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase="cpu" ) -> Optional[Any]: '''simple docstring''' lowercase_ = model_dict[model_name].from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) lowercase_ = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase ) if model_name in ["facebook/bart-base"]: lowercase_ = 0 lowercase_ = None lowercase_ = 0 return huggingface_model, tokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' model.eval() lowercase_ = None lowercase_ = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase ) ) with torch.no_grad(): lowercase_ = '''My friends are cool but they eat too many carbs.''' lowercase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="""pt""" ).to(model.device ) lowercase_ = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=__lowerCAmelCase , ) logger.info("""Model exported to {}""".format(__lowerCAmelCase ) ) lowercase_ = remove_dup_initializers(os.path.abspath(__lowerCAmelCase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(__lowerCAmelCase ) ) lowercase_ = onnxruntime.InferenceSession(__lowerCAmelCase ) lowercase_ = ort_sess.run( __lowerCAmelCase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(__lowerCAmelCase ), """max_length""": np.array(__lowerCAmelCase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = parse_args() lowercase_ = 5 lowercase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase_ = torch.device(args.device ) lowercase_ = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(__lowerCAmelCase ) if args.max_length: lowercase_ = args.max_length if args.num_beams: lowercase_ = args.num_beams if args.output_file_path: lowercase_ = args.output_file_path else: lowercase_ = '''BART.onnx''' logger.info("""Exporting model to ONNX""" ) export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
350
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase : __lowercase : Optional[int] = PegasusConfig __lowercase : List[str] = {} __lowercase : int = "gelu" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=40 , A_=2 , A_=1 , A_=0 , ) -> Dict: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_pegasus_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = TFPegasusModel(config=A_ ).get_decoder() UpperCamelCase = inputs_dict['input_ids'] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['attention_mask'][:1, :] UpperCamelCase = inputs_dict['head_mask'] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(A_ , attention_mask=A_ )[0] UpperCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) def A ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ) -> Any: '''simple docstring''' if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Dict = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __lowercase : Optional[int] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __lowercase : Any = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Optional[Any] = True __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = TFPegasusModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_sentencepiece @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): __lowercase : str = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __lowercase : int = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __lowercase : Tuple = "google/pegasus-xsum" @cached_property def __UpperCamelCase ( self ) -> int: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __UpperCamelCase ( self , **A_ ) -> int: """simple docstring""" UpperCamelCase = self.translate_src_text(**A_ ) assert self.expected_text == generated_words def __UpperCamelCase ( self , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = self.tokenizer(self.src_text , **A_ , padding=A_ , return_tensors='tf' ) UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A_ , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ ) return generated_words @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" self._assert_generated_batch_equal_expected()
222
import requests def A ( lowercase , lowercase ) -> None: '''simple docstring''' UpperCamelCase = {'Content-Type': 'application/json'} UpperCamelCase = requests.post(lowercase , json={'text': message_body} , headers=lowercase ) if response.status_code != 200: UpperCamelCase = ( 'Request to slack returned an error ' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
222
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__ ): _lowercase : Optional[int] = ['''torch''', '''scipy'''] def __init__( self: Union[str, Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: List[str] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def lowerCamelCase_ ( cls: Any , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def lowerCamelCase_ ( cls: Optional[Any] , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: int ) -> List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
363
from collections.abc import Sequence from queue import Queue class _a : def __init__( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Dict=None ) -> Tuple: """simple docstring""" lowercase__ = start lowercase__ = end lowercase__ = val lowercase__ = (start + end) // 2 lowercase__ = left lowercase__ = right def __repr__( self: Optional[int] ) -> Optional[Any]: """simple docstring""" return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class _a : def __init__( self: Any , UpperCamelCase_: Sequence , UpperCamelCase_: Any ) -> List[str]: """simple docstring""" lowercase__ = collection lowercase__ = function if self.collection: lowercase__ = self._build_tree(0 , len(UpperCamelCase_ ) - 1 ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self._update_tree(self.root , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: int , UpperCamelCase_: List[str] ) -> Optional[Any]: """simple docstring""" return self._query_range(self.root , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Dict ) -> str: """simple docstring""" if start == end: return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.collection[start] ) lowercase__ = (start + end) // 2 lowercase__ = self._build_tree(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._build_tree(mid + 1 , UpperCamelCase_ ) return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.fn(left.val , right.val ) , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] ) -> Dict: """simple docstring""" if node.start == i and node.end == i: lowercase__ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: self._update_tree(node.right , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.fn(node.left.val , node.right.val ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Dict ) -> List[Any]: """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase_ ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" if self.root is not None: lowercase__ = Queue() queue.put(self.root ) while not queue.empty(): lowercase__ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) lowerCAmelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
93
0
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Union[str, Any] = {"""vocab_file""": """vocab.json"""} SCREAMING_SNAKE_CASE__:List[str] = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } SCREAMING_SNAKE_CASE__:Optional[Any] = {"""mgp-str""": 27} class snake_case__ ( snake_case_ ): _snake_case : Optional[Any] = VOCAB_FILES_NAMES _snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase , lowerCamelCase="[GO]" , lowerCamelCase="[GO]" , lowerCamelCase="[s]" , lowerCamelCase="[GO]" , **lowerCamelCase ): super().__init__( unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __a = json.load(lowerCamelCase ) __a = {v: k for k, v in self.vocab.items()} @property def a__ ( self ): return len(self.vocab ) def a__ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def a__ ( self , lowerCamelCase ): __a = [] for s in text: char_tokens.extend(lowerCamelCase ) return char_tokens def a__ ( self , lowerCamelCase ): return self.vocab.get(lowerCamelCase , self.vocab.get(self.unk_token ) ) def a__ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if not os.path.isdir(lowerCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCamelCase ) ) return __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) return (vocab_file,)
261
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( a ): return getitem, k def _lowerCamelCase( a , a ): return setitem, k, v def _lowerCamelCase( a ): return delitem, k def _lowerCamelCase( a , a , *a ): try: return fun(a , *a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__:List[Any] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__:Any = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__:int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__:Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase( a ): __a = HashMap(initial_block_size=4 ) __a = {} for _, (fun, *args) in enumerate(a ): __a , __a = _run_operation(a , a , *a ) __a , __a = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ): def is_public(a ) -> bool: return not name.startswith("_" ) __a = {name for name in dir({} ) if is_public(a )} __a = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
261
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: int = AltDiffusionPipeline __magic_name__: Any = TEXT_TO_IMAGE_PARAMS __magic_name__: Any = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__: Any = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__: Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) snake_case_ : Any = CLIPTextModel(_A ) snake_case_ : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case_ : Dict = 77 snake_case_ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self : int , _A : Optional[int] , _A : int=0 ) -> Dict: """simple docstring""" if str(_A ).startswith('mps' ): snake_case_ : Union[str, Any] = torch.manual_seed(_A ) else: snake_case_ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) snake_case_ : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase_ ( self : Dict ) -> Any: """simple docstring""" snake_case_ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : Any = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ : Any = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ : Optional[Any] = RobertaSeriesModelWithTransformation(_A ) snake_case_ : Optional[Any] = text_encoder snake_case_ : Optional[Any] = AltDiffusionPipeline(**_A ) snake_case_ : List[Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Optional[Any] = self.get_dummy_inputs(_A ) snake_case_ : int = 'A photo of an astronaut' snake_case_ : Tuple = alt_pipe(**_A ) snake_case_ : Any = output.images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Any = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ : Any = self.get_dummy_components() snake_case_ : List[str] = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) snake_case_ : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ : Tuple = RobertaSeriesModelWithTransformation(_A ) snake_case_ : Any = text_encoder snake_case_ : Tuple = AltDiffusionPipeline(**_A ) snake_case_ : Dict = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Dict = self.get_dummy_inputs(_A ) snake_case_ : Tuple = alt_pipe(**_A ) snake_case_ : int = output.images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Optional[int] = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_A ) snake_case_ : Optional[int] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : str = 'A painting of a squirrel eating a burger' snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : str = alt_pipe([prompt] , generator=_A , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) snake_case_ : Any = output.images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : Union[str, Any] = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) snake_case_ : Union[str, Any] = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_A , safety_checker=_A ) snake_case_ : List[str] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) snake_case_ : List[Any] = 'A painting of a squirrel eating a burger' snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[Any] = alt_pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='numpy' ) snake_case_ : Any = output.images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : List[Any] = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
88
0
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: return math.sqrt(__snake_case ) * math.sqrt(__snake_case ) == num def _lowerCAmelCase ( __snake_case : int ) -> bool: __A : str = 0 __A : List[Any] = n while left <= right: __A : List[Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __A : List[str] = mid - 1 else: __A : Any = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
190
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = {} class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''llama''' lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=3_2000 , _UpperCAmelCase=4096 , _UpperCAmelCase=1_1008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' __A : Union[str, Any] = vocab_size __A : Union[str, Any] = max_position_embeddings __A : Any = hidden_size __A : Optional[Any] = intermediate_size __A : str = num_hidden_layers __A : Optional[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __A : List[Any] = num_attention_heads __A : int = num_key_value_heads __A : List[Any] = hidden_act __A : Union[str, Any] = initializer_range __A : List[Any] = rms_norm_eps __A : Any = pretraining_tp __A : Optional[Any] = use_cache __A : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}') __A : Optional[Any] = self.rope_scaling.get('type' , _UpperCAmelCase) __A : Tuple = self.rope_scaling.get('factor' , _UpperCAmelCase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
190
1
def lowerCamelCase__ ( ): '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __a = generate_large_matrix() __a = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' assert all(row == sorted(a__ , reverse=a__ ) for row in grid ) assert all(list(a__ ) == sorted(a__ , reverse=a__ ) for col in zip(*a__ ) ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Dict = len(a__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase_ : List[Any] = (left + right) // 2 UpperCAmelCase_ : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase_ : int = mid + 1 else: UpperCAmelCase_ : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a__ ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[Any] = len(grid[0] ) for i in range(len(a__ ) ): UpperCAmelCase_ : str = find_negative_index(grid[i][:bound] ) total += bound return (len(a__ ) * len(grid[0] )) - total def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = 0 for row in grid: for i, number in enumerate(a__ ): if number < 0: total += len(a__ ) - i break return total def lowerCamelCase__ ( ): '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) UpperCAmelCase_ : List[Any] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase_ : List[Any] = timeit(f'''{func}(grid=grid)''' , setup=a__ , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
369
from collections import defaultdict def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = first_str.lower().strip() UpperCAmelCase_ : Any = second_str.lower().strip() # Remove whitespace UpperCAmelCase_ : Any = first_str.replace(''' ''' , '''''' ) UpperCAmelCase_ : int = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase_ : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __a = input('Enter the first string ').strip() __a = input('Enter the second string ').strip() __a = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
235
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __lowerCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def UpperCAmelCase_ (__a : Union[str, Any] ): """simple docstring""" if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): _a : List[Any] = [image] _a : Optional[int] = [trans(img.convert('RGB' ) ) for img in image] _a : Dict = torch.stack(__a ) return image class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : Optional[Any] ,_a : List[Any] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _a : Any = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_a ,scheduler=_a ) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def __lowercase ( self : Optional[int] ,_a : Dict ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Optional[Any] = min(int(num_inference_steps * strength ) ,_a ) _a : Union[str, Any] = max(num_inference_steps - init_timestep ,0 ) _a : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowercase ( self : int ,_a : List[str] ,_a : Optional[Any] ,_a : Union[str, Any] ,_a : List[str] ,_a : List[Any] ,_a : Optional[Any]=None ): '''simple docstring''' if not isinstance(_a ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_a )}""" ) _a : Dict = image.to(device=_a ,dtype=_a ) if isinstance(_a ,_a ) and len(_a ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_a )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _a : str = init_latents.shape _a : int = randn_tensor(_a ,generator=_a ,device=_a ,dtype=_a ) # get latents print('add noise to latents at timestep' ,_a ) _a : int = self.scheduler.add_noise(_a ,_a ,_a ) _a : List[Any] = init_latents return latents @torch.no_grad() def __call__( self : List[Any] ,_a : Union[torch.FloatTensor, PIL.Image.Image] = None ,_a : float = 0.8 ,_a : int = 1 ,_a : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_a : float = 0.0 ,_a : int = 50 ,_a : Optional[bool] = None ,_a : Optional[str] = "pil" ,_a : bool = True ,): '''simple docstring''' self.check_inputs(_a ) # 2. Preprocess image _a : Dict = preprocess(_a ) # 3. set timesteps self.scheduler.set_timesteps(_a ,device=self.device ) _a, _a : str = self.get_timesteps(_a ,_a ,self.device ) _a : List[str] = timesteps[:1].repeat(_a ) # 4. Prepare latent variables _a : str = self.prepare_latents(_a ,_a ,_a ,self.unet.dtype ,self.device ,_a ) _a : Any = latents # 5. Denoising loop for t in self.progress_bar(_a ): # 1. predict noise model_output _a : List[Any] = self.unet(_a ,_a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _a : List[str] = self.scheduler.step( _a ,_a ,_a ,eta=_a ,use_clipped_model_output=_a ,generator=_a ,).prev_sample _a : str = (image / 2 + 0.5).clamp(0 ,1 ) _a : List[str] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _a : str = self.numpy_to_pil(_a ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_a )
271
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCAmelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = 'https://pypi.org/pypi/diffusers/json' _a : int = json.loads(request.urlopen(__a ).read() )['releases'].keys() return sorted(__a , key=lambda __a : version.Version(__a ) ) def UpperCAmelCase_ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a , exist_ok=__a ) _a : str = Path(__a ) / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _a : Dict = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a , exist_ok=__a ) _a : Optional[int] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : str ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : int = f.read() # Imports of the form `import .xxx` _a : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , __a , flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Optional[int] = False _a : Optional[int] = [module_file] _a : List[str] = [] # Let's recurse through all relative imports while not no_change: _a : str = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _a : Union[str, Any] = Path(__a ).parent _a : str = [str(module_path / m ) for m in new_imports] _a : Tuple = [f for f in new_import_files if f not in all_relative_imports] _a : Dict = [f"""{f}.py""" for f in new_import_files] _a : List[str] = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : Dict = f.read() # Imports of the form `import xxx` _a : Optional[int] = re.findall('^\s*import\s+(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , __a , flags=re.MULTILINE ) # Only keep the top-level module _a : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all _a : Optional[int] = list(set(__a ) ) _a : List[str] = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{', '.join(__a )}. Run `pip install {' '.join(__a )}`""" ) return get_relative_imports(__a ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" _a : Any = module_path.replace(os.path.sep , '.' ) _a : Union[str, Any] = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a , __a ) def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" from ..pipelines import DiffusionPipeline _a : List[str] = dict(inspect.getmembers(__a , inspect.isclass ) ) _a : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __a ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) _a : Any = cls return pipeline_class def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , ): """simple docstring""" _a : str = str(__a ) _a : Optional[Any] = os.path.join(__a , __a ) if os.path.isfile(__a ): _a : Tuple = module_file_or_url _a : Optional[Any] = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: _a : int = get_diffusers_versions() # cut ".dev0" _a : Any = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: _a : Any = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _a : Any = f"""v{revision}""" elif revision == "main": _a : Optional[int] = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _a : Tuple = COMMUNITY_PIPELINES_URL.format(revision=__a , pipeline=__a ) try: _a : Any = cached_download( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = 'git' _a : Any = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _a : Optional[Any] = hf_hub_download( __a , __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _a : Optional[int] = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _a : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _a : Any = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a , submodule_path / module_file ) for module_needed in modules_needed: _a : Dict = f"""{module_needed}.py""" shutil.copy(os.path.join(__a , __a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a , __a ): _a : Optional[Any] = use_auth_token elif use_auth_token is True: _a : List[Any] = HfFolder.get_token() else: _a : Dict = None _a : int = model_info(__a , revision=__a , token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _a : Optional[int] = submodule_path / commit_hash _a : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a , f"""{module_needed}.py""" , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return os.path.join(__a , __a ) def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[str] = None , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , **__a : str , ): """simple docstring""" _a : Dict = get_cached_module_file( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return get_class_in_module(__a , final_module.replace('.py' , '' ) )
271
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__UpperCamelCase ,__UpperCamelCase ) ) ) def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): """simple docstring""" if dataset.ndim != value_array.ndim: A_ = ( "Wrong input data's dimensions... " f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__UpperCamelCase ) try: if dataset.shape[1] != value_array.shape[1]: A_ = ( "Wrong input data's shape... " f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__UpperCamelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: A_ = ( "Input data have different datatype... " f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__UpperCamelCase ) A_ = [] for value in value_array: A_ = euclidean(__UpperCamelCase ,dataset[0] ) A_ = dataset[0].tolist() for dataset_value in dataset[1:]: A_ = euclidean(__UpperCamelCase ,__UpperCamelCase ) if dist > temp_dist: A_ = temp_dist A_ = dataset_value.tolist() answer.append([vector, dist] ) return answer def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ): """simple docstring""" return np.dot(__UpperCamelCase ,__UpperCamelCase ) / (norm(__UpperCamelCase ) * norm(__UpperCamelCase )) if __name__ == "__main__": import doctest doctest.testmod()
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowercase__ : Tuple = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') lowercase__ : Optional[Any] = F"""https://www.google.com/search?q={query}&num=100""" lowercase__ : List[Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: lowercase__ : Optional[int] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: lowercase__ : str = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
324
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple=7 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Tuple=18 , _lowerCamelCase : Optional[int]=30 , _lowerCamelCase : int=400 , _lowerCamelCase : Tuple=True , _lowerCamelCase : Any=None , _lowerCamelCase : int=True , ): """simple docstring""" A_ : str = size if size is not None else {'''height''': 18, '''width''': 18} A_ : str = parent A_ : str = batch_size A_ : List[Any] = num_channels A_ : Optional[Any] = image_size A_ : List[str] = min_resolution A_ : Tuple = max_resolution A_ : Dict = do_resize A_ : Optional[Any] = size A_ : Union[str, Any] = apply_ocr def _a ( self : List[str] ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCamelCase_ (a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self : str ): """simple docstring""" A_ : int = LayoutLMvaImageProcessingTester(self ) @property def _a ( self : Any ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Tuple ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''apply_ocr''' ) ) def _a ( self : Optional[int] ): """simple docstring""" A_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) A_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _a ( self : Optional[int] ): """simple docstring""" pass def _a ( self : Any ): """simple docstring""" A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _lowerCamelCase ) self.assertIsInstance(encoding.boxes , _lowerCamelCase ) # Test batched A_ : Optional[int] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _a ( self : int ): """simple docstring""" A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched A_ : Any = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _a ( self : str ): """simple docstring""" A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched A_ : List[str] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = LayoutLMvaImageProcessor() from datasets import load_dataset A_ : Tuple = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) A_ : Dict = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) A_ : Dict = image_processing(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A_ : Any = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 A_ : Optional[int] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCamelCase ) self.assertListEqual(encoding.boxes , _lowerCamelCase ) # with apply_OCR = False A_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) A_ : Dict = image_processing(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
4
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = """▁""" snake_case__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } snake_case__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } snake_case__ = { """facebook/s2t-small-librispeech-asr""": 10_24, } snake_case__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] snake_case__ = {"""mustc""": MUSTC_LANGS} class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = MAX_MODEL_INPUT_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : str="<unk>" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : int=False , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Optional[int] , ): """simple docstring""" A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : Optional[int] = do_upper_case A_ : Tuple = do_lower_case A_ : Tuple = load_json(_lowerCamelCase ) A_ : Tuple = {v: k for k, v in self.encoder.items()} A_ : List[Any] = spm_file A_ : List[str] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Any = lang_codes A_ : Optional[Any] = LANGUAGES[lang_codes] A_ : Optional[Any] = [f'<lang:{lang}>' for lang in self.langs] A_ : Union[str, Any] = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} A_ : Optional[int] = self.lang_tokens A_ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Dict = {} @property def _a ( self : Tuple ): """simple docstring""" return len(self.encoder ) @property def _a ( self : int ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def _a ( self : List[str] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def _a ( self : Tuple , _lowerCamelCase : str ): """simple docstring""" A_ : List[str] = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a ( self : Optional[Any] , _lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self : List[Any] , _lowerCamelCase : int ): """simple docstring""" return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def _a ( self : int , _lowerCamelCase : int ): """simple docstring""" return self.decoder.get(_lowerCamelCase , self.unk_token ) def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = [] A_ : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Union[str, Any] = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) A_ : Tuple = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _a ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : List[Any] = None return state def __setstate__( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : int = load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" A_ : Dict = Path(_lowerCamelCase ) assert save_dir.is_dir(), f'{save_directory} should be a directory' A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A_ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def snake_case__ ( lowerCamelCase__ : str , lowerCamelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: A_ : Tuple = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def snake_case__ ( lowerCamelCase__ : str ) -> Union[Dict, List]: with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def snake_case__ ( lowerCamelCase__ : Any , lowerCamelCase__ : str ) -> None: with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
4
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _SCREAMING_SNAKE_CASE : int = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCamelCase_( snake_case : List[Any] , snake_case : Optional[Any]=None ): '''simple docstring''' require_version(deps[pkg] , snake_case )
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ["CLIPFeatureExtractor"] _SCREAMING_SNAKE_CASE : Dict = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _A ( unittest.TestCase ): lowercase__: str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__: str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase__ ( self : str , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[Any]: """simple docstring""" __snake_case : int = TextaTextGenerationPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) return generator, ["Something to write", "Something else"] def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = generator("""Something there""" ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __snake_case : Optional[int] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) __snake_case : List[Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) with self.assertRaises(__magic_name__ ): generator(4 ) @require_torch def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __snake_case : int = generator("""Something there""" , do_sample=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] ) __snake_case : str = 3 __snake_case : int = generator( """Something there""" , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , ) __snake_case : Any = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(__magic_name__ , __magic_name__ ) __snake_case : List[str] = generator("""This is a test""" , do_sample=__magic_name__ , num_return_sequences=2 , return_tensors=__magic_name__ ) self.assertEqual( __magic_name__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __snake_case : Any = generator.model.config.eos_token_id __snake_case : Any = """<pad>""" __snake_case : Optional[int] = generator( ["""This is a test""", """This is a second test"""] , do_sample=__magic_name__ , num_return_sequences=2 , batch_size=2 , return_tensors=__magic_name__ , ) self.assertEqual( __magic_name__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : int = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __snake_case : List[Any] = generator("""Something there""" , do_sample=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] )
359
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _A ( A__ ): """simple docstring""" @wraps(A__ ) def _inner_fn(*A__ , **A__ ): warnings.warn( (F"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , A__ , ) return fn(*A__ , **A__ ) return _inner_fn
104
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" __lowercase = len(A__ ) # We need to create solution object to save path. __lowercase = [[0 for _ in range(A__ )] for _ in range(A__ )] __lowercase = run_maze(A__ , 0 , 0 , A__ ) if solved: print('''\n'''.join(str(A__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = len(A__ ) # Final check point. if i == j == (size - 1): __lowercase = 1 return True __lowercase = (not i < 0) and (not j < 0) # Check lower bounds __lowercase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase = 1 # check for directions if ( run_maze(A__ , i + 1 , A__ , A__ ) or run_maze(A__ , A__ , j + 1 , A__ ) or run_maze(A__ , i - 1 , A__ , A__ ) or run_maze(A__ , A__ , j - 1 , A__ ) ): return True __lowercase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
104
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : str , a__ : Tuple , a__ : Dict=13 , a__ : int=7 , a__ : int=True , a__ : Dict=True , a__ : Optional[int]=True , a__ : Optional[int]=True , a__ : int=99 , a__ : Union[str, Any]=32 , a__ : Any=5 , a__ : Optional[Any]=4 , a__ : Tuple=37 , a__ : List[str]="gelu" , a__ : List[str]=0.1 , a__ : Optional[Any]=0.1 , a__ : Union[str, Any]=512 , a__ : Optional[int]=16 , a__ : Optional[Any]=2 , a__ : Union[str, Any]=0.02 , a__ : Any=4 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_attention_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_choices def snake_case__ ( self : Union[str, Any] ): __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_attention_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Union[str, Any] ): __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Dict ): __magic_name__ = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self : List[Any] ): for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained('''albert-base-v2''' ) __magic_name__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def snake_case__ ( self : Tuple ): __magic_name__ = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) __magic_name__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __magic_name__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __magic_name__ = model(a__ , attention_mask=a__ )[0] __magic_name__ = (1, 11, 768) self.assertEqual(output.shape , a__ ) __magic_name__ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a__ , atol=1E-4 ) )
369
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a__ : Any , a__ : Tuple=sys.maxsize ): __magic_name__ = '''bilinear''' __magic_name__ = max_size __magic_name__ = short_edge_length def __call__( self : Tuple , a__ : List[str] ): __magic_name__ = [] for img in imgs: __magic_name__ , __magic_name__ = img.shape[:2] # later: provide list and randomly choose index for resize __magic_name__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __magic_name__ = size * 1.0 / min(a__ , a__ ) if h < w: __magic_name__ , __magic_name__ = size, scale * w else: __magic_name__ , __magic_name__ = scale * h, size if max(a__ , a__ ) > self.max_size: __magic_name__ = self.max_size * 1.0 / max(a__ , a__ ) __magic_name__ = newh * scale __magic_name__ = neww * scale __magic_name__ = int(neww + 0.5 ) __magic_name__ = int(newh + 0.5 ) if img.dtype == np.uinta: __magic_name__ = Image.fromarray(a__ ) __magic_name__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __magic_name__ = np.asarray(a__ ) else: __magic_name__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __magic_name__ = nn.functional.interpolate( a__ , (newh, neww) , mode=self.interp_method , align_corners=a__ ).squeeze(0 ) img_augs.append(a__ ) return img_augs class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a__ : Tuple ): __magic_name__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __magic_name__ = cfg.INPUT.FORMAT __magic_name__ = cfg.SIZE_DIVISIBILITY __magic_name__ = cfg.PAD_VALUE __magic_name__ = cfg.INPUT.MAX_SIZE_TEST __magic_name__ = cfg.MODEL.DEVICE __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = lambda a__ : (x - self.pixel_mean) / self.pixel_std def snake_case__ ( self : Union[str, Any] , a__ : Dict ): __magic_name__ = tuple(max(a__ ) for s in zip(*[img.shape for img in images] ) ) __magic_name__ = [im.shape[-2:] for im in images] __magic_name__ = [ nn.functional.pad( a__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(a__ , a__ ) ] return torch.stack(a__ ), torch.tensor(a__ ) def __call__( self : Dict , a__ : Dict , a__ : List[str]=False ): with torch.no_grad(): if not isinstance(a__ , a__ ): __magic_name__ = [images] if single_image: assert len(a__ ) == 1 for i in range(len(a__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(a__ , images.pop(a__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( a__ , torch.as_tensor(img_tensorize(images.pop(a__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __magic_name__ = torch.tensor([im.shape[:2] for im in images] ) __magic_name__ = self.aug(a__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __magic_name__ = [self.normalizer(a__ ) for x in images] # now pad them to do the following operations __magic_name__ , __magic_name__ = self.pad(a__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __magic_name__ = torch.true_divide(a__ , a__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCamelCase ( a , a ) -> Any: '''simple docstring''' assert torch.isfinite(a ).all(), "Box tensor contains infinite or NaN!" __magic_name__ , __magic_name__ = box_size tensor[:, 0].clamp_(min=0 , max=a ) tensor[:, 1].clamp_(min=0 , max=a ) tensor[:, 2].clamp_(min=0 , max=a ) tensor[:, 3].clamp_(min=0 , max=a )
98
0
def a__ ( A_ ): '''simple docstring''' __magic_name__ = len(A_ ) for i in range(length - 1 ): __magic_name__ = i for k in range(i + 1, A_ ): if collection[k] < collection[least]: __magic_name__ = k if least != i: __magic_name__ , __magic_name__ = (collection[i], collection[least]) return collection if __name__ == "__main__": __lowerCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : str = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
88
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase: Any ) -> str: '''simple docstring''' __lowerCamelCase : List[str] = len(_lowerCamelCase ) for i in range(length - 1 ): __lowerCamelCase : Union[str, Any] = i for k in range(i + 1 , _lowerCamelCase ): if collection[k] < collection[least]: __lowerCamelCase : Dict = k if least != i: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": __A = input('''Enter numbers separated by a comma:\n''').strip() __A = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
64
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
64
1
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _UpperCamelCase: Tuple = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowercase : Any = {} state_dict.pop('pixel_mean' , _UpperCAmelCase ) state_dict.pop('pixel_std' , _UpperCAmelCase ) lowercase : Any = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase : Optional[int] = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): lowercase : List[Any] = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(2 ) ) if layer_nb == 0: lowercase : str = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: lowercase : Optional[int] = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: lowercase : Optional[Any] = key.replace('layers.2' , 'proj_out' ) lowercase : int = value lowercase : Union[str, Any] = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="ybelkada/segment-anything" ) -> Optional[Any]: '''simple docstring''' lowercase : Any = hf_hub_download(_UpperCAmelCase , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowercase : Tuple = SamConfig() elif "sam_vit_l" in model_name: lowercase : Dict = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowercase : Optional[int] = SamConfig( vision_config=_UpperCAmelCase , ) elif "sam_vit_h" in model_name: lowercase : Tuple = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowercase : Optional[int] = SamConfig( vision_config=_UpperCAmelCase , ) lowercase : Optional[int] = torch.load(_UpperCAmelCase , map_location='cpu' ) lowercase : Dict = replace_keys(_UpperCAmelCase ) lowercase : List[str] = SamImageProcessor() lowercase : Dict = SamProcessor(image_processor=_UpperCAmelCase ) lowercase : int = SamModel(_UpperCAmelCase ) hf_model.load_state_dict(_UpperCAmelCase ) lowercase : Any = hf_model.to('cuda' ) lowercase : Any = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' lowercase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowercase : Any = [[[4_00, 6_50]]] lowercase : int = [[1]] lowercase : Dict = processor(images=np.array(_UpperCAmelCase ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowercase : int = hf_model(**_UpperCAmelCase ) lowercase : Dict = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 lowercase : Dict = processor( images=np.array(_UpperCAmelCase ) , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowercase : str = hf_model(**_UpperCAmelCase ) lowercase : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 lowercase : str = ((75, 2_75, 17_25, 8_50),) lowercase : List[str] = processor(images=np.array(_UpperCAmelCase ) , input_boxes=_UpperCAmelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowercase : int = hf_model(**_UpperCAmelCase ) lowercase : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. lowercase : List[str] = [[[4_00, 6_50], [8_00, 6_50]]] lowercase : Optional[Any] = [[1, 1]] lowercase : Tuple = processor( images=np.array(_UpperCAmelCase ) , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): lowercase : Dict = hf_model(**_UpperCAmelCase ) lowercase : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": _UpperCamelCase: Tuple = argparse.ArgumentParser() _UpperCamelCase: str = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) _UpperCamelCase: Optional[int] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
255
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = StableDiffusionDiffEditPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) def lowercase ( self : Any ) -> Dict: torch.manual_seed(0 ) lowercase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase, ) lowercase : Tuple = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_one=lowerCAmelCase, ) lowercase : Any = DDIMInverseScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_zero=lowerCAmelCase, ) torch.manual_seed(0 ) lowercase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) lowercase : str = CLIPTextModel(lowerCAmelCase ) lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Tuple=0 ) -> Union[str, Any]: lowercase : List[Any] = floats_tensor((1, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[Any] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Tuple = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Dict=0 ) -> Optional[Any]: lowercase : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : List[Any] = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int], lowerCAmelCase : Any, lowerCAmelCase : List[str]=0 ) -> Union[str, Any]: lowercase : Optional[int] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Tuple = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Tuple = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : List[str] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Union[str, Any] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int] ) -> str: if not hasattr(self.pipeline_class, '_optional_components' ): return lowercase : Optional[int] = self.get_dummy_components() lowercase : int = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase : List[Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Any = pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) lowercase : Any = self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase, lowerCAmelCase ) is None, f'''`{optional_component}` did not stay set to None after loading.''', ) lowercase : Tuple = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Optional[Any] = pipe_loaded(**lowerCAmelCase )[0] lowercase : List[Any] = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase, 1e-4 ) def lowercase ( self : Any ) -> str: lowercase : Union[str, Any] = 'cpu' lowercase : Optional[int] = self.get_dummy_components() lowercase : List[str] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_mask_inputs(lowerCAmelCase ) lowercase : str = pipe.generate_mask(**lowerCAmelCase ) lowercase : str = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) lowercase : List[str] = np.array([0] * 9 ) lowercase : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def lowercase ( self : int ) -> str: lowercase : int = 'cpu' lowercase : Dict = self.get_dummy_components() lowercase : Optional[int] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : Tuple = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def lowercase ( self : List[str] ) -> Tuple: lowercase : Dict = 'cpu' lowercase : Any = self.get_dummy_components() lowercase : List[Any] = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowercase : List[str] = DPMSolverMultistepScheduler(**lowerCAmelCase ) lowercase : Dict = DPMSolverMultistepInverseScheduler(**lowerCAmelCase ) lowercase : str = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : int = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase ( cls : Optional[int] ) -> Tuple: lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) lowercase : Optional[Any] = raw_image.convert('RGB' ).resize((768, 768) ) lowercase : Any = raw_image def lowercase ( self : Optional[Any] ) -> List[Any]: lowercase : str = torch.manual_seed(0 ) lowercase : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : int = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : Tuple = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase ).latents lowercase : str = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, output_type='numpy', ).images[0] lowercase : Dict = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase : Dict = torch.manual_seed(0 ) lowercase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Union[str, Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : List[str] = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase, num_inference_steps=25, ).latents lowercase : int = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] lowercase : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
255
1
import inspect import unittest class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase_ (self ): import diffusers from diffusers.dependency_versions_table import deps UpperCamelCase__ = inspect.getmembers(SCREAMING_SNAKE_CASE_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCamelCase__ = """k-diffusion""" elif backend == "invisible_watermark": UpperCamelCase__ = """invisible-watermark""" assert backend in deps, F"{backend} is not in the deps table!"
361
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __A: """simple docstring""" @staticmethod def UpperCAmelCase_ (*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): pass def __magic_name__ ( __a : Image ): '''simple docstring''' UpperCamelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __magic_name__ ( __a : Image ): '''simple docstring''' UpperCamelCase__ = np.array(__a ) UpperCamelCase__ = npimg.shape return {"hash": hashimage(__a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __A( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def UpperCAmelCase_ (self ): pass @slow @require_torch def UpperCAmelCase_ (self ): UpperCamelCase__ = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) UpperCamelCase__ = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = """facebook/sam-vit-huge""" UpperCamelCase__ = pipeline("""mask-generation""" , model=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, ] , )
178
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): UpperCAmelCase_ = MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase_ ( self :Optional[Any] ) -> Optional[int]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase_ ( self :Union[str, Any] ) -> Any: UpperCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) UpperCAmelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 3_8015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 2_5506, "token_str": " accuser"}, ] , ) UpperCAmelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 3_8015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 2_5506, "token_str": " accuser", }, ] , ) UpperCAmelCase__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def UpperCAmelCase_ ( self :List[Any] ) -> Any: UpperCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) UpperCAmelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 3_5676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 1_6416, "token_str": "ELS"}, ] , ) UpperCAmelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 3_5676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 1_6416, "token_str": "ELS"}, ] , ) UpperCAmelCase__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 1_3606, "token_str": " Clara"}, ] , ) UpperCAmelCase__ = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def UpperCAmelCase_ ( self :Any ) -> Optional[Any]: UpperCAmelCase__ = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() UpperCAmelCase__ = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow @require_torch def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(lowerCamelCase ) @slow @require_tf def UpperCAmelCase_ ( self :Any ) -> Union[str, Any]: UpperCAmelCase__ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(lowerCamelCase ) def UpperCAmelCase_ ( self :Any , lowerCamelCase :int ) -> Optional[Any]: UpperCAmelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"sequence": "My name is John", "score": 0.0_08, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_07, "token": 1573, "token_str": " Chris"}, ] , ) UpperCAmelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_51, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_14, "token": 1_2790, "token_str": " Lyon", }, ] , ) UpperCAmelCase__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"sequence": "My name is Patrick", "score": 0.0_05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_00, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_00, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def UpperCAmelCase_ ( self :List[Any] ) -> Dict: UpperCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) UpperCAmelCase__ = None UpperCAmelCase__ = None self.run_pipeline_test(lowerCamelCase , [] ) @require_tf def UpperCAmelCase_ ( self :Any ) -> List[Any]: UpperCAmelCase__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) UpperCAmelCase__ = None UpperCAmelCase__ = None self.run_pipeline_test(lowerCamelCase , [] ) def UpperCAmelCase_ ( self :Any , lowerCamelCase :Dict , lowerCamelCase :Dict , lowerCamelCase :Tuple ) -> Optional[int]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCAmelCase__ = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Tuple , lowerCamelCase :str ) -> Optional[int]: UpperCAmelCase__ = fill_masker.tokenizer UpperCAmelCase__ = fill_masker.model UpperCAmelCase__ = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ] , ) UpperCAmelCase__ = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ] , ) UpperCAmelCase__ = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( lowerCamelCase , [ [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ], [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ], ] , ) with self.assertRaises(lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCamelCase ): fill_masker("This is" ) self.run_test_top_k(lowerCamelCase , lowerCamelCase ) self.run_test_targets(lowerCamelCase , lowerCamelCase ) self.run_test_top_k_targets(lowerCamelCase , lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCamelCase , lowerCamelCase ) self.fill_mask_with_multiple_masks(lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :str , lowerCamelCase :str , lowerCamelCase :Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = tokenizer.get_vocab() UpperCAmelCase__ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase , targets=lowerCamelCase ) UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ] , ) UpperCAmelCase__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowerCamelCase ) UpperCAmelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowerCamelCase ) ) # Call argument UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ] , ) UpperCAmelCase__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowerCamelCase ) UpperCAmelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowerCamelCase ) ) # Score equivalence UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCamelCase ) UpperCAmelCase__ = [top_mask["token_str"] for top_mask in outputs] UpperCAmelCase__ = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase ) == set(lowerCamelCase ): UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCamelCase ) UpperCAmelCase__ = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCamelCase ) , nested_simplify(lowerCamelCase ) ) # Raises with invalid with self.assertRaises(lowerCamelCase ): UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCamelCase ): UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""] ) with self.assertRaises(lowerCamelCase ): UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="" ) def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int , lowerCamelCase :Optional[Any] ) -> str: UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase , top_k=2 ) UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ] , ) UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCamelCase , [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(lowerCamelCase ) , nested_simplify(lowerCamelCase ) ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Any ) -> Any: UpperCAmelCase__ = tokenizer.get_vocab() UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) # top_k=2, ntargets=3 UpperCAmelCase__ = sorted(vocab.keys() )[:3] UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase__ = [el["token_str"] for el in sorted(lowerCamelCase , key=lambda lowerCamelCase : x["score"] , reverse=lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCamelCase ).issubset(lowerCamelCase ): UpperCAmelCase__ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCamelCase ) , nested_simplify(lowerCamelCase ) ) def UpperCAmelCase_ ( self :Dict , lowerCamelCase :List[Any] , lowerCamelCase :Optional[int] ) -> List[Any]: UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCAmelCase__ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase__ = sorted(vocab.keys() )[:3] UpperCAmelCase__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase__ = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=lowerCamelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCamelCase ) , 3 ) def UpperCAmelCase_ ( self :Dict , lowerCamelCase :Optional[Any] , lowerCamelCase :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase__ = FillMaskPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCAmelCase__ = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCamelCase , [ [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ], [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ], [ {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, {"sequence": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase ), "token": ANY(lowerCamelCase ), "token_str": ANY(lowerCamelCase )}, ], ] , )
169
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _lowerCAmelCase : List[str] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _UpperCamelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Dict , lowerCamelCase :str , lowerCamelCase :bool , lowerCamelCase :str = None , lowerCamelCase :list = None ) -> Tuple: UpperCAmelCase__ = None UpperCAmelCase__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCAmelCase__ = os.path.abspath("examples" ) for item in os.listdir(lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase__ = os.path.join(lowerCamelCase , lowerCamelCase ) if os.path.isfile(lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=lowerCamelCase , feature_script=lowerCamelCase , tested_section="main()" if parser_only else "training_function()" , ): UpperCAmelCase__ = compare_against_test( os.path.join(lowerCamelCase , lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = "\n".join(lowerCamelCase ) if special_strings is not None: for string in special_strings: UpperCAmelCase__ = diff.replace(lowerCamelCase , "" ) self.assertEqual(lowerCamelCase , "" ) def UpperCAmelCase_ ( self :List[str] ) -> Any: self.one_complete_example("complete_nlp_example.py" , lowerCamelCase ) self.one_complete_example("complete_nlp_example.py" , lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> int: UpperCAmelCase__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCAmelCase__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.one_complete_example("complete_cv_example.py" , lowerCamelCase , lowerCamelCase , lowerCamelCase ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = False @classmethod def UpperCAmelCase_ ( cls :List[Any] ) -> Any: super().setUpClass() UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase_ ( cls :Union[str, Any] ) -> Optional[int]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self :Dict ) -> Dict: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase_ ( self :Optional[int] ) -> Any: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase_ ( self :Tuple ) -> Dict: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) self.assertNotIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> int: UpperCAmelCase__ = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) if torch.cuda.is_available(): UpperCAmelCase__ = torch.cuda.device_count() else: UpperCAmelCase__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) else: self.assertIn("epoch 0:" , lowerCamelCase ) self.assertIn("epoch 1:" , lowerCamelCase ) @slow def UpperCAmelCase_ ( self :Dict ) -> Optional[int]: UpperCAmelCase__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=lowerCamelCase ) UpperCAmelCase__ = re.findall("({.+})" , lowerCamelCase ) UpperCAmelCase__ = [r for r in results if "accuracy" in r][-1] UpperCAmelCase__ = ast.literal_eval(lowerCamelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase_ ( self :List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase__ = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase , "tracking" ) ) ) def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self :Any ) -> Optional[int]: UpperCAmelCase__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
169
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger("""transformers.models.encodec""") SCREAMING_SNAKE_CASE_ = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } SCREAMING_SNAKE_CASE_ = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } SCREAMING_SNAKE_CASE_ = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } SCREAMING_SNAKE_CASE_ = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } SCREAMING_SNAKE_CASE_ = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } SCREAMING_SNAKE_CASE_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } SCREAMING_SNAKE_CASE_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' for attribute in key.split(""".""" ): SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_ih_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_hh_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_ih_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_hh_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_ih_l1": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_hh_l1": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_ih_l1": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_hh_l1": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [] if model_name == "encodec_24khz" or "encodec_32khz": SCREAMING_SNAKE_CASE = MAPPING_24K elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(F"""{name} was ignored""" ) continue SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): if "*" in key: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = key.split(""".*.""" ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE = """weight_v""" elif "weight_ih_l0" in name: SCREAMING_SNAKE_CASE = """weight_ih_l0""" elif "weight_hh_l0" in name: SCREAMING_SNAKE_CASE = """weight_hh_l0""" elif "bias_ih_l0" in name: SCREAMING_SNAKE_CASE = """bias_ih_l0""" elif "bias_hh_l0" in name: SCREAMING_SNAKE_CASE = """bias_hh_l0""" elif "weight_ih_l1" in name: SCREAMING_SNAKE_CASE = """weight_ih_l1""" elif "weight_hh_l1" in name: SCREAMING_SNAKE_CASE = """weight_hh_l1""" elif "bias_ih_l1" in name: SCREAMING_SNAKE_CASE = """bias_ih_l1""" elif "bias_hh_l1" in name: SCREAMING_SNAKE_CASE = """bias_hh_l1""" elif "bias" in name: SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: SCREAMING_SNAKE_CASE = """weight""" elif "running_mean" in name: SCREAMING_SNAKE_CASE = """running_mean""" elif "running_var" in name: SCREAMING_SNAKE_CASE = """running_var""" elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE = """num_batches_tracked""" else: SCREAMING_SNAKE_CASE = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": SCREAMING_SNAKE_CASE = [8, 5, 4, 4] SCREAMING_SNAKE_CASE = [2.2] SCREAMING_SNAKE_CASE = 64 SCREAMING_SNAKE_CASE = 3_20_00 SCREAMING_SNAKE_CASE = 20_48 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE = [8, 5, 4, 2] SCREAMING_SNAKE_CASE = [3.0, 6.0, 12.0, 24.0] SCREAMING_SNAKE_CASE = 4_80_00 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = """time_group_norm""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) SCREAMING_SNAKE_CASE = EncodecModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = torch.load(_SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights SCREAMING_SNAKE_CASE = original_checkpoint["""best_state"""] recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
356
from __future__ import annotations def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: SCREAMING_SNAKE_CASE = i + 1 else: SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
193
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "lilt" def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=None , UpperCAmelCase=4 , UpperCAmelCase=1024 , **UpperCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = classifier_dropout _UpperCAmelCase = channel_shrink_ratio _UpperCAmelCase = max_ad_position_embeddings
39
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowercase ( unittest.TestCase , _lowerCamelCase ): """simple docstring""" def _snake_case ( self ) -> Any: _UpperCAmelCase : int = load_tool("""text-classification""" ) self.tool.setup() _UpperCAmelCase : Tuple = load_tool("""text-classification""" ,remote=a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = self.tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = self.remote_tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = self.tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Any = self.remote_tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(a_ ,"""positive""" )
215
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any]=7 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Tuple=1_8 , UpperCAmelCase__ : Optional[int]=3_0 , UpperCAmelCase__ : Union[str, Any]=4_0_0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[Any]=True , ) -> int: lowerCAmelCase = size if size is not None else {'height': 1_8, 'width': 1_8} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = apply_ocr def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCAmelCase ( self : Tuple ) -> int: lowerCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Any ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'apply_ocr' ) ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def __UpperCAmelCase ( self : Dict ) -> str: pass def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes , UpperCAmelCase__ ) # Test batched lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : List[Any] ) -> Any: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : str ) -> Optional[int]: # with apply_OCR = True lowerCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowerCAmelCase = Image.open(ds[0]['file'] ).convert('RGB' ) lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowerCAmelCase = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase__ ) self.assertListEqual(encoding.boxes , UpperCAmelCase__ ) # with apply_OCR = False lowerCAmelCase = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) lowerCAmelCase = image_processing(UpperCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
4
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self ,A ,A ): super().__init__() self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self ,A = 1 ,A = 2_000 ,A = None ,A = "pil" ,A = True ,**A ,): UpperCAmelCase = self.unet.config.sample_size UpperCAmelCase = (batch_size, 3, img_size, img_size) UpperCAmelCase = self.unet UpperCAmelCase = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma UpperCAmelCase = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase = self.unet(A ,A ).sample UpperCAmelCase = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample # prediction step UpperCAmelCase = model(A ,A ).sample UpperCAmelCase = self.scheduler.step_pred(A ,A ,A ,generator=A ) UpperCAmelCase , UpperCAmelCase = output.prev_sample, output.prev_sample_mean UpperCAmelCase = sample_mean.clamp(0 ,1 ) UpperCAmelCase = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
357
"""simple docstring""" _UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCAmelCase = year // 100 UpperCAmelCase = (5 * (century % 4) + 2) % 7 UpperCAmelCase = year % 100 UpperCAmelCase = centurian % 12 UpperCAmelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
234
0
def __lowerCamelCase ( __a :Union[str, Any] = 1_0_0_0_0_0_0 ) -> Dict: """simple docstring""" A__ = set(range(3 , _UpperCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , _UpperCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _UpperCAmelCase , _UpperCAmelCase ) ) ) A__ = [float(_UpperCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_UpperCAmelCase , limit + 1 , _UpperCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
274
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( unittest.TestCase): """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=7 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : List[Any]=18 , __UpperCAmelCase : List[Any]=30 , __UpperCAmelCase : List[Any]=400 , __UpperCAmelCase : str=True , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[int]=None , ) -> Any: UpperCAmelCase_= size if size is not None else {"""shortest_edge""": 20} UpperCAmelCase_= crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase_= parent UpperCAmelCase_= batch_size UpperCAmelCase_= num_channels UpperCAmelCase_= image_size UpperCAmelCase_= min_resolution UpperCAmelCase_= max_resolution UpperCAmelCase_= do_resize UpperCAmelCase_= size UpperCAmelCase_= do_center_crop UpperCAmelCase_= crop_size def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase ( snake_case__ , unittest.TestCase): """simple docstring""" a__ : int = MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: UpperCAmelCase_= MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: UpperCAmelCase_= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: UpperCAmelCase_= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) UpperCAmelCase_= self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> str: # Initialize image_processing UpperCAmelCase_= self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_= prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase_= image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase_= image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: # Initialize image_processing UpperCAmelCase_= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_= prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase_= image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase_= image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: # Initialize image_processing UpperCAmelCase_= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_= prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_= image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase_= image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
363
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( snake_case__): """simple docstring""" def __init__( self : Any , *__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[int]=None , **__UpperCAmelCase : Dict ) -> Optional[int]: super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= eval_examples UpperCAmelCase_= post_process_function def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Optional[Dataset] = None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "eval" , **__UpperCAmelCase : Any , ) -> Dict[str, float]: UpperCAmelCase_= gen_kwargs.copy() UpperCAmelCase_= ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) UpperCAmelCase_= ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) UpperCAmelCase_= gen_kwargs UpperCAmelCase_= self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_= self.get_eval_dataloader(__UpperCAmelCase ) UpperCAmelCase_= self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_= self.compute_metrics UpperCAmelCase_= None UpperCAmelCase_= time.time() UpperCAmelCase_= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_= eval_loop( __UpperCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: UpperCAmelCase_= compute_metrics UpperCAmelCase_= self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase_= self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_= metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) else: UpperCAmelCase_= output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_= self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase ) return metrics def _SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : str = "test" , **__UpperCAmelCase : List[str] ) -> Tuple: UpperCAmelCase_= gen_kwargs.copy() UpperCAmelCase_= self.get_test_dataloader(__UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_= self.compute_metrics UpperCAmelCase_= None UpperCAmelCase_= time.time() UpperCAmelCase_= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_= eval_loop( __UpperCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: UpperCAmelCase_= compute_metrics UpperCAmelCase_= self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_= self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , """predict""" ) UpperCAmelCase_= self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_= metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase )
277
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __A = None __A = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __A = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class A : lowerCamelCase : bool = True lowerCamelCase : Optional[str] = None # Automatically constructed lowerCamelCase : ClassVar[str] = "PIL.Image.Image" lowerCamelCase : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) lowerCamelCase : str = field(default="""Image""" , init=__UpperCAmelCase , repr=__UpperCAmelCase ) def __call__( self ) -> Any: '''simple docstring''' return self.pa_type def A__ ( self , lowerCamelCase__ ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = np.array(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"path": value, "bytes": None} elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"path": None, "bytes": value} elif isinstance(lowerCamelCase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCamelCase__ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase__ = {} lowercase__ , lowercase__ = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCamelCase__ ): lowercase__ = PIL.Image.open(lowerCamelCase__ ) else: lowercase__ = path.split("""::""" )[-1] try: lowercase__ = string_to_dict(lowerCamelCase__ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase__ = token_per_repo_id.get(lowerCamelCase__ ) except ValueError: lowercase__ = None with xopen(lowerCamelCase__ , """rb""" , use_auth_token=lowerCamelCase__ ) as f: lowercase__ = BytesIO(f.read() ) lowercase__ = PIL.Image.open(bytes_ ) else: lowercase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def A__ ( self , lowerCamelCase__ ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): lowercase__ = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) lowercase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) lowercase__ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase__ = storage.field("""bytes""" ) else: lowercase__ = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase__ = storage.field("""path""" ) else: lowercase__ = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) lowercase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase__ = pa.array( [encode_np_array(np.array(lowerCamelCase__ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase__ = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) lowercase__ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type ) def A__ ( self , lowerCamelCase__ ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCamelCase__ ): with xopen(lowerCamelCase__ , """rb""" ) as f: lowercase__ = f.read() return bytes_ lowercase__ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase__ = pa.array( [os.path.basename(lowerCamelCase__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type ) def _A ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _A ( lowercase__ ): lowercase__ = BytesIO() if image.format in list_image_compression_formats(): lowercase__ = image.format else: lowercase__ = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(lowercase__ , format=lowercase__ ) return buffer.getvalue() def _A ( lowercase__ ): if hasattr(lowercase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _A ( lowercase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase__ = array.dtype lowercase__ = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase__ = dtype.kind lowercase__ = dtype.itemsize lowercase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase__ = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase__ = dtype_byteorder + dtype_kind + str(lowercase__ ) lowercase__ = np.dtype(lowercase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase__ = PIL.Image.fromarray(array.astype(lowercase__ ) ) return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _A ( lowercase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase__ , lowercase__ = first_non_null_value(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase__ , np.ndarray ): lowercase__ = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] elif isinstance(lowercase__ , PIL.Image.Image ): lowercase__ = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] else: return objs else: return objs
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Any = UnCLIPImageVariationPipeline __lowercase : Optional[int] = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} __lowercase : Tuple = IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] __lowercase : Dict = False @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowerCamelCase_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowerCamelCase_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Optional[Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowercase__: List[Any] = UnCLIPTextProjModel(**lowerCamelCase_ ) return model @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase__: List[Any] = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowercase__: Optional[Any] = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__: List[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) lowercase__: Optional[int] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: str = self.dummy_decoder lowercase__: List[Any] = self.dummy_text_proj lowercase__: int = self.dummy_text_encoder lowercase__: Any = self.dummy_tokenizer lowercase__: Optional[Any] = self.dummy_super_res_first lowercase__: List[Any] = self.dummy_super_res_last lowercase__: List[str] = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowercase__: Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowercase__: List[str] = CLIPImageProcessor(crop_size=32 , size=32 ) lowercase__: Optional[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 , lowerCAmelCase__=True ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowercase__: Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) else: lowercase__: Tuple = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) if pil_image: lowercase__: str = input_image * 0.5 + 0.5 lowercase__: Optional[Any] = input_image.clamp(0 , 1 ) lowercase__: Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__: int = DiffusionPipeline.numpy_to_pil(lowerCamelCase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Optional[Any] = 'cpu' lowercase__: Dict = self.get_dummy_components() lowercase__: Any = self.pipeline_class(**lowerCamelCase_ ) lowercase__: str = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowercase__: Any = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) lowercase__: Dict = pipe(**lowerCamelCase_ ) lowercase__: str = output.images lowercase__: Dict = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) lowercase__: Tuple = pipe( **lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] lowercase__: str = image[0, -3:, -3:, -1] lowercase__: str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Any = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = 'cpu' lowercase__: str = self.get_dummy_components() lowercase__: Union[str, Any] = self.pipeline_class(**lowerCamelCase_ ) lowercase__: List[str] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowercase__: List[Any] = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) lowercase__: Optional[int] = pipe(**lowerCamelCase_ ) lowercase__: Union[str, Any] = output.images lowercase__: Dict = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) lowercase__: str = pipe( **lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] lowercase__: List[str] = image[0, -3:, -3:, -1] lowercase__: Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__: Dict = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Union[str, Any] = 'cpu' lowercase__: str = self.get_dummy_components() lowercase__: Optional[Any] = self.pipeline_class(**lowerCamelCase_ ) lowercase__: Optional[int] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowercase__: str = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) lowercase__: List[Any] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowercase__: Dict = pipe(**lowerCamelCase_ ) lowercase__: int = output.images lowercase__: Optional[Any] = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) lowercase__: Tuple = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowercase__: Optional[Any] = pipe( **lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] lowercase__: List[Any] = image[0, -3:, -3:, -1] lowercase__: Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowercase__: str = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = torch.device('cpu' ) class __a : __lowercase : Any = 1 lowercase__: Dict = self.get_dummy_components() lowercase__: Union[str, Any] = self.pipeline_class(**lowerCamelCase_ ) lowercase__: List[str] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowercase__: List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) lowercase__: Dict = pipe.decoder.dtype lowercase__: int = 1 lowercase__: List[str] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowercase__: Dict = pipe.prepare_latents( lowerCamelCase_ , dtype=lowerCamelCase_ , device=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , scheduler=DummyScheduler() ) lowercase__: int = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowercase__: int = pipe.prepare_latents( lowerCamelCase_ , dtype=lowerCamelCase_ , device=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , scheduler=DummyScheduler() ) lowercase__: Tuple = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) lowercase__: str = pipe( **lowerCamelCase_ , decoder_latents=lowerCamelCase_ , super_res_latents=lowerCamelCase_ ).images lowercase__: List[str] = self.get_dummy_inputs(lowerCamelCase_ , pil_image=lowerCamelCase_ ) # Don't pass image, instead pass embedding lowercase__: Any = pipeline_inputs.pop('image' ) lowercase__: str = pipe.image_encoder(lowerCamelCase_ ).image_embeds lowercase__: Any = pipe( **lowerCamelCase_ , decoder_latents=lowerCamelCase_ , super_res_latents=lowerCamelCase_ , image_embeddings=lowerCamelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Any = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowercase__: str = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowerCamelCase_ , expected_max_diff=lowerCamelCase_ ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = torch_device == 'cpu' lowercase__: Any = True lowercase__: Dict = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , additional_params_copy_to_batched_inputs=lowerCamelCase_ , ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Any = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowercase__: List[Any] = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowerCamelCase_ , additional_params_copy_to_batched_inputs=lowerCamelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowerCamelCase_ ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowercase__: int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowercase__: List[Any] = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowercase__: Optional[int] = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowercase__: str = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase__: Any = pipeline( lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , ) lowercase__: Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ , 15 )
361
import torch from diffusers import StableDiffusionPipeline __lowerCAmelCase = '''path-to-your-trained-model''' __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') __lowerCAmelCase = '''A photo of sks dog in a bucket''' __lowerCAmelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
288
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : Tuple = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys A__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
"""simple docstring""" import numpy as np UpperCAmelCase : Optional[Any] = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = np.array(UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = np.where(letter == self.SQUARE ) __UpperCAmelCase : Optional[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCamelCase__ ( self : Any , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : str = message.lower() __UpperCAmelCase : List[Any] = message.replace(""" """ , """""" ) __UpperCAmelCase : List[Any] = message.replace("""j""" , """i""" ) __UpperCAmelCase : Optional[int] = np.empty((2, len(UpperCamelCase )) ) for letter_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : List[Any] = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : str = numbers[0] __UpperCAmelCase : int = numbers[1] __UpperCAmelCase : Union[str, Any] = first_step.reshape(2 * len(UpperCamelCase ) ) __UpperCAmelCase : Optional[Any] = """""" for numbers_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Any = int(second_step[numbers_index * 2] ) __UpperCAmelCase : Any = int(second_step[(numbers_index * 2) + 1] ) __UpperCAmelCase : str = self.numbers_to_letter(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = encoded_message + letter return encoded_message def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = message.lower() message.replace(""" """ , """""" ) __UpperCAmelCase : int = np.empty(2 * len(UpperCamelCase ) ) for letter_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Any = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : Any = numbers[0] __UpperCAmelCase : Dict = numbers[1] __UpperCAmelCase : str = first_step.reshape((2, len(UpperCamelCase )) ) __UpperCAmelCase : Union[str, Any] = """""" for numbers_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Optional[int] = int(second_step[0, numbers_index] ) __UpperCAmelCase : Tuple = int(second_step[1, numbers_index] ) __UpperCAmelCase : Tuple = self.numbers_to_letter(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = decoded_message + letter return decoded_message
115
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] UpperCAmelCase__ = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = {f"""funnel-transformer/{name}""": 512 for name in _model_names} UpperCAmelCase__ = {f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class lowercase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = FunnelTokenizer __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = 2 def __init__( self : Optional[int] , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=True , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : List[str]="<sep>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : List[Any]="<cls>" , __UpperCAmelCase : List[Any]="<mask>" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Tuple="##" , **__UpperCAmelCase : Tuple , ) ->List[Any]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , clean_text=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , wordpieces_prefix=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=None ) ->Dict: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : int = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
366
UpperCAmelCase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
26
0
def snake_case ( snake_case__ :float , snake_case__ :float) -> float: if density <= 0: raise ValueError("""Impossible fluid density""") if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""") return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
180
"""simple docstring""" def lowercase ( a__ : int , a__ : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def lowercase ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
256
0
'''simple docstring''' from __future__ import annotations def _lowercase ( __A ,__A ): '''simple docstring''' if b == 0: return (1, 0) ((__UpperCamelCase) , (__UpperCamelCase)) = extended_euclid(__A ,a % b ) __UpperCamelCase = a // b return (y, x - k * y) def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' ((__UpperCamelCase) , (__UpperCamelCase)) = extended_euclid(__A ,__A ) __UpperCamelCase = na * na __UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def _lowercase ( __A ,__A ): '''simple docstring''' ((__UpperCamelCase) , (__UpperCamelCase)) = extended_euclid(__A ,__A ) if b < 0: __UpperCamelCase = (b % n + n) % n return b def _lowercase ( __A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = invert_modulo(__A ,__A ), invert_modulo(__A ,__A ) __UpperCamelCase = na * na __UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
243
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase=0.01 , lowercase=1_0_0_0 ) -> List[Any]: __UpperCamelCase = p_stop __UpperCamelCase = max_length def __iter__( self ) -> Dict: __UpperCamelCase = 0 __UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 __UpperCamelCase = random.random() < self.p_stop class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self , lowercase , lowercase , lowercase=False , lowercase=True ) -> List[str]: __UpperCamelCase = [ BatchSamplerShard(lowercase , 2 , lowercase , split_batches=lowercase , even_batches=lowercase ) for i in range(2 ) ] __UpperCamelCase = [list(lowercase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase ) for shard in batch_sampler_shards] , [len(lowercase ) for e in expected] ) self.assertListEqual(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) def __lowerCamelCase ( self ) -> str: # Check the shards when the dataset is a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) def __lowerCamelCase ( self ) -> str: __UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] __UpperCamelCase = [BatchSamplerShard(lowercase , 2 , lowercase , even_batches=lowercase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=False , lowercase=2 , lowercase=False ) -> List[str]: random.seed(lowercase ) __UpperCamelCase = list(lowercase ) __UpperCamelCase = [ IterableDatasetShard( lowercase , batch_size=lowercase , drop_last=lowercase , num_processes=lowercase , process_index=lowercase , split_batches=lowercase , ) for i in range(lowercase ) ] __UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase ) iterable_dataset_lists.append(list(lowercase ) ) __UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase ) , len(lowercase ) ) self.assertTrue(len(lowercase ) % shard_batch_size == 0 ) __UpperCamelCase = [] for idx in range(0 , len(lowercase ) , lowercase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase ) < len(lowercase ): reference += reference self.assertListEqual(lowercase , reference[: len(lowercase )] ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = 4_2 __UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) # Edge case with a very small dataset __UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = SkipBatchSampler(lowercase , 2 ) self.assertListEqual(list(lowercase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = DataLoader(list(range(1_6 ) ) , batch_size=4 ) __UpperCamelCase = skip_first_batches(lowercase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowerCamelCase ( self ) -> Tuple: Accelerator() __UpperCamelCase = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
243
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase__ = TaTokenizerFast UpperCAmelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : List[str] = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : int = (1 - _cos) / 2 UpperCAmelCase_ : Optional[Any] = 1 - _cos UpperCAmelCase_ : int = 1 + alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Dict = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(__lowerCamelCase ) UpperCAmelCase_ : Any = cos(__lowerCamelCase ) UpperCAmelCase_ : List[str] = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = (1 + _cos) / 2 UpperCAmelCase_ : Optional[int] = -1 - _cos UpperCAmelCase_ : Union[str, Any] = 1 + alpha UpperCAmelCase_ : Optional[int] = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : str = sin(__lowerCamelCase ) UpperCAmelCase_ : Tuple = cos(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Any = _sin / 2 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Tuple = -ba UpperCAmelCase_ : Optional[Any] = 1 + alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha UpperCAmelCase_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ) ): UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Any = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = cos(__lowerCamelCase ) UpperCAmelCase_ : str = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : str = -2 * _cos UpperCAmelCase_ : Any = 1 + alpha UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : Dict = tau * frequency / samplerate UpperCAmelCase_ : Union[str, Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : int = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : List[str] = 10 ** (gain_db / 40) UpperCAmelCase_ : List[Any] = 1 + alpha * big_a UpperCAmelCase_ : Tuple = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha * big_a UpperCAmelCase_ : str = 1 + alpha / big_a UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha / big_a UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : str = tau * frequency / samplerate UpperCAmelCase_ : int = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : Tuple = _sin / (2 * q_factor) UpperCAmelCase_ : List[Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : List[str] = big_a * (pmc + aaa) UpperCAmelCase_ : int = 2 * big_a * mpc UpperCAmelCase_ : int = big_a * (pmc - aaa) UpperCAmelCase_ : Dict = ppmc + aaa UpperCAmelCase_ : Any = -2 * pmpc UpperCAmelCase_ : List[str] = ppmc - aaa UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1 / sqrt(2 ), ): UpperCAmelCase_ : int = tau * frequency / samplerate UpperCAmelCase_ : Optional[Any] = sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = cos(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = 10 ** (gain_db / 40) UpperCAmelCase_ : Tuple = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : List[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Any = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Dict = 2 * sqrt(__lowerCamelCase ) * alpha UpperCAmelCase_ : Any = big_a * (ppmc + aaa) UpperCAmelCase_ : Union[str, Any] = -2 * big_a * pmpc UpperCAmelCase_ : Dict = big_a * (ppmc - aaa) UpperCAmelCase_ : Optional[int] = pmc + aaa UpperCAmelCase_ : Union[str, Any] = 2 * mpc UpperCAmelCase_ : int = pmc - aaa UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt
61
0
"""simple docstring""" def _A ( ): """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] UpperCAmelCase =generate_large_matrix() UpperCAmelCase =( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _A ( _a : list[list[int]] ): """simple docstring""" assert all(row == sorted(_a , reverse=_a ) for row in grid ) assert all(list(_a ) == sorted(_a , reverse=_a ) for col in zip(*_a ) ) def _A ( _a : list[int] ): """simple docstring""" A = 0 A = len(_a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A = (left + right) // 2 A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A = mid + 1 else: A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_a ) def _A ( _a : list[list[int]] ): """simple docstring""" A = 0 A = len(grid[0] ) for i in range(len(_a ) ): A = find_negative_index(grid[i][:bound] ) total += bound return (len(_a ) * len(grid[0] )) - total def _A ( _a : list[list[int]] ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def _A ( _a : list[list[int]] ): """simple docstring""" A = 0 for row in grid: for i, number in enumerate(_a ): if number < 0: total += len(_a ) - i break return total def _A ( ): """simple docstring""" from timeit import timeit print("""Running benchmarks""" ) A = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A = timeit(f'{func}(grid=grid)' , setup=_a , number=5_0_0 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
77
"""simple docstring""" def _A ( _a : int ): """simple docstring""" A = abs(_a ) A = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def _A ( _a : int ): """simple docstring""" A = abs(_a ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def _A ( _a : int ): """simple docstring""" return sum(int(_a ) for c in str(abs(_a ) ) ) def _A ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_a : Callable , _a : int ) -> None: A = f'{func.__name__}({value})' A = timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(_a )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_a , _a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
77
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = (UnCLIPScheduler,) def lowerCAmelCase__ ( self: List[Any] , **UpperCamelCase_: Any ): __lowerCamelCase = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCamelCase_ ) return config def lowerCAmelCase__ ( self: Optional[Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase_ , prev_timestep=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) __lowerCamelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase_ ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=UpperCamelCase_ ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=UpperCamelCase_ ) - -0.001_0011 < 1E-5 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) __lowerCamelCase = scheduler.timesteps __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __lowerCamelCase = pred_prev_sample __lowerCamelCase = torch.sum(torch.abs(UpperCamelCase_ ) ) __lowerCamelCase = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(25 ) __lowerCamelCase = scheduler.timesteps __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ ) if i + 1 == timesteps.shape[0]: __lowerCamelCase = None else: __lowerCamelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCamelCase = scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prev_timestep=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __lowerCamelCase = pred_prev_sample __lowerCamelCase = torch.sum(torch.abs(UpperCamelCase_ ) ) __lowerCamelCase = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def lowerCAmelCase__ ( self: Any ): pass def lowerCAmelCase__ ( self: Union[str, Any] ): pass
12
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Optional[int] ) -> Optional[int]: # test for the above condition self.test() def __magic_name__ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =0 SCREAMING_SNAKE_CASE__ : Any =False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE__ : Dict =self.advance() if not self.does_advance(__lowercase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.update(__lowercase ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __magic_name__ ( self : List[str] ) -> int: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : List[str] , __lowercase : int ) -> Tuple: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Optional[int] , __lowercase : int ) -> Union[str, Any]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Dict ) -> Tuple: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Any ) -> Optional[Any]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def __magic_name__ ( self : Optional[int] , __lowercase : List[str]=False ) -> int: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Union[str, Any] , __lowercase : List[int] ) -> int: super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =token_ids SCREAMING_SNAKE_CASE__ : Dict =len(self.token_ids ) SCREAMING_SNAKE_CASE__ : Tuple =-1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE__ : List[Any] =False def __magic_name__ ( self : List[str] ) -> List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __magic_name__ ( self : List[Any] , __lowercase : int ) -> List[str]: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __magic_name__ ( self : Tuple , __lowercase : int ) -> str: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =False SCREAMING_SNAKE_CASE__ : Optional[Any] =False SCREAMING_SNAKE_CASE__ : str =False if self.does_advance(__lowercase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE__ : List[Any] =True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE__ : int =True SCREAMING_SNAKE_CASE__ : Any =completed else: # failed to make progress. SCREAMING_SNAKE_CASE__ : int =True self.reset() return stepped, completed, reset def __magic_name__ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : int =False SCREAMING_SNAKE_CASE__ : Optional[Any] =0 def __magic_name__ ( self : Optional[int] ) -> List[Any]: return self.seqlen - (self.fulfilled_idx + 1) def __magic_name__ ( self : int , __lowercase : int=False ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE__ : Dict =self.seqlen SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.fulfilled_idx SCREAMING_SNAKE_CASE__ : Optional[Any] =self.completed return new_constraint class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __lowercase : List[List[int]] , __lowercase : Optional[Any]=True ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =max([len(__lowercase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ={} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE__ : str =root for tidx, token_id in enumerate(__lowercase ): if token_id not in level: SCREAMING_SNAKE_CASE__ : str ={} SCREAMING_SNAKE_CASE__ : Union[str, Any] =level[token_id] if no_subsets and self.has_subsets(__lowercase , __lowercase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F" {nested_token_ids}." ) SCREAMING_SNAKE_CASE__ : str =root def __magic_name__ ( self : List[str] , __lowercase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE__ : str =start[current_token] SCREAMING_SNAKE_CASE__ : Optional[Any] =list(start.keys() ) return next_tokens def __magic_name__ ( self : Dict , __lowercase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =self.next_tokens(__lowercase ) return len(__lowercase ) == 0 def __magic_name__ ( self : str , __lowercase : Dict ) -> int: SCREAMING_SNAKE_CASE__ : Tuple =list(root.values() ) if len(__lowercase ) == 0: return 1 else: return sum([self.count_leaves(__lowercase ) for nn in next_nodes] ) def __magic_name__ ( self : Union[str, Any] , __lowercase : List[str] , __lowercase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple =self.count_leaves(__lowercase ) return len(__lowercase ) != leaf_count class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Any , __lowercase : List[List[int]] ) -> Tuple: super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(__lowercase , __lowercase ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =DisjunctiveTrie(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =nested_token_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.trie.max_height SCREAMING_SNAKE_CASE__ : Union[str, Any] =[] SCREAMING_SNAKE_CASE__ : Optional[Any] =False def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict =self.trie.next_tokens(self.current_seq ) if len(__lowercase ) == 0: return None else: return token_list def __magic_name__ ( self : int , __lowercase : int ) -> List[str]: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}" ) SCREAMING_SNAKE_CASE__ : Tuple =self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __magic_name__ ( self : Dict , __lowercase : int ) -> Optional[int]: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}" ) SCREAMING_SNAKE_CASE__ : Tuple =False SCREAMING_SNAKE_CASE__ : Optional[int] =False SCREAMING_SNAKE_CASE__ : Any =False if self.does_advance(__lowercase ): self.current_seq.append(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =True else: SCREAMING_SNAKE_CASE__ : Optional[int] =True self.reset() SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE__ : Any =completed return stepped, completed, reset def __magic_name__ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Dict =False SCREAMING_SNAKE_CASE__ : Tuple =[] def __magic_name__ ( self : List[str] ) -> Union[str, Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __magic_name__ ( self : List[str] , __lowercase : Optional[int]=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any =DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.seqlen SCREAMING_SNAKE_CASE__ : str =self.current_seq SCREAMING_SNAKE_CASE__ : Tuple =self.completed return new_constraint class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : List[Constraint] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Dict =constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE__ : Optional[int] =max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =len(__lowercase ) SCREAMING_SNAKE_CASE__ : int =False self.init_state() def __magic_name__ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Optional[Any] =None SCREAMING_SNAKE_CASE__ : Union[str, Any] =[constraint.copy(stateful=__lowercase ) for constraint in self.constraints] def __magic_name__ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : Any =0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __magic_name__ ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =[] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE__ : List[Any] =constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.inprogress_constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) if len(__lowercase ) == 0: return None else: return token_list def __magic_name__ ( self : Tuple , __lowercase : Optional[List[int]] ) -> Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.add(__lowercase ) # the entire list of constraints are fulfilled if self.completed: break def __magic_name__ ( self : Union[str, Any] , __lowercase : int ) -> Optional[int]: if not isinstance(__lowercase , __lowercase ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =False, False if self.completed: SCREAMING_SNAKE_CASE__ : Optional[Any] =True SCREAMING_SNAKE_CASE__ : int =False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.inprogress_constraint.update(__lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] =None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE__ : str =None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE__ : Union[str, Any] =True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =pending_constraint.update(__lowercase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =None if not complete and stepped: SCREAMING_SNAKE_CASE__ : List[str] =pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE__ : List[str] =( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE__ : str =True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __magic_name__ ( self : Optional[int] , __lowercase : Dict=True ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[str] =ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE__ : Optional[Any] =[ constraint.copy(stateful=__lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE__ : List[str] =self.inprogress_constraint.copy(stateful=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =[constraint.copy() for constraint in self.pending_constraints] return new_state
222
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """biogpt""" def __init__( self : str , __lowercase : Union[str, Any]=4_23_84 , __lowercase : Union[str, Any]=10_24 , __lowercase : Any=24 , __lowercase : Any=16 , __lowercase : Optional[Any]=40_96 , __lowercase : Any="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Union[str, Any]=10_24 , __lowercase : List[Any]=0.02 , __lowercase : Tuple=1e-12 , __lowercase : Optional[Any]=True , __lowercase : Optional[Any]=True , __lowercase : Any=0.0 , __lowercase : int=0.0 , __lowercase : str=1 , __lowercase : int=0 , __lowercase : Optional[int]=2 , **__lowercase : Dict , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : str =hidden_size SCREAMING_SNAKE_CASE__ : int =num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple =num_attention_heads SCREAMING_SNAKE_CASE__ : Any =intermediate_size SCREAMING_SNAKE_CASE__ : int =hidden_act SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] =initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] =layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[Any] =scale_embedding SCREAMING_SNAKE_CASE__ : str =use_cache SCREAMING_SNAKE_CASE__ : str =layerdrop SCREAMING_SNAKE_CASE__ : Dict =activation_dropout super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
222
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MobileBertTokenizer lowerCAmelCase__ = MobileBertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = filter_non_english lowerCAmelCase__ = """google/mobilebert-uncased""" def __lowerCamelCase ( self : Tuple): '''simple docstring''' super().setUp() __lowercase =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __lowercase =[ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase ='UNwant\u00E9d,running' __lowercase ='unwanted, running' return input_text, output_text def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.tokenizer_class(self.vocab_file) __lowercase =tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(_lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [9, 6, 7, 1_2, 1_0, 1_1]) def __lowerCamelCase ( self : Dict): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() __lowercase ='UNwant\u00E9d,running' __lowercase =tokenizer.tokenize(_lowerCAmelCase) __lowercase =rust_tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) # With lower casing __lowercase =self.get_tokenizer(do_lower_case=_lowerCAmelCase) __lowercase =self.get_rust_tokenizer(do_lower_case=_lowerCAmelCase) __lowercase ='UNwant\u00E9d,running' __lowercase =tokenizer.tokenize(_lowerCAmelCase) __lowercase =rust_tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase ={} for i, token in enumerate(_lowerCAmelCase): __lowercase =i __lowercase =WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def __lowerCamelCase ( self : str): '''simple docstring''' self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def __lowerCamelCase ( self : List[str]): '''simple docstring''' self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCAmelCase) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCAmelCase) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.tokenizer_class.from_pretrained('google/mobilebert-uncased') __lowercase =tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __lowercase =self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __lowercase =tokenizer_r.encode_plus( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , ) __lowercase =tokenizer_r.do_lower_case if hasattr(_lowerCAmelCase , 'do_lower_case') else False __lowercase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =['的', '人', '有'] __lowercase =''.join(_lowerCAmelCase) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __lowercase =True __lowercase =self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase) __lowercase =tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =False __lowercase =self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase) __lowercase =tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase) # it is expected that only the first Chinese character is not preceded by "##". __lowercase =[ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(_lowerCAmelCase) ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase)
166
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class snake_case__ ( snake_case_ ): _snake_case : Optional[Any] = ["""pixel_values"""] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = True , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) __a = size if size is not None else {"shortest_edge": 224} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = crop_size if crop_size is not None else {"height": 224, "width": 224} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase , param_name="crop_size" ) __a = do_resize __a = size __a = resample __a = do_center_crop __a = crop_size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a = image_std if image_std is not None else OPENAI_CLIP_STD __a = do_convert_rgb def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __a = get_resize_output_image_size(lowerCamelCase , size=size["shortest_edge"] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , param_name="size" , default_to_square=lowerCamelCase ) __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(lowerCamelCase , param_name="crop_size" , default_to_square=lowerCamelCase ) __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. __a = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __a = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: __a = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: __a = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: __a = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] __a = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __a = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
369
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__:List[Any] = None SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__:List[str] = { """camembert-base""": 512, } SCREAMING_SNAKE_CASE__:str = """▁""" class snake_case__ ( snake_case_ ): _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : str = CamembertTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) __a = vocab_file __a = False if not self.vocab_file else True def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
268
0
from scipy.stats import spearmanr import datasets UpperCAmelCase : Union[str, Any] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' UpperCAmelCase : Dict = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' UpperCAmelCase : List[str] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def UpperCAmelCase_ ( self , _A , _A , _A=False ): __A : str = spearmanr(_A , _A ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
280
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> None: __A : int = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a ) == len(a ), F"""{len(a )} != {len(a )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase : Optional[int] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: try: __A : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(a ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> List[int]: if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _SCREAMING_SNAKE_CASE ( a , a = "student" , a = None , a = None , a=False , a=None , a=None , **a , ) -> Tuple[PreTrainedModel, List[int], List[int]]: __A : List[str] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(a , a ): AutoTokenizer.from_pretrained(a ).save_pretrained(a ) # purely for convenience __A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(a ).eval() else: assert isinstance(a , a ), F"""teacher must be a model or string got type {type(a )}""" __A : int = teacher.config.to_diff_dict() try: __A , __A : List[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __A : str = teacher_e if d is None: __A : List[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): __A , __A : List[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __A , __A : Optional[int] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __A : int = teacher_e if d is None: __A : Optional[Any] = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a ) # Copy weights __A : Dict = teacher.config_class(**a ) __A : int = AutoModelForSeqaSeqLM.from_config(a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __A : Any = student.load_state_dict(teacher.state_dict() , strict=a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __A , __A : Optional[int] = list(range(a ) ), list(range(a ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) if d_layers_to_copy is None: __A : List[int] = pick_layers_to_copy(a , a ) try: if hasattr( a , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a ) copy_layers(teacher.decoder.block , student.decoder.block , a ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) __A : Optional[int] = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
280
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : str , A : str , A : List[Any]=1_3 , A : Optional[int]=7 , A : List[Any]=True , A : List[str]=True , A : Tuple=True , A : Optional[int]=9_9 , A : str=3_2 , A : Tuple=5 , A : str=4 , A : Any=3_7 , A : str="gelu" , A : int=0.1 , A : Optional[int]=0.1 , A : str=5_1_2 , A : Optional[Any]=1_6 , A : int=2 , A : Optional[int]=0.02 , A : Optional[int]=3 , A : List[str]=4 , A : List[Any]=None , ) ->Optional[Any]: lowerCamelCase__ : str = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Optional[Any] = seq_length lowerCamelCase__ : int = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Any = use_labels lowerCamelCase__ : int = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Dict = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : Optional[int] = num_choices lowerCamelCase__ : Dict = scope lowerCamelCase__ : Tuple = self.vocab_size - 1 def __lowerCamelCase ( self : int ) ->Optional[int]: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : str = None lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCamelCase ( self : Tuple , A : Optional[Any] , A : int , A : Any , A : Any , *A : str ) ->List[Any]: lowerCamelCase__ : Union[str, Any] = OpenAIGPTModel(config=A ) model.to(A ) model.eval() lowerCamelCase__ : Dict = model(A , token_type_ids=A , head_mask=A ) lowerCamelCase__ : Optional[int] = model(A , token_type_ids=A ) lowerCamelCase__ : Tuple = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : str , A : str , A : List[str] , A : Optional[Any] , A : Optional[Any] , *A : Tuple ) ->List[Any]: lowerCamelCase__ : Optional[Any] = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() lowerCamelCase__ : Any = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : List[Any] , A : int , A : Union[str, Any] , A : Optional[Any] , A : Optional[int] , *A : List[Any] ) ->Union[str, Any]: lowerCamelCase__ : List[str] = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() lowerCamelCase__ : str = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : Optional[Any] , A : List[str] , A : int , A : Dict , A : Union[str, Any] , *A : str ) ->Union[str, Any]: lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : Optional[int] = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : Any ) ->Dict: lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict = config_and_inputs lowerCamelCase__ : Optional[int] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : str = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _UpperCAmelCase : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __lowerCamelCase ( self : Optional[Any] , A : Tuple , A : int , A : Any , A : Optional[Any] , A : List[str] ) ->Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __lowerCamelCase ( self : List[str] , A : str , A : Any , A : List[str]=False ) ->Dict: lowerCamelCase__ : Any = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) lowerCamelCase__ : Optional[int] = inputs_dict['''labels'''] lowerCamelCase__ : int = inputs_dict['''labels'''] lowerCamelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) lowerCamelCase__ : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __lowerCamelCase ( self : int ) ->List[str]: lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=A , n_embd=3_7 ) def __lowerCamelCase ( self : Union[str, Any] ) ->int: self.config_tester.run_common_tests() def __lowerCamelCase ( self : Optional[int] ) ->str: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def __lowerCamelCase ( self : Tuple ) ->str: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def __lowerCamelCase ( self : int ) ->List[Any]: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def __lowerCamelCase ( self : str ) ->Optional[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCamelCase ( self : Any ) ->Union[str, Any]: lowerCamelCase__ : Dict = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) lowerCamelCase__ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=A ) # the president is lowerCamelCase__ : List[Any] = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
265
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=True , UpperCAmelCase=2 ) -> str: """simple docstring""" from .. import __version__ lowerCamelCase__ : Optional[Any] = take_from lowerCamelCase__ : Any = () if not isinstance(args[0] , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase ).base_version ) >= version.parse(UpperCAmelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : List[Any] = None if isinstance(UpperCAmelCase , UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase ),) lowerCamelCase__ : Tuple = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCAmelCase , UpperCAmelCase ): values += (getattr(UpperCAmelCase , UpperCAmelCase ),) lowerCamelCase__ : Union[str, Any] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : int = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , UpperCAmelCase , stacklevel=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Optional[Any] = call_frame.filename lowerCamelCase__ : List[Any] = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCAmelCase ) == 0: return elif len(UpperCAmelCase ) == 1: return values[0] return values
265
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[Any] =logging.get_logger(__name__) def lowerCAmelCase_ ( _lowercase : Optional[Any]) -> List[Any]: """simple docstring""" a__ : int = MobileNetVaConfig(layer_norm_eps=0.001) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""") a__ : Union[str, Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowercase) if matches: a__ : List[str] = float(matches[1]) a__ : List[str] = int(matches[2]) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". a__ : Any = 1001 a__ : Tuple = """imagenet-1k-id2label.json""" a__ : Any = """huggingface/label-files""" a__ : str = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""") , """r""")) a__ : Optional[Any] = {int(_lowercase) + 1: v for k, v in idalabel.items()} a__ : Dict = """background""" a__ : List[Any] = idalabel a__ : str = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> Any: """simple docstring""" a__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a__ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase).raw) return im @torch.no_grad() def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Dict , _lowercase : int , _lowercase : List[Any]=False) -> int: """simple docstring""" a__ : str = get_mobilenet_va_config(_lowercase) # Load 🤗 model a__ : Optional[Any] = MobileNetVaForImageClassification(_lowercase).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowercase , _lowercase , _lowercase) # Check outputs on an image, prepared by MobileNetV1ImageProcessor a__ : int = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) a__ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""") a__ : List[str] = model(**_lowercase) a__ : Tuple = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": a__ : Tuple = torch.tensor([-4.1739, -1.1233, 3.1205]) elif model_name == "mobilenet_v1_0.75_192": a__ : Any = torch.tensor([-3.9440, -2.3141, -0.3333]) else: a__ : Dict = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4) Path(_lowercase).mkdir(exist_ok=_lowercase) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(_lowercase) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowercase) if push_to_hub: print("""Pushing to the hub...""") a__ : int = """google/""" + model_name image_processor.push_to_hub(_lowercase) model.push_to_hub(_lowercase) if __name__ == "__main__": _lowercase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase : List[str] =parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
170
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""OwlViTFeatureExtractor"""] _A = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = MgpstrTokenizer _lowerCAmelCase : int = False _lowerCAmelCase : str = {} _lowerCAmelCase : Tuple = False def snake_case ( self ): """simple docstring""" super().setUp() # fmt: off snake_case = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '\n' ) def snake_case ( self , **lowerCAmelCase ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = 'tester' snake_case = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) snake_case = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 1 ) snake_case = tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case ( self ): """simple docstring""" snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case ,snake_case = self.get_input_output_texts(lowerCAmelCase ) snake_case = tokenizer.tokenize(lowerCAmelCase ) snake_case = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) snake_case = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) snake_case = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertNotEqual(len(lowerCAmelCase ) , 0 ) snake_case = tokenizer.decode(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(text_a.replace(' ' , '' ) , lowerCAmelCase ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case ( self ): """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case ( self ): """simple docstring""" pass
149
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Tuple = """swinv2""" _lowerCAmelCase : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase=2_24 , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=96 , lowerCAmelCase=[2, 2, 6, 2] , lowerCAmelCase=[3, 6, 12, 24] , lowerCAmelCase=7 , lowerCAmelCase=4.0 , lowerCAmelCase=True , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.1 , lowerCAmelCase="gelu" , lowerCAmelCase=False , lowerCAmelCase=0.02 , lowerCAmelCase=1E-5 , lowerCAmelCase=32 , **lowerCAmelCase , ): """simple docstring""" super().__init__(**lowerCAmelCase ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = embed_dim snake_case = depths snake_case = len(lowerCAmelCase ) snake_case = num_heads snake_case = window_size snake_case = mlp_ratio snake_case = qkv_bias snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = drop_path_rate snake_case = hidden_act snake_case = use_absolute_embeddings snake_case = layer_norm_eps snake_case = initializer_range snake_case = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case = int(embed_dim * 2 ** (len(lowerCAmelCase ) - 1) ) snake_case = (0, 0, 0, 0)
149
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: List[str] = FlaxAutoencoderKL @property def _A ( self : Union[str, Any] ): _UpperCAmelCase : Optional[int] = 4 _UpperCAmelCase : str = 3 _UpperCAmelCase : int = (32, 32) _UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) _UpperCAmelCase : Optional[Any] = jax.random.uniform(A , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _A ( self : Tuple ): _UpperCAmelCase : Tuple = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict
31
def lowerCAmelCase_ ( snake_case_ ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
26
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ : List[str] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } lowerCAmelCase__ : str = { "yjernite/retribert-base-uncased": 5_12, } lowerCAmelCase__ : Dict = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = RetriBertTokenizer SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any="[UNK]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Tuple="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : List[str]="[MASK]" , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_ ) != tokenize_chinese_chars ): __UpperCAmelCase : Tuple = getattr(UpperCAmelCase_ , normalizer_state.pop("type" ) ) __UpperCAmelCase : int = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : Optional[int] = normalizer_class(**UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = do_lower_case def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]=None ): """simple docstring""" __UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): """simple docstring""" __UpperCAmelCase : List[str] = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
362
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ : Dict = get_tests_dir("fixtures/dummy-config.json") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = 0 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[str] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Any = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCAmelCase : int = os.path.join(UpperCAmelCase_ , "fake-roberta" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register("custom" , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("model" , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("bert" , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def lowerCamelCase_ ( self : int ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision="aaaaaa" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''new-model''' try: AutoConfig.register("new-model" , UpperCAmelCase_ ) # If remote code is not set, the default is to use local __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
37
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = '''huggingface/label-files''' snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = json.load(open(hf_hub_download(__UpperCAmelCase, __UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) snake_case_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" snake_case_ = BitConfig( conv_layer=__UpperCAmelCase, num_labels=1000, idalabel=__UpperCAmelCase, labelaid=__UpperCAmelCase, ) return config def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: snake_case_ = name.replace('''stem.conv''', '''bit.embedder.convolution''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''', '''layers''' ) if "head.fc" in name: snake_case_ = name.replace('''head.fc''', '''classifier.1''' ) if name.startswith('''norm''' ): snake_case_ = '''bit.''' + name if "bit" not in name and "classifier" not in name: snake_case_ = '''bit.encoder.''' + name return name def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(__UpperCAmelCase, stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=False ) -> str: '''simple docstring''' snake_case_ = get_config(__UpperCAmelCase ) # load original model from timm snake_case_ = create_model(__UpperCAmelCase, pretrained=__UpperCAmelCase ) timm_model.eval() # load state_dict of original model snake_case_ = timm_model.state_dict() for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(__UpperCAmelCase ) snake_case_ = val.squeeze() if '''head''' in key else val # load HuggingFace model snake_case_ = BitForImageClassification(__UpperCAmelCase ) model.eval() model.load_state_dict(__UpperCAmelCase ) # create image processor snake_case_ = create_transform(**resolve_data_config({}, model=__UpperCAmelCase ) ) snake_case_ = transform.transforms snake_case_ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } snake_case_ = BitImageProcessor( do_resize=__UpperCAmelCase, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=__UpperCAmelCase, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=__UpperCAmelCase, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) snake_case_ = prepare_img() snake_case_ = transform(__UpperCAmelCase ).unsqueeze(0 ) snake_case_ = processor(__UpperCAmelCase, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__UpperCAmelCase, __UpperCAmelCase ) # verify logits with torch.no_grad(): snake_case_ = model(__UpperCAmelCase ) snake_case_ = outputs.logits print('''Logits:''', logits[0, :3] ) print('''Predicted class:''', model.config.idalabel[logits.argmax(-1 ).item()] ) snake_case_ = timm_model(__UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase, outputs.logits, atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(F"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(F"ybelkada/{model_name}" ) processor.push_to_hub(F"ybelkada/{model_name}" ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) a : Any = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
56
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm SCREAMING_SNAKE_CASE__ = 2_048 SCREAMING_SNAKE_CASE__ = 4_096 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = os.environ.pop("PROCESS_TRAIN", "false") SCREAMING_SNAKE_CASE__ = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase__ ( _UpperCamelCase : str ) -> Any: """simple docstring""" def choose_first(_UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=False ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) == 1: snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a snake_case = {'id': example['id']} snake_case = example['annotations'] snake_case = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case = ['yes'] if 1 in yes_no_answer else ['no'] snake_case = snake_case = [] snake_case = snake_case = [] snake_case = ['<cls>'] else: snake_case = ['short'] snake_case = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available snake_case = ['long'] snake_case = choose_first(annotation['long_answer'] , is_long_answer=_UpperCamelCase ) snake_case = [] answer.update(_UpperCamelCase ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case = True else: snake_case = False snake_case = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , _UpperCamelCase ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : List[str]=False ) -> Union[str, Any]: """simple docstring""" snake_case = _get_single_answer(_UpperCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case = example['document']['tokens'] snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case = example['document']['tokens'] snake_case = answer['start_token'] snake_case = answer['end_token'] snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case = ' '.join(context[start_token:end_token] ) # checking above code if assertion: snake_case = doc['is_html'][answer['start_token'] : answer['end_token']] snake_case = doc['token'][answer['start_token'] : answer['end_token']] snake_case = ' '.join([old[i] for i in range(len(_UpperCamelCase ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , _UpperCamelCase , end='\n' ) print('Old:' , _UpperCamelCase , end='\n\n' ) return { "context": " ".join(_UpperCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Optional[int]=2_0_4_8 , _UpperCamelCase : Union[str, Any]=4_0_9_6 , _UpperCamelCase : Dict=True ) -> Optional[Any]: """simple docstring""" snake_case = get_context_and_ans(_UpperCamelCase , assertion=_UpperCamelCase ) snake_case = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case = tokenizer(example['question']['text'] , out['context'] ).input_ids snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case = [] snake_case = [] snake_case = input_ids[:q_len] snake_case = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: snake_case = i + max_length - q_len snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(_UpperCamelCase ), "end_token": [-1_0_0] * len(_UpperCamelCase ), "category": category, }, } snake_case = out['context'].split() snake_case = splitted_context[answer['end_token']] snake_case = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=_UpperCamelCase , ).input_ids ) snake_case = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=_UpperCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case = len(tokenizer(_UpperCamelCase , add_special_tokens=_UpperCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive snake_case = answer['start_token'] snake_case = answer['end_token'] if assertion: snake_case = tokenizer.decode(_UpperCamelCase ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , _UpperCamelCase , end='\n\n' ) if len(_UpperCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case = input_ids[:q_len] snake_case = range(_UpperCamelCase , len(_UpperCamelCase ) , max_length - doc_stride ) snake_case = [] snake_case = [] snake_case = [] snake_case = [] # null, yes, no, long, short for i in doc_start_indices: snake_case = i + max_length - q_len snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case = start_token - i + q_len snake_case = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: snake_case = -1_0_0 snake_case = -1_0_0 answers_category.append('null' ) snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(_UpperCamelCase ) answers_end_token.append(_UpperCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(_UpperCamelCase ) ) print('Old:' , tokenizer.decode(_UpperCamelCase ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=2_0_4_8 , _UpperCamelCase : Union[str, Any]=4_0_9_6 , _UpperCamelCase : List[str]=False ) -> Union[str, Any]: """simple docstring""" snake_case = get_strided_contexts_and_ans( _UpperCamelCase , _UpperCamelCase , doc_stride=_UpperCamelCase , max_length=_UpperCamelCase , assertion=_UpperCamelCase , ) return example def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : List[str] ) -> Any: """simple docstring""" with jsonlines.open(_UpperCamelCase , 'a' ) as writer: for example in tqdm(_UpperCamelCase , total=len(_UpperCamelCase ) , desc='Saving samples ... ' ): snake_case = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer SCREAMING_SNAKE_CASE__ = load_dataset("natural_questions") SCREAMING_SNAKE_CASE__ = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") SCREAMING_SNAKE_CASE__ = data["train" if PROCESS_TRAIN == "true" else "validation"] SCREAMING_SNAKE_CASE__ = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } SCREAMING_SNAKE_CASE__ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) SCREAMING_SNAKE_CASE__ = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) SCREAMING_SNAKE_CASE__ = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
150
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE_ ( *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str]): """simple docstring""" pass @is_pipeline_test @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @require_torch def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a : Optional[Any] = image_classifier(UpperCAmelCase_ , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase_) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) a : Optional[int] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Union[str, Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') a : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a : Tuple = image_classifier(UpperCAmelCase_ , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(UpperCAmelCase_) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) a : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], [ {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, {'score': 0.3_33, 'label': ANY(UpperCAmelCase_)}, ], ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[Any] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes a : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a : Optional[Any] = image_classifier(UpperCAmelCase_ , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) a : Optional[Any] = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Tuple = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a : Dict = image_classifier(UpperCAmelCase_ , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) a : int = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
363
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = "data2vec-audio" def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=3_2 , UpperCAmelCase_ : Union[str, Any]=7_6_8 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=3_0_7_2 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase_ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : int=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=1_6 , UpperCAmelCase_ : Optional[Any]=1_9 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=0.05 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=1_0 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any="sum" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=2_5_6 , UpperCAmelCase_ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Optional[int]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) a : List[Any] = hidden_size a : Any = feat_extract_activation a : Any = list(UpperCAmelCase_) a : Optional[int] = list(UpperCAmelCase_) a : Dict = list(UpperCAmelCase_) a : Tuple = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[Any] = conv_pos_kernel_size a : Any = len(self.conv_dim) a : Tuple = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : Dict = num_attention_heads a : Dict = hidden_dropout a : Union[str, Any] = attention_dropout a : Dict = activation_dropout a : Optional[int] = feat_proj_dropout a : Tuple = final_dropout a : Union[str, Any] = layerdrop a : Tuple = layer_norm_eps a : Dict = initializer_range a : Tuple = vocab_size a : int = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[str] = mask_time_prob a : int = mask_time_length a : Optional[int] = mask_time_min_masks a : Dict = mask_feature_prob a : List[str] = mask_feature_length a : str = mask_feature_min_masks # ctc loss a : str = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # adapter a : List[str] = add_adapter a : Optional[Any] = adapter_kernel_size a : int = adapter_stride a : str = num_adapter_layers a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : List[Any] = list(UpperCAmelCase_) a : List[str] = list(UpperCAmelCase_) a : str = list(UpperCAmelCase_) a : Optional[Any] = xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return math.prod(self.conv_stride)
345
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A : ClassVar[Features] = Features({'''audio''': Audio()} ) A : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) A : str = "audio" A : str = "transcription" def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column], A ): raise ValueError(F"Column {self.audio_column} is not an Audio type." ) SCREAMING_SNAKE_CASE : List[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.input_schema.copy() SCREAMING_SNAKE_CASE : List[Any] = features[self.audio_column] SCREAMING_SNAKE_CASE : Union[str, Any] = input_schema return task_template @property def UpperCamelCase_ ( self ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
1
def __lowerCamelCase ( __a :Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = 1 A__ = 2 while i * i <= n: A__ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = 1 A__ = 1 while True: i += 1 t_num += i if count_divisors(__a ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
276
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A : Dict = random.Random() def __lowerCamelCase ( __a :Dict , __a :str=1.0 , __a :List[Any]=None , __a :List[str]=None ) -> Optional[int]: """simple docstring""" if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A (unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str=7 , __lowerCAmelCase : List[Any]=4_00 , __lowerCAmelCase : Optional[Any]=20_00 , __lowerCAmelCase : Dict=10 , __lowerCAmelCase : Union[str, Any]=1_60 , __lowerCAmelCase : List[Any]=8 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : int=40_00 , __lowerCAmelCase : Any=False , __lowerCAmelCase : List[str]=True , ) -> Optional[int]: """simple docstring""" A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = padding_value A__ = sampling_rate A__ = return_attention_mask A__ = do_normalize A__ = feature_size A__ = chunk_length A__ = hop_length def a_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a_ ( self : List[str] , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : int=False ) -> str: """simple docstring""" def _flatten(__lowerCAmelCase : Optional[int] ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A (SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = WhisperFeatureExtractor if is_speech_available() else None def a_ ( self : Any ) -> str: """simple docstring""" A__ = WhisperFeatureExtractionTester(self ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(__lowerCAmelCase )[0] check_json_file_has_correct_format(__lowerCAmelCase ) A__ = self.feature_extraction_class.from_pretrained(__lowerCAmelCase ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = feat_extract_first.mel_filters A__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Dict ) -> str: """simple docstring""" A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(__lowerCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(__lowerCAmelCase ) A__ = self.feature_extraction_class.from_json_file(__lowerCAmelCase ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = feat_extract_first.mel_filters A__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] A__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size A__ = feature_extractor(__lowerCAmelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) ) # Test batched A__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features A__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] A__ = np.asarray(__lowerCAmelCase ) A__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features A__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) ) # Test truncation required A__ = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] A__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] A__ = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs_truncated] A__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features A__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" import torch A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = np.random.rand(1_00 , 32 ).astype(np.floataa ) A__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a_ ( self : List[Any] , __lowerCAmelCase : Any ) -> Dict: """simple docstring""" A__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ = ds.sort("""id""" ).select(range(__lowerCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a_ ( self : Dict ) -> Any: """simple docstring""" A__ = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = WhisperFeatureExtractor() A__ = feature_extractor(__lowerCAmelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __lowerCAmelCase , atol=1e-4 ) ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = self._load_datasamples(1 )[0] A__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue A__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__lowerCAmelCase )[0] self.assertTrue(np.all(np.mean(__lowerCAmelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase ) - 1 ) < 1e-3 ) )
276
1
class _snake_case : def __init__( self , _a , _a=None , _a=None ): __magic_name__ : Any = data __magic_name__ : List[str] = previous __magic_name__ : Union[str, Any] = next_node def __str__( self ): return f'''{self.data}''' def SCREAMING_SNAKE_CASE ( self ): return self.data def SCREAMING_SNAKE_CASE ( self ): return self.next def SCREAMING_SNAKE_CASE ( self ): return self.previous class _snake_case : def __init__( self , _a ): __magic_name__ : int = head def __iter__( self ): return self def SCREAMING_SNAKE_CASE ( self ): if not self.current: raise StopIteration else: __magic_name__ : Optional[Any] = self.current.get_data() __magic_name__ : int = self.current.get_next() return value class _snake_case : def __init__( self ): __magic_name__ : Union[str, Any] = None # First node in list __magic_name__ : List[Any] = None # Last node in list def __str__( self ): __magic_name__ : int = self.head __magic_name__ : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) __magic_name__ : Dict = current.get_next() return " ".join(str(_a ) for node in nodes ) def __contains__( self , _a ): __magic_name__ : Union[str, Any] = self.head while current: if current.get_data() == value: return True __magic_name__ : Union[str, Any] = current.get_next() return False def __iter__( self ): return LinkedListIterator(self.head ) def SCREAMING_SNAKE_CASE ( self ): if self.head: return self.head.get_data() return None def SCREAMING_SNAKE_CASE ( self ): if self.tail: return self.tail.get_data() return None def SCREAMING_SNAKE_CASE ( self , _a ): if self.head is None: __magic_name__ : Tuple = node __magic_name__ : List[Any] = node else: self.insert_before_node(self.head , _a ) def SCREAMING_SNAKE_CASE ( self , _a ): if self.head is None: self.set_head(_a ) else: self.insert_after_node(self.tail , _a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : int = Node(_a ) if self.head is None: self.set_head(_a ) else: self.set_tail(_a ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Dict = node __magic_name__ : Optional[Any] = node.previous if node.get_previous() is None: __magic_name__ : int = node_to_insert else: __magic_name__ : Tuple = node_to_insert __magic_name__ : str = node_to_insert def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : List[Any] = node __magic_name__ : Tuple = node.next if node.get_next() is None: __magic_name__ : Dict = node_to_insert else: __magic_name__ : Dict = node_to_insert __magic_name__ : Optional[Any] = node_to_insert def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : List[Any] = 1 __magic_name__ : Any = Node(_a ) __magic_name__ : int = self.head while node: if current_position == position: self.insert_before_node(_a , _a ) return current_position += 1 __magic_name__ : Tuple = node.next self.insert_after_node(self.tail , _a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Any = self.head while node: if node.get_data() == item: return node __magic_name__ : Tuple = node.get_next() raise Exception("Node not found" ) def SCREAMING_SNAKE_CASE ( self , _a ): if (node := self.get_node(_a )) is not None: if node == self.head: __magic_name__ : Optional[int] = self.head.get_next() if node == self.tail: __magic_name__ : Optional[Any] = self.tail.get_previous() self.remove_node_pointers(_a ) @staticmethod def SCREAMING_SNAKE_CASE ( _a ): if node.get_next(): __magic_name__ : Any = node.previous if node.get_previous(): __magic_name__ : Optional[int] = node.next __magic_name__ : str = None __magic_name__ : int = None def SCREAMING_SNAKE_CASE ( self ): return self.head is None def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
281
def __lowerCamelCase ( ): '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _UpperCAmelCase : Union[str, Any] = generate_large_matrix() _UpperCAmelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' assert all(row == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for row in grid ) assert all(list(UpperCamelCase__ ) == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for col in zip(*UpperCamelCase__ ) ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(UpperCamelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case_ = (left + right) // 2 snake_case_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case_ = mid + 1 else: snake_case_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(grid[0] ) for i in range(len(UpperCamelCase__ ) ): snake_case_ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCamelCase__ ) * len(grid[0] )) - total def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 for row in grid: for i, number in enumerate(UpperCamelCase__ ): if number < 0: total += len(UpperCamelCase__ ) - i break return total def __lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print('Running benchmarks' ) snake_case_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case_ = timeit(F'''{func}(grid=grid)''' , setup=UpperCamelCase__ , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
285
0
from __future__ import annotations lowerCAmelCase__ : Tuple =[ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a__ ( A__, A__, A__, A__, A__, ): SCREAMING_SNAKE_CASE_ : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A__ ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A__ ) ) ] # the action grid SCREAMING_SNAKE_CASE_ : Dict = init[0] SCREAMING_SNAKE_CASE_ : List[str] = init[1] SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : str = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ : str = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ : Any = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ : Optional[int] = False # flag set if we can't find expand while not found and not resign: if len(A__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ : Optional[Any] = cell.pop() SCREAMING_SNAKE_CASE_ : int = next_cell[2] SCREAMING_SNAKE_CASE_ : Optional[int] = next_cell[3] SCREAMING_SNAKE_CASE_ : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ : List[Any] = True else: for i in range(len(A__ ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ : Dict = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(A__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = g + cost SCREAMING_SNAKE_CASE_ : Optional[int] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = i SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : int = goal[0] SCREAMING_SNAKE_CASE_ : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ : str = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ : Optional[Any] = xa SCREAMING_SNAKE_CASE_ : Union[str, Any] = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ : int = [] for i in range(len(A__ ) ): path.append(invpath[len(A__ ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCAmelCase__ : int =[ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCAmelCase__ : Tuple =[0, 0] # all coordinates are given in format [y,x] lowerCAmelCase__ : Any =[len(grid) - 1, len(grid[0]) - 1] lowerCAmelCase__ : Union[str, Any] =1 # the cost map which pushes the path closer to the goal lowerCAmelCase__ : Tuple =[[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCAmelCase__ : Optional[Any] =abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCAmelCase__ : Optional[int] =99 lowerCAmelCase__ : int =search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
365
import socket def a__ ( ): SCREAMING_SNAKE_CASE_ : Dict = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_ : Any = socket.gethostname() SCREAMING_SNAKE_CASE_ : List[str] = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file', 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: SCREAMING_SNAKE_CASE_ : Tuple = sock.recv(1_0_2_4 ) if not data: break out_file.write(A__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
162
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "CLIPImageProcessor" __UpperCamelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[Any] , lowercase_ : Dict=None , lowercase_ : List[str]=None , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''feature_extractor''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(lowercase_ , lowercase_) def __call__( self : str , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : Dict=None , **lowercase_ : Any): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if images is not None: SCREAMING_SNAKE_CASE_ : Dict = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_) if text is not None and images is not None: SCREAMING_SNAKE_CASE_ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : str , *lowercase_ : int , **lowercase_ : Any): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int]): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
91
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Dict = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : str = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_))
91
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCAmelCase : Optional[Any] = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") UpperCAmelCase : Union[str, Any] = F"https://www.google.com/search?q={query}&num=100" UpperCAmelCase : Tuple = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: UpperCAmelCase : List[Any] = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: UpperCAmelCase : Any = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
313
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
313
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = "Salesforce/blip-image-captioning-base" __snake_case : Optional[int] = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) __snake_case : Union[str, Any] = "image_captioner" __snake_case : Optional[Any] = AutoModelForVisionaSeq __snake_case : str = ["image"] __snake_case : str = ["text"] def __init__( self : Any ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(self ,["""vision"""] ) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : "Image" ) -> Tuple: '''simple docstring''' return self.pre_processor(images=lowerCamelCase__ ,return_tensors="""pt""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' return self.model.generate(**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : List[str] ) -> List[str]: '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ )[0].strip()
296
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("""_""" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 1_28 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 2_18_41 else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = """huggingface/label-files""" SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE = """swin.""" + name return name def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split(""".""" ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = timm_model(inputs["""pixel_values"""] ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
296
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( __magic_name__ ): lowercase = ['''image_processor''', '''tokenizer'''] lowercase = '''CLIPImageProcessor''' lowercase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , A=None , A=None , **A ) -> Union[str, Any]: UpperCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , **A ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCAmelCase : int = self.tokenizer(A , return_tensors=A , **A ) if images is not None: UpperCAmelCase : List[str] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def _lowercase( self , *A , **A ) -> str: return self.tokenizer.batch_decode(*A , **A ) def _lowercase( self , *A , **A ) -> List[str]: return self.tokenizer.decode(*A , **A ) @property def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = self.tokenizer.model_input_names UpperCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a =logging.get_logger(__name__) a ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a ={ """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } a ={ """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } a ={ """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : str = BertTokenizer def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]="[UNK]" ,SCREAMING_SNAKE_CASE__ : List[str]="[SEP]" ,SCREAMING_SNAKE_CASE__ : str="[PAD]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="[CLS]" ,SCREAMING_SNAKE_CASE__ : str="[MASK]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : str=None ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): super().__init__( SCREAMING_SNAKE_CASE__ ,tokenizer_file=SCREAMING_SNAKE_CASE__ ,do_lower_case=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ ,strip_accents=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' ,SCREAMING_SNAKE_CASE__) != do_lower_case or normalizer_state.get('strip_accents' ,SCREAMING_SNAKE_CASE__) != strip_accents or normalizer_state.get('handle_chinese_chars' ,SCREAMING_SNAKE_CASE__) != tokenize_chinese_chars ): __lowerCamelCase : Any = getattr(SCREAMING_SNAKE_CASE__ ,normalizer_state.pop('type')) __lowerCamelCase : str = do_lower_case __lowerCamelCase : Any = strip_accents __lowerCamelCase : Any = tokenize_chinese_chars __lowerCamelCase : int = normalizer_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = do_lower_case def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Tuple=None): __lowerCamelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : str = [self.sep_token_id] __lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ ,name=SCREAMING_SNAKE_CASE__) return tuple(SCREAMING_SNAKE_CASE__)
73
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Any = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Any = '<pad>' lowerCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : int = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase_ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE__ ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase_ : List[str] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : Optional[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : int = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : int = tempfile.mkdtemp() lowerCAmelCase_ : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : List[str] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE_ , f.name ) lowerCAmelCase_ : Tuple = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = pickle.dumps(SCREAMING_SNAKE_CASE_ ) pickle.loads(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase_ : Dict = self.get_rust_tokenizer() lowerCAmelCase_ : Tuple = 'I was born in 92000, and this is falsé.' lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = self.get_rust_tokenizer() lowerCAmelCase_ : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Any = 'Hello World!' lowerCAmelCase_ : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCAmelCase_ : int = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): # fmt: off lowerCAmelCase_ : List[str] = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
224
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = ["image_processor", "tokenizer"] __UpperCAmelCase : List[str] = "BlipImageProcessor" __UpperCAmelCase : List[str] = "AutoTokenizer" def __init__( self : int , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> Union[str, Any]: super().__init__(lowerCamelCase , lowerCamelCase ) # add QFormer tokenizer __snake_case : Any = qformer_tokenizer def __call__( self : List[str] , lowerCamelCase : ImageInput = None , lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Union[bool, str, TruncationStrategy] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : Tuple , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __snake_case : List[str] = BatchFeature() if text is not None: __snake_case : int = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) encoding.update(lowerCamelCase ) __snake_case : Optional[int] = self.qformer_tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) __snake_case : List[str] = qformer_text_encoding.pop("input_ids" ) __snake_case : int = qformer_text_encoding.pop("attention_mask" ) if images is not None: __snake_case : Optional[Any] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) encoding.update(lowerCamelCase ) return encoding def __snake_case ( self : List[str] , *lowerCamelCase : Tuple , **lowerCamelCase : Tuple ) -> str: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[str] , *lowerCamelCase : List[Any] , **lowerCamelCase : Optional[Any] ) -> str: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self : Dict ) -> Any: __snake_case : Dict = self.tokenizer.model_input_names __snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __snake_case ( self : List[Any] , lowerCamelCase : List[str] , **lowerCamelCase : Any ) -> Any: if os.path.isfile(lowerCamelCase ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) __snake_case : List[Any] = os.path.join(lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(lowerCamelCase ) return super().save_pretrained(lowerCamelCase , **lowerCamelCase ) @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : int , **lowerCamelCase : List[Any] ) -> Union[str, Any]: __snake_case : int = AutoTokenizer.from_pretrained(lowerCamelCase , subfolder="qformer_tokenizer" ) __snake_case : str = cls._get_arguments_from_pretrained(lowerCamelCase , **lowerCamelCase ) args.append(lowerCamelCase ) return cls(*lowerCamelCase )
353
from ..utils import DummyObject, requires_backends class a (metaclass=_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : int = ["speech"] def __init__( self : List[Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : Optional[Any] ) -> Dict: requires_backends(self , ["speech"] ) class a (metaclass=_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["speech"] def __init__( self : int , *lowerCamelCase : List[Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(self , ["speech"] )
134
0
from math import factorial def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int): if successes > trials: raise ValueError("successes must be lower or equal to trials") if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers") if not isinstance(__A , __A) or not isinstance(__A , __A): raise ValueError("the function is defined for non-negative integers") if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0") lowercase__ : List[str] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase__ : str = float(factorial(__A)) coefficient /= factorial(__A) * factorial(trials - successes) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
87
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase : Optional[Any] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") lowercase : Tuple = parser.parse_args() lowercase : Optional[int] = "cpu" lowercase : Optional[Any] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" lowercase : Optional[int] = "path-to-your-trained-model" lowercase : List[str] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase : Dict = pipe.to(device) # to channels last lowercase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) lowercase : int = pipe.vae.to(memory_format=torch.channels_last) lowercase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase : Optional[int] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase : Any = torch.randn(2, 4, 64, 64) lowercase : Optional[int] = torch.rand(1) * 999 lowercase : Optional[Any] = torch.randn(2, 77, 768) lowercase : Optional[Any] = (sample, timestep, encoder_hidden_status) try: lowercase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase : Optional[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase : Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase : List[str] = 666 lowercase : Tuple = torch.Generator(device).manual_seed(seed) lowercase : Union[str, Any] = {"generator": generator} if args.steps is not None: lowercase : Dict = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase : List[str] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
42
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __lowerCAmelCase = { '''roberta-base''': 5_12, '''roberta-large''': 5_12, '''roberta-large-mnli''': 5_12, '''distilroberta-base''': 5_12, '''roberta-base-openai-detector''': 5_12, '''roberta-large-openai-detector''': 5_12, } class __a ( __UpperCamelCase ): __lowercase : Any = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['input_ids', 'attention_mask'] __lowercase : Tuple = RobertaTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: lowercase__: str = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) lowercase__: int = add_prefix_space lowercase__: Union[str, Any] = pre_tok_class(**lowerCAmelCase__ ) lowercase__: Dict = add_prefix_space lowercase__: Any = 'post_processor' lowercase__: int = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: lowercase__: List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__: List[str] = tuple(state['sep'] ) if "cls" in state: lowercase__: Optional[Any] = tuple(state['cls'] ) lowercase__: List[str] = False if state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: lowercase__: List[Any] = add_prefix_space lowercase__: Tuple = True if state.get('trim_offsets' , lowerCAmelCase__ ) != trim_offsets: lowercase__: Union[str, Any] = trim_offsets lowercase__: Dict = True if changes_to_apply: lowercase__: Union[str, Any] = getattr(lowerCAmelCase__ , state.pop('type' ) ) lowercase__: Optional[int] = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value lowercase__: Dict = value def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: Optional[Any] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: Tuple = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__: str = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Any = [self.sep_token_id] lowercase__: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
356
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCAmelCase = logging.getLogger(__name__) def snake_case_ ( snake_case , snake_case ) -> Optional[int]: lowercase__: Optional[int] = np.argmax(snake_case , axis=1 ) return np.sum(outputs == labels ) def snake_case_ ( snake_case ) -> Dict: with open(snake_case , encoding='utf_8' ) as f: lowercase__: str = csv.reader(snake_case ) lowercase__: int = [] next(snake_case ) # skip the first line for line in tqdm(snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Tuple: lowercase__: List[Any] = [] for dataset in encoded_datasets: lowercase__: Dict = len(snake_case ) lowercase__: int = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowercase__: int = np.zeros((n_batch, 2) , dtype=np.intaa ) lowercase__: Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) lowercase__: Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case ): lowercase__: List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: Union[str, Any] = with_conta lowercase__: List[Any] = with_conta lowercase__: Any = len(snake_case ) - 1 lowercase__: Dict = len(snake_case ) - 1 lowercase__: Optional[Any] = with_conta lowercase__: Tuple = with_conta lowercase__: int = mc_label lowercase__: Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case ) for t in all_inputs ) ) return tensor_datasets def snake_case_ ( ) -> Union[str, Any]: lowercase__: Optional[Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=snake_case , default='' ) parser.add_argument('--eval_dataset' , type=snake_case , default='' ) parser.add_argument('--seed' , type=snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=snake_case , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=snake_case , default=0.0_1 ) parser.add_argument('--lm_coef' , type=snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=snake_case , default=3_74 ) parser.add_argument('--server_ip' , type=snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=snake_case , default='' , help='Can be used for distant debugging.' ) lowercase__: List[str] = parser.parse_args() print(snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase__: Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowercase__: Tuple = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(snake_case , snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase__: Any = ['_start_', '_delimiter_', '_classify_'] lowercase__: Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case ) lowercase__: int = tokenizer.convert_tokens_to_ids(snake_case ) lowercase__: int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case ) ) model.to(snake_case ) # Load and encode the datasets def tokenize_and_encode(snake_case ): if isinstance(snake_case , snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case ) ) elif isinstance(snake_case , snake_case ): return obj return [tokenize_and_encode(snake_case ) for o in obj] logger.info('Encoding dataset...' ) lowercase__: Dict = load_rocstories_dataset(args.train_dataset ) lowercase__: Dict = load_rocstories_dataset(args.eval_dataset ) lowercase__: str = (train_dataset, eval_dataset) lowercase__: Any = tokenize_and_encode(snake_case ) # Compute the max input length for the Transformer lowercase__: Optional[Any] = model.config.n_positions // 2 - 2 lowercase__: Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase__: List[str] = min(snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase__: str = pre_process_datasets(snake_case , snake_case , snake_case , *snake_case ) lowercase__ , lowercase__: Optional[Any] = tensor_datasets[0], tensor_datasets[1] lowercase__: List[str] = TensorDataset(*snake_case ) lowercase__: Dict = RandomSampler(snake_case ) lowercase__: Optional[int] = DataLoader(snake_case , sampler=snake_case , batch_size=args.train_batch_size ) lowercase__: str = TensorDataset(*snake_case ) lowercase__: str = SequentialSampler(snake_case ) lowercase__: Optional[Any] = DataLoader(snake_case , sampler=snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase__: Union[str, Any] = args.max_steps lowercase__: Tuple = args.max_steps // (len(snake_case ) // args.gradient_accumulation_steps) + 1 else: lowercase__: Optional[Any] = len(snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase__: str = list(model.named_parameters() ) lowercase__: Any = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowercase__: str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowercase__: Tuple = AdamW(snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) lowercase__: Tuple = get_linear_schedule_with_warmup( snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case ) if args.do_train: lowercase__ , lowercase__ , lowercase__: int = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowercase__: str = 0 lowercase__: Optional[Any] = 0 lowercase__: List[Any] = tqdm(snake_case , desc='Training' ) for step, batch in enumerate(snake_case ): lowercase__: Union[str, Any] = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: List[Any] = batch lowercase__: List[str] = model(snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase__: Union[str, Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase__: Tuple = 'Training loss: {:.2e} lr: {:.2e}'.format(snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase__: Any = model.module if hasattr(snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase__: Tuple = os.path.join(args.output_dir , snake_case ) lowercase__: List[str] = os.path.join(args.output_dir , snake_case ) torch.save(model_to_save.state_dict() , snake_case ) model_to_save.config.to_json_file(snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase__: Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase__: Any = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case ) if args.do_eval: model.eval() lowercase__ , lowercase__: Optional[Any] = 0, 0 lowercase__ , lowercase__: List[Any] = 0, 0 for batch in tqdm(snake_case , desc='Evaluating' ): lowercase__: str = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: Union[str, Any] = batch with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ , lowercase__: Any = model( snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Dict = mc_logits.detach().cpu().numpy() lowercase__: Tuple = mc_labels.to('cpu' ).numpy() lowercase__: Dict = accuracy(snake_case , snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase__: Optional[int] = eval_loss / nb_eval_steps lowercase__: Optional[int] = eval_accuracy / nb_eval_examples lowercase__: int = tr_loss / nb_tr_steps if args.do_train else None lowercase__: Optional[Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowercase__: Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
288
0
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if height >= 1: move_tower(height - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) move_disk(_lowerCamelCase , _lowerCamelCase ) move_tower(height - 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' print("moving disk from" , _lowerCamelCase , "to" , _lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : int = int(input("Height of hanoi: " ).strip() ) move_tower(_lowerCamelCase , "A" , "B" , "C" ) if __name__ == "__main__": main()
36
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase_ ( a): def snake_case__ ( self, __a): '''simple docstring''' return 0.0 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 512 _lowerCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCAmelCase : Optional[Any] = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : str = np.abs(np.fft.fft(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = 20 * np.logaa(_lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _lowerCAmelCase : List[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_lowerCamelCase ) plt.show() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 512 _lowerCAmelCase : Optional[Any] = [1] + [0] * (size - 1) _lowerCAmelCase : str = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : Optional[Any] = np.angle(np.fft.fft(_lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_lowerCamelCase , -2 * pi ) ) plt.show()
36
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=19 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : str = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Any = seq_length UpperCamelCase : Optional[Any] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_token_type_ids UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : Dict = hidden_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : Optional[int] = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : Dict = type_vocab_size UpperCamelCase : Tuple = type_sequence_label_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : int = num_labels UpperCamelCase : List[str] = num_choices UpperCamelCase : Tuple = scope def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Union[str, Any] = None if self.use_input_mask: UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : List[str] = None UpperCamelCase : List[Any] = None if self.use_labels: UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__SCREAMING_SNAKE_CASE , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = EsmForProteinFolding(config=__SCREAMING_SNAKE_CASE ).float() model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.prepare_config_and_inputs() ( UpperCamelCase ) : List[str] = config_and_inputs UpperCamelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[Any] = False __UpperCamelCase : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () __UpperCamelCase : int = () __UpperCamelCase : Dict = {} if is_torch_available() else {} __UpperCamelCase : str = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = EsmFoldModelTester(self ) UpperCamelCase : str = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip('''Does not support attention outputs''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold only has one output format.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support input chunking.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): """simple docstring""" pass @require_torch class UpperCAmelCase_ ( _a): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCamelCase : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE )['''positions'''] UpperCamelCase : List[str] = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
366
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[Any] = "ibert" def __init__( self , __SCREAMING_SNAKE_CASE=30_522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="none" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Dict = hidden_act UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : str = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Union[str, Any] = layer_norm_eps UpperCamelCase : Dict = position_embedding_type UpperCamelCase : int = quant_mode UpperCamelCase : Any = force_dequant class UpperCAmelCase_ ( _a): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
315
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase ="▁" _lowerCamelCase =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class a_ ( a_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = BertGenerationTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def _lowerCAmelCase ( self : str ): super().setUp() SCREAMING_SNAKE_CASE =BertGenerationTokenizer(snake_case ,keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE ='<s>' SCREAMING_SNAKE_CASE =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) ,snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) ,snake_case ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'<pad>' ) self.assertEqual(len(snake_case ) ,1002 ) def _lowerCAmelCase ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =BertGenerationTokenizer(snake_case ,keep_accents=snake_case ) SCREAMING_SNAKE_CASE =tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) ,[285, 46, 10, 170, 382] ,) SCREAMING_SNAKE_CASE =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) SCREAMING_SNAKE_CASE =tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,) SCREAMING_SNAKE_CASE =tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) @cached_property def _lowerCAmelCase ( self : Union[str, Any] ): return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE ='Hello World!' SCREAMING_SNAKE_CASE =[18536, 2260, 101] self.assertListEqual(snake_case ,self.big_tokenizer.encode(snake_case ) ) @slow def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(snake_case ,self.big_tokenizer.encode(snake_case ) ) @require_torch @slow def _lowerCAmelCase ( self : Optional[int] ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence SCREAMING_SNAKE_CASE =list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE =' '.join(snake_case ) SCREAMING_SNAKE_CASE =self.big_tokenizer.encode_plus(snake_case ,return_tensors='pt' ,return_token_type_ids=snake_case ) SCREAMING_SNAKE_CASE =self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] ,return_tensors='pt' ,return_token_type_ids=snake_case ) SCREAMING_SNAKE_CASE =BertGenerationConfig() SCREAMING_SNAKE_CASE =BertGenerationEncoder(snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case ) model(**snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case ,model_name='google/bert_for_seq_generation_L-24_bbc_encoder' ,revision='c817d1fd1be2ffa69431227a1fe320544943d4db' ,)
334
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): '''simple docstring''' if gpta_config_file == "": lowerCamelCase = GPTaConfig() else: lowerCamelCase = GPTaConfig.from_json_file(lowerCamelCase__ ) lowerCamelCase = GPTaModel(lowerCamelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model lowerCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) UpperCAmelCase : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
252
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : str = logging.get_logger(__name__) a : List[str] = {'''vocab_file''': '''spiece.model'''} a : List[Any] = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } a : List[str] = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class a ( _UpperCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['input_ids', 'attention_mask'] snake_case_ = [] def __init__( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : List[Any]="<unk>" , lowercase_ : Tuple="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[int]="<pad>" , lowercase_ : int="[SEP]" , lowercase_ : str="[MASK]" , lowercase_ : Optional[int]="[CLS]" , lowercase_ : Optional[Any] = None , **lowercase_ : int , ): snake_case_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token snake_case_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token snake_case_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token snake_case_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token snake_case_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token snake_case_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def A_ ( self : Tuple ): return self.sp_model.get_piece_size() def A_ ( self : int ): snake_case_ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Optional[int] , lowercase_ : Optional[Any] ): snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : int , lowercase_ : str ): return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def A_ ( self : Optional[int] , lowercase_ : Tuple ): return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def A_ ( self : Union[str, Any] , lowercase_ : List[Any] ): snake_case_ = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def A_ ( self : List[str] , lowercase_ : int ): snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) snake_case_ = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def A_ ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : Dict = False , lowercase_ : int = None , lowercase_ : Any = True , **lowercase_ : List[Any] , ): snake_case_ = kwargs.pop('''use_source_tokenizer''' , SCREAMING_SNAKE_CASE_ ) snake_case_ = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) ) snake_case_ = [] sub_texts.append(SCREAMING_SNAKE_CASE_ ) else: current_sub_text.append(SCREAMING_SNAKE_CASE_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(SCREAMING_SNAKE_CASE_ ) ) else: snake_case_ = """""".join(SCREAMING_SNAKE_CASE_ ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(SCREAMING_SNAKE_CASE_ ) return clean_text else: return text def A_ ( self : Any , lowercase_ : List[str] , lowercase_ : Any = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,) def A_ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def A_ ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] = None , lowercase_ : Union[str, Any] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def A_ ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
355
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def A_ ( self : Tuple ): torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A_ ( self : Dict ): snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a ( unittest.TestCase ): def A_ ( self : Optional[int] ): snake_case_ = '''google/ncsnpp-church-256''' snake_case_ = UNetaDModel.from_pretrained(lowercase_ ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) snake_case_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowercase_ ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
72
0
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = MODEL_FOR_MASKED_LM_MAPPING _A : int = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case_ :Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) snake_case_ :str = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) snake_case_ :List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) snake_case_ :Any = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: snake_case_ :List[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) snake_case_ :Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case_ :Union[str, Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case_ :str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) snake_case_ :List[Any] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def lowerCAmelCase_ ( self: Any ) -> str: snake_case_ :Optional[int] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() snake_case_ :List[str] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case , snake_case ) @slow @require_torch def lowerCAmelCase_ ( self: Dict ) -> Dict: snake_case_ :Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(snake_case ) @slow @require_tf def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case_ :Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: List[Any] ) -> Union[str, Any]: snake_case_ :Optional[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case ) , [ {"""sequence""": """My name is John""", """score""": 0.0_0_8, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.0_0_7, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) snake_case_ :List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.2_5_1, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.2_1_4, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) snake_case_ :int = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.0_0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.0_0_0, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.0_0_0, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCAmelCase_ ( self: Dict ) -> Optional[int]: snake_case_ :str = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) snake_case_ :Any = None snake_case_ :Tuple = None self.run_pipeline_test(snake_case , [] ) @require_tf def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: snake_case_ :int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) snake_case_ :List[str] = None snake_case_ :List[Any] = None self.run_pipeline_test(snake_case , [] ) def lowerCAmelCase_ ( self: List[Any] , snake_case: int , snake_case: Tuple , snake_case: Optional[int] ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) snake_case_ :Union[str, Any] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :str = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def lowerCAmelCase_ ( self: Any , snake_case: Optional[Any] , snake_case: Tuple ) -> Union[str, Any]: snake_case_ :Any = fill_masker.tokenizer snake_case_ :List[Any] = fill_masker.model snake_case_ :int = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Optional[int] = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Union[str, Any] = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( snake_case , [ [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], ] , ) with self.assertRaises(snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case ): fill_masker("""This is""" ) self.run_test_top_k(snake_case , snake_case ) self.run_test_targets(snake_case , snake_case ) self.run_test_top_k_targets(snake_case , snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case , snake_case ) self.fill_mask_with_multiple_masks(snake_case , snake_case ) def lowerCAmelCase_ ( self: Any , snake_case: int , snake_case: int ) -> int: snake_case_ :List[str] = tokenizer.get_vocab() snake_case_ :Dict = sorted(vocab.keys() )[:2] # Pipeline argument snake_case_ :Any = FillMaskPipeline(model=snake_case , tokenizer=snake_case , targets=snake_case ) snake_case_ :Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , snake_case ) snake_case_ :Optional[int] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(snake_case ) ) # Call argument snake_case_ :int = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , snake_case ) snake_case_ :Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(snake_case ) ) # Score equivalence snake_case_ :Tuple = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) snake_case_ :Any = [top_mask["""token_str"""] for top_mask in outputs] snake_case_ :Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case ) == set(snake_case ): snake_case_ :Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) snake_case_ :Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) # Raises with invalid with self.assertRaises(snake_case ): snake_case_ :Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case ): snake_case_ :int = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""""""] ) with self.assertRaises(snake_case ): snake_case_ :Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="""""" ) def lowerCAmelCase_ ( self: int , snake_case: List[str] , snake_case: List[str] ) -> Union[str, Any]: snake_case_ :Union[str, Any] = FillMaskPipeline(model=snake_case , tokenizer=snake_case , top_k=2 ) snake_case_ :str = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Optional[int] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) def lowerCAmelCase_ ( self: Any , snake_case: List[str] , snake_case: List[Any] ) -> Tuple: snake_case_ :Tuple = tokenizer.get_vocab() snake_case_ :List[str] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) # top_k=2, ntargets=3 snake_case_ :List[Any] = sorted(vocab.keys() )[:3] snake_case_ :Any = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case_ :str = [el["""token_str"""] for el in sorted(snake_case , key=lambda snake_case : x["score"] , reverse=snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case ).issubset(snake_case ): snake_case_ :Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) def lowerCAmelCase_ ( self: Tuple , snake_case: Optional[int] , snake_case: Dict ) -> Tuple: snake_case_ :List[str] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Dict = tokenizer.get_vocab() # String duplicates + id duplicates snake_case_ :Optional[Any] = sorted(vocab.keys() )[:3] snake_case_ :Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case_ :str = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case ) , 3 ) def lowerCAmelCase_ ( self: str , snake_case: Optional[int] , snake_case: Dict ) -> int: snake_case_ :Union[str, Any] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Dict = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case , [ [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], ] , )
66
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __a = pd.read_csv("sample_data.csv", header=None) __a = df.shape[:1][0] # If you're using some other dataset input the target column __a = df.iloc[:, 1:2] __a = actual_data.values.reshape(len_data, 1) __a = MinMaxScaler().fit_transform(actual_data) __a = 10 __a = 5 __a = 20 __a = len_data - periods * look_back __a = actual_data[:division] __a = actual_data[division - look_back :] __a , __a = [], [] __a , __a = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __a = np.array(train_x) __a = np.array(test_x) __a = np.array([list(i.ravel()) for i in train_y]) __a = np.array([list(i.ravel()) for i in test_y]) __a = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") __a = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __a = model.predict(x_test)
66
1
"""simple docstring""" def lowercase ( a__ : int = 10 ) -> str: if not isinstance(a__ , a__ ) or n < 0: raise ValueError('''Invalid input''' ) _UpperCamelCase = 10**n _UpperCamelCase = 28433 * (pow(2 , 7830457 , a__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
54
"""simple docstring""" import qiskit def lowercase ( a__ : int = 2 ) -> qiskit.result.counts.Counts: _UpperCamelCase = qubits # Using Aer's simulator _UpperCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register _UpperCamelCase = qiskit.QuantumCircuit(a__ , a__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , a__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , a__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(a__ ) ) , list(range(a__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _UpperCamelCase = qiskit.execute(a__ , a__ , shots=1000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''BeitFeatureExtractor'''] UpperCAmelCase__ = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
0
import os from pathlib import Path def UpperCamelCase_( ) -> List[Any]: from torch.utils.cpp_extension import load UpperCAmelCase__ = Path(snake_case__ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' UpperCAmelCase__ = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , snake_case__ , with_cuda=snake_case__ , extra_include_paths=[str(snake_case__ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["ConditionalDetrFeatureExtractor"] __UpperCAmelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
from random import shuffle import tensorflow as tf from numpy import array def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = int(_SCREAMING_SNAKE_CASE ) assert noofclusters < len(_SCREAMING_SNAKE_CASE ) # Find out the dimensionality lowercase__ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase__ = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) shuffle(_SCREAMING_SNAKE_CASE ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_SCREAMING_SNAKE_CASE ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase__ = tf.placeholder('float64' , [dim] ) lowercase__ = [] for centroid in centroids: cent_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase__ = [tf.Variable(0 ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase__ = tf.placeholder('int32' ) lowercase__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase__ = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase__ = tf.reduce_mean(_SCREAMING_SNAKE_CASE , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase__ = tf.placeholder('float' , [dim] ) lowercase__ = tf.placeholder('float' , [dim] ) lowercase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase__ = tf.placeholder('float' , [noofclusters] ) lowercase__ = tf.argmin(_SCREAMING_SNAKE_CASE , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase__ = tf.initialize_all_variables() # Initialize all variables sess.run(_SCREAMING_SNAKE_CASE ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase__ = 100 for _ in range(_SCREAMING_SNAKE_CASE ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase__ = [ sess.run(_SCREAMING_SNAKE_CASE , feed_dict={va: vect, va: sess.run(_SCREAMING_SNAKE_CASE )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase__ = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_SCREAMING_SNAKE_CASE ): # Collect all the vectors assigned to this cluster lowercase__ = [ vectors[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase__ = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={mean_input: array(_SCREAMING_SNAKE_CASE )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase__ = sess.run(_SCREAMING_SNAKE_CASE ) lowercase__ = sess.run(_SCREAMING_SNAKE_CASE ) return centroids, assignments
269
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = 'xlnet' _UpperCamelCase : Optional[Any] = ['mems'] _UpperCamelCase : Union[str, Any] = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , a : int=32_000 , a : Any=1_024 , a : Optional[Any]=24 , a : str=16 , a : int=4_096 , a : List[str]="gelu" , a : Any=True , a : Dict="bi" , a : str=0.02 , a : List[str]=1E-1_2 , a : Tuple=0.1 , a : Optional[Any]=512 , a : Tuple=None , a : Union[str, Any]=True , a : int=False , a : int=False , a : Tuple=-1 , a : Any=False , a : Tuple="last" , a : List[str]=True , a : Optional[Any]="tanh" , a : List[Any]=0.1 , a : int=5 , a : List[Any]=5 , a : Optional[int]=5 , a : Dict=1 , a : Optional[Any]=2 , **a : List[Any] , )-> List[str]: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = n_layer lowercase__ = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) lowercase__ = d_model // n_head lowercase__ = ff_activation lowercase__ = d_inner lowercase__ = untie_r lowercase__ = attn_type lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = dropout lowercase__ = mem_len lowercase__ = reuse_len lowercase__ = bi_data lowercase__ = clamp_len lowercase__ = same_length lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_last_dropout lowercase__ = start_n_top lowercase__ = end_n_top lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , a , ) lowercase__ = kwargs['use_cache'] lowercase__ = use_mems_eval lowercase__ = use_mems_train super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Union[str, Any] )-> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
1
from __future__ import annotations from collections.abc import Iterator class __magic_name__ : """simple docstring""" def __init__( self :Optional[Any] , snake_case :str ): '''simple docstring''' A_ : Tuple = value A_ : Node | None = None A_ : Node | None = None class __magic_name__ : """simple docstring""" def __init__( self :Optional[int] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = tree def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Optional[int] ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self :Tuple ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
300
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCamelCase :Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def _a (self , lowercase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def _a (self ): self.enable_attention_slicing(lowercase ) @torch.no_grad() def __call__(self , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , lowercase = None , **lowercase , ): if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = 1 elif isinstance(lowercase , lowercase ): A_ : Any = len(lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowercase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase , lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowercase )}.' ) # get prompt text embeddings A_ : Optional[Any] = self.tokenizer( lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A_ : Dict = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_, A_, A_ : Tuple = text_embeddings.shape A_ : Optional[Any] = text_embeddings.repeat(1 , lowercase , 1 ) A_ : Any = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : Optional[int] = [""""""] elif type(lowercase ) is not type(lowercase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowercase )} !=' F' {type(lowercase )}.' ) elif isinstance(lowercase , lowercase ): A_ : Dict = [negative_prompt] elif batch_size != len(lowercase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowercase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: A_ : Dict = negative_prompt A_ : int = text_input_ids.shape[-1] A_ : List[Any] = self.tokenizer( lowercase , padding="""max_length""" , max_length=lowercase , truncation=lowercase , return_tensors="""pt""" , ) A_ : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Optional[Any] = uncond_embeddings.shape[1] A_ : str = uncond_embeddings.repeat(lowercase , lowercase , 1 ) A_ : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( lowercase , generator=lowercase , device="""cpu""" , dtype=lowercase ).to(self.device ) A_ : int = torch.randn(lowercase , generator=lowercase , device="""cpu""" , dtype=lowercase ).to( self.device ) else: A_ : int = torch.randn( lowercase , generator=lowercase , device=self.device , dtype=lowercase ) A_ : str = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) A_ : str = latents_reference.to(self.device ) A_ : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : Optional[int] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : int = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : Optional[int] = max(-dx , 0 ) A_ : List[str] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : Any = {} if accepts_eta: A_ : Optional[int] = eta for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Tuple = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual A_ : List[str] = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform guidance if do_classifier_free_guidance: A_, A_ : str = noise_pred.chunk(2 ) A_ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : List[str] = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase , lowercase , lowercase ) A_ : List[str] = 1 / 0.1_82_15 * latents A_ : List[str] = self.vae.decode(lowercase ).sample A_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(lowercase ) , return_tensors="""pt""" ).to( self.device ) A_, A_ : Optional[int] = self.safety_checker( images=lowercase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : Tuple = None if output_type == "pil": A_ : Tuple = self.numpy_to_pil(lowercase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
206
0
import argparse import os import re UpperCamelCase__ = "src/transformers" # Pattern that looks at the indentation in a line. UpperCamelCase__ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase__ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase__ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase__ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase__ = re.compile(r"\[([^\]]+)\]") def _UpperCamelCase (a__ :Any ): """simple docstring""" UpperCamelCase__ = _re_indent.search(a__ ) return "" if search is None else search.groups()[0] def _UpperCamelCase (a__ :List[str] , a__ :str="" , a__ :Dict=None , a__ :List[str]=None ): """simple docstring""" UpperCamelCase__ = 0 UpperCamelCase__ = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(a__ ): index += 1 UpperCamelCase__ = ["""\n""".join(lines[:index] )] else: UpperCamelCase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ = [lines[index]] index += 1 while index < len(a__ ) and (end_prompt is None or not lines[index].startswith(a__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(a__ ) ) if index < len(a__ ) - 1: UpperCamelCase__ = [lines[index + 1]] index += 1 else: UpperCamelCase__ = [] else: blocks.append("""\n""".join(a__ ) ) UpperCamelCase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a__ ) > 0: blocks.append("""\n""".join(a__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a__ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def _UpperCamelCase (a__ :Any ): """simple docstring""" def _inner(a__ :int ): return key(a__ ).lower().replace("""_""" , """""" ) return _inner def _UpperCamelCase (a__ :Tuple , a__ :Optional[Any]=None ): """simple docstring""" def noop(a__ :Optional[int] ): return x if key is None: UpperCamelCase__ = noop # Constants are all uppercase, they go first. UpperCamelCase__ = [obj for obj in objects if key(a__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ = [obj for obj in objects if key(a__ )[0].isupper() and not key(a__ ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ = [obj for obj in objects if not key(a__ )[0].isupper()] UpperCamelCase__ = ignore_underscore(a__ ) return sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) def _UpperCamelCase (a__ :str ): """simple docstring""" def _replace(a__ :List[str] ): UpperCamelCase__ = match.groups()[0] if "," not in imports: return f"""[{imports}]""" UpperCamelCase__ = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(a__ )] ) + "]" UpperCamelCase__ = import_statement.split("""\n""" ) if len(a__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ = 2 if lines[1].strip() == """[""" else 1 UpperCamelCase__ = [(i, _re_strip_line.search(a__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ = sort_objects(a__ , key=lambda a__ : x[1] ) UpperCamelCase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ = keys[:-1] UpperCamelCase__ = get_indent(lines[1] ) + """, """.join([f"""\"{k}\"""" for k in sort_objects(a__ )] ) return "\n".join(a__ ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ = _re_bracket_content.sub(_replace , a__ ) return import_statement def _UpperCamelCase (a__ :Any , a__ :str=True ): """simple docstring""" with open(a__ , encoding="""utf-8""" ) as f: UpperCamelCase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ = split_code_in_indented_blocks( a__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ = main_blocks[block_idx] UpperCamelCase__ = block.split("""\n""" ) # Get to the start of the imports. UpperCamelCase__ = 0 while line_idx < len(a__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ = len(a__ ) else: line_idx += 1 if line_idx >= len(a__ ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ = """\n""".join(block_lines[line_idx:-1] ) UpperCamelCase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ = split_code_in_indented_blocks(a__ , indent_level=a__ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ = [(pattern.search(a__ ).groups()[0] if pattern.search(a__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ = [(i, key) for i, key in enumerate(a__ ) if key is not None] UpperCamelCase__ = [x[0] for x in sorted(a__ , key=lambda a__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ = 0 UpperCamelCase__ = [] for i in range(len(a__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(a__ ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(a__ ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(a__ ) ) def _UpperCamelCase (a__ :List[str]=True ): """simple docstring""" UpperCamelCase__ = [] for root, _, files in os.walk(a__ ): if "__init__.py" in files: UpperCamelCase__ = sort_imports(os.path.join(a__ , """__init__.py""" ) , check_only=a__ ) if result: UpperCamelCase__ = [os.path.join(a__ , """__init__.py""" )] if len(a__ ) > 0: raise ValueError(f"""Would overwrite {len(a__ )} files, run `make style`.""" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") UpperCamelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
87
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCamelCase__ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCamelCase__ = "UperNetConfig" class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1 , ): super().__init__() UpperCamelCase__ = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , bias=__lowerCAmelCase , dilation=__lowerCAmelCase , ) UpperCamelCase__ = nn.BatchNormad(__lowerCAmelCase ) UpperCamelCase__ = nn.ReLU() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.conv(__lowerCAmelCase ) UpperCamelCase__ = self.batch_norm(__lowerCAmelCase ) UpperCamelCase__ = self.activation(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = [ nn.AdaptiveAvgPoolad(__lowerCAmelCase ), UperNetConvModule(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = input for layer in self.layers: UpperCamelCase__ = layer(__lowerCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = pool_scales UpperCamelCase__ = align_corners UpperCamelCase__ = in_channels UpperCamelCase__ = channels UpperCamelCase__ = [] for i, pool_scale in enumerate(__lowerCAmelCase ): UpperCamelCase__ = UperNetPyramidPoolingBlock(pool_scale=__lowerCAmelCase , in_channels=__lowerCAmelCase , channels=__lowerCAmelCase ) self.blocks.append(__lowerCAmelCase ) self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = [] for ppm in self.blocks: UpperCamelCase__ = ppm(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(__lowerCAmelCase ) return ppm_outs class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase__ = in_channels UpperCamelCase__ = config.hidden_size UpperCamelCase__ = False UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase__ = nn.ModuleList() UpperCamelCase__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase__ = UperNetConvModule(__lowerCAmelCase , self.channels , kernel_size=1 ) UpperCamelCase__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowerCAmelCase ) self.fpn_convs.append(__lowerCAmelCase ) UpperCamelCase__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = inputs[-1] UpperCamelCase__ = [x] psp_outs.extend(self.psp_modules(__lowerCAmelCase ) ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.bottleneck(__lowerCAmelCase ) return output def _lowerCamelCase ( self , __lowerCAmelCase ): # build laterals UpperCamelCase__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowerCAmelCase ) ) # build top-down path UpperCamelCase__ = len(__lowerCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = laterals[i - 1].shape[2:] UpperCamelCase__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowerCAmelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs UpperCamelCase__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.fpn_bottleneck(__lowerCAmelCase ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 3 , __lowerCAmelCase = 1 ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.auxiliary_in_channels UpperCamelCase__ = config.auxiliary_channels UpperCamelCase__ = config.auxiliary_num_convs UpperCamelCase__ = config.auxiliary_concat_input UpperCamelCase__ = in_index UpperCamelCase__ = (kernel_size // 2) * dilation UpperCamelCase__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) if self.num_convs == 0: UpperCamelCase__ = nn.Identity() else: UpperCamelCase__ = nn.Sequential(*__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=kernel_size // 2 ) UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): # just take the relevant feature maps UpperCamelCase__ = encoder_hidden_states[self.in_index] UpperCamelCase__ = self.convs(__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = UperNetConfig snake_case : List[Any] = """pixel_values""" snake_case : Optional[Any] = True def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = value UpperCamelCase__ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , _a , ) class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase ): super().__init__(__lowerCAmelCase ) UpperCamelCase__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase__ = UperNetHead(__lowerCAmelCase , in_channels=self.backbone.channels ) UpperCamelCase__ = UperNetFCNHead(__lowerCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def _lowerCamelCase ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): UpperCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase__ = self.backbone.forward_with_filtered_kwargs( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , output_attentions=__lowerCAmelCase ) UpperCamelCase__ = outputs.feature_maps UpperCamelCase__ = self.decode_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate(__lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if self.auxiliary_head is not None: UpperCamelCase__ = self.auxiliary_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss UpperCamelCase__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase__ = (logits,) + outputs[1:] else: UpperCamelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
87
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _UpperCAmelCase : def __init__( self : Optional[Any] , A : List[Any] , A : int , A : int ) -> Dict: if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowercase_ : List[Any] = img lowercase_ : Union[str, Any] = img.shape[1] lowercase_ : Dict = img.shape[0] lowercase_ : Union[str, Any] = dst_width lowercase_ : Tuple = dst_height lowercase_ : List[Any] = self.src_w / self.dst_w lowercase_ : Dict = self.src_h / self.dst_h lowercase_ : Tuple = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def A ( self : List[Any] ) -> Optional[int]: for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase_ : Optional[int] = self.img[self.get_y(A )][self.get_x(A )] def A ( self : Optional[Any] , A : int ) -> int: return int(self.ratio_x * x ) def A ( self : Any , A : int ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": __A , __A : Dict = 800, 600 __A : int = imread('''image_data/lena.jpg''', 1) __A : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
33
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , A : Any , A : Tuple=7 , A : Tuple=3 , A : Optional[Any]=30 , A : List[Any]=4_00 , A : Tuple=True , A : Dict=None , A : List[str]=True , A : Optional[int]=[0.5, 0.5, 0.5] , A : Tuple=[0.5, 0.5, 0.5] , A : List[str]=True , A : List[Any]=1 / 2_55 , A : Union[str, Any]=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase_ : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} lowercase_ : Optional[int] = parent lowercase_ : str = batch_size lowercase_ : Tuple = num_channels lowercase_ : str = min_resolution lowercase_ : Any = max_resolution lowercase_ : str = do_resize lowercase_ : Any = size lowercase_ : Optional[int] = do_normalize lowercase_ : List[str] = image_mean lowercase_ : Optional[Any] = image_std lowercase_ : int = do_rescale lowercase_ : List[str] = rescale_factor lowercase_ : int = do_pad def A ( self : Any ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self : Optional[Any] , A : int , A : int=False ) -> Tuple: if not batched: lowercase_ : Optional[int] = image_inputs[0] if isinstance(A , Image.Image ): lowercase_ , lowercase_ : int = image.size else: lowercase_ , lowercase_ : Tuple = image.shape[1], image.shape[2] if w < h: lowercase_ : int = int(self.size['''shortest_edge'''] * h / w ) lowercase_ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: lowercase_ : Optional[Any] = self.size['''shortest_edge'''] lowercase_ : Optional[int] = int(self.size['''shortest_edge'''] * w / h ) else: lowercase_ : Any = self.size['''shortest_edge'''] lowercase_ : Any = self.size['''shortest_edge'''] else: lowercase_ : Tuple = [] for image in image_inputs: lowercase_ , lowercase_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase_ : Union[str, Any] = max(A , key=lambda A : item[0] )[0] lowercase_ : Optional[Any] = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = YolosImageProcessor if is_vision_available() else None def A ( self : Optional[int] ) -> Optional[int]: lowercase_ : Optional[Any] = YolosImageProcessingTester(self ) @property def A ( self : str ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Optional[int] ) -> List[str]: lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def A ( self : Dict ) -> Tuple: lowercase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A ) lowercase_ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A ) def A ( self : Optional[int] ) -> Tuple: pass def A ( self : Tuple ) -> int: # Initialize image_processing lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowercase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ , lowercase_ : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) lowercase_ : str = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : str ) -> Any: # Initialize image_processing lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowercase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : int = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ : Optional[int] = image_processing(A , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : List[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Optional[int]: # Initialize image_processing lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowercase_ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ : Any = image_processing(A , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : List[str] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Optional[Any]: # Initialize image_processings lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Tuple = self.image_processing_class(do_resize=A , do_normalize=A , do_rescale=A ) # create random PyTorch tensors lowercase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase_ : Union[str, Any] = image_processing_a.pad(A , return_tensors='''pt''' ) lowercase_ : List[Any] = image_processing_a(A , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def A ( self : str ) -> List[Any]: # prepare image and target lowercase_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase_ : List[Any] = json.loads(f.read() ) lowercase_ : Tuple = {'''image_id''': 3_97_69, '''annotations''': target} # encode them lowercase_ : Union[str, Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase_ : List[Any] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowercase_ : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowercase_ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowercase_ : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowercase_ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowercase_ : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowercase_ : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowercase_ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowercase_ : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowercase_ : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowercase_ : Optional[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def A ( self : List[Any] ) -> Dict: # prepare image, target and masks_path lowercase_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase_ : str = json.loads(f.read() ) lowercase_ : int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} lowercase_ : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase_ : int = YolosImageProcessor(format='''coco_panoptic''' ) lowercase_ : Any = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowercase_ : Optional[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowercase_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowercase_ : List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowercase_ : str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowercase_ : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowercase_ : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowercase_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowercase_ : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowercase_ : Dict = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowercase_ : Tuple = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowercase_ : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
33
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : int = '''gpt_bigcode''' _lowercase : Optional[int] = ['''past_key_values'''] _lowercase : Dict = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=50_257 , _lowercase=1_024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
229
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = 384 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 37 _lowerCAmelCase = """gelu""" _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = 2 _lowerCAmelCase = 9 _lowerCAmelCase = 1 _lowerCAmelCase = None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertModel(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Optional[Any] = False _lowercase : Dict = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = True if hasattr(_lowercase , """use_cache""" ): _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) for model_class in self.all_model_classes: _lowerCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _lowerCAmelCase = os.path.join(_lowercase , """saved_model""" , """1""" ) _lowerCAmelCase = tf.keras.models.load_model(_lowercase ) _lowerCAmelCase = model(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = outputs["""encoder_hidden_states"""] _lowerCAmelCase = outputs["""encoder_attentions"""] else: _lowerCAmelCase = outputs["""hidden_states"""] _lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) def check_decoder_attentions_output(_lowercase ): _lowerCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase ): _lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
229
1
'''simple docstring''' import math import unittest def _A ( A__ ): """simple docstring""" assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): with self.assertRaises(lowercase__ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) ,'''Zero doesn\'t have any positive factors, primes must have exactly two.''' ,) self.assertFalse( is_prime(1 ) ,'''One only has 1 positive factor, primes must have exactly two.''' ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
104
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : """simple docstring""" def __init__( self : str ,lowercase__ : Tuple ,lowercase__ : Dict=1_3 ,lowercase__ : List[str]=3_0 ,lowercase__ : Tuple=2 ,lowercase__ : Optional[int]=3 ,lowercase__ : List[str]=True ,lowercase__ : Tuple=True ,lowercase__ : int=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : Tuple=4 ,lowercase__ : Any=3_7 ,lowercase__ : Any="gelu" ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : str=1_0 ,lowercase__ : Optional[int]=0.0_2 ,lowercase__ : Union[str, Any]=3 ,lowercase__ : Optional[int]=0.6 ,lowercase__ : List[Any]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : List[str] ): __lowercase = ViTMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Optional[Any] ): __lowercase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) __lowercase = (self.image_size // self.patch_size) ** 2 __lowercase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowercase = 1 __lowercase = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(lowercase__ ) __lowercase = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () SCREAMING_SNAKE_CASE : Dict = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ViTMAEModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ): # make masks reproducible np.random.seed(2 ) __lowercase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowercase = torch.from_numpy(lowercase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowercase = pt_noise super().check_pt_tf_models(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs[0].cpu().numpy() __lowercase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) __lowercase = model_class.from_pretrained(lowercase__ ) model.to(lowercase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) # Make sure we don't have nans __lowercase = after_outputs[0].cpu().numpy() __lowercase = 0 __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ ,1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def SCREAMING_SNAKE_CASE ( self : int ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : str ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) __lowercase = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowercase = ViTMAEConfig() __lowercase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ,noise=torch.from_numpy(lowercase__ ).to(device=lowercase__ ) ) # verify the logits __lowercase = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(lowercase__ ) ,atol=1e-4 ) )
104
1
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int ) -> list[int]: if length <= 0 or not isinstance(lowercase_ , lowercase_ ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(lowercase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
73
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase_( lowercase_ : List[str]="" ) -> str: _lowerCamelCase = tempfile.mkdtemp() return os.path.join(lowercase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = AgentAudio(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase , _lowerCamelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self ): _lowerCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 _lowerCamelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) _lowerCamelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) _lowerCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' _lowerCamelCase = Image.open(lowerCamelCase__ ) _lowerCamelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = '''Hey!''' _lowerCamelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
73
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase ={ "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =["ConvNextFeatureExtractor"] _lowerCamelCase =["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure)
334
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """efficientformer""" def __init__( self , A = [3, 2, 6, 4] , A = [4_8, 9_6, 2_2_4, 4_4_8] , A = [True, True, True, True] , A = 4_4_8 , A = 3_2 , A = 4 , A = 7 , A = 5 , A = 8 , A = 4 , A = 0.0 , A = 1_6 , A = 3 , A = 3 , A = 3 , A = 2 , A = 1 , A = 0.0 , A = 1 , A = True , A = True , A = 1e-5 , A = "gelu" , A = 0.02 , A = 1e-1_2 , A = 2_2_4 , A = 1e-0_5 , **A , ) -> None: super().__init__(**A ) snake_case : Dict = hidden_act snake_case : int = hidden_dropout_prob snake_case : Any = hidden_sizes snake_case : Optional[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : List[Any] = initializer_range snake_case : str = layer_norm_eps snake_case : Dict = patch_size snake_case : Optional[int] = num_channels snake_case : int = depths snake_case : Optional[int] = mlp_expansion_ratio snake_case : Any = downsamples snake_case : Dict = dim snake_case : Optional[int] = key_dim snake_case : Union[str, Any] = attention_ratio snake_case : Any = resolution snake_case : Dict = pool_size snake_case : Any = downsample_patch_size snake_case : Tuple = downsample_stride snake_case : Any = downsample_pad snake_case : Union[str, Any] = drop_path_rate snake_case : List[str] = num_metaad_blocks snake_case : Union[str, Any] = distillation snake_case : List[str] = use_layer_scale snake_case : int = layer_scale_init_value snake_case : Union[str, Any] = image_size snake_case : Dict = batch_norm_eps
176
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> bool: snake_case : List[str] = first_str.lower().strip() snake_case : List[str] = second_str.lower().strip() # Remove whitespace snake_case : Any = first_str.replace(""" """ ,"""""" ) snake_case : List[str] = second_str.replace(""" """ ,"""""" ) # Strings of different lengths are not anagrams if len(lowercase ) != len(lowercase ): return False # Default values for count should be 0 snake_case : defaultdict[str, int] = defaultdict(lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : List[Any] = input('Enter the first string ').strip() lowerCamelCase : Optional[int] = input('Enter the second string ').strip() lowerCamelCase : Optional[Any] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
176
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _snake_case : List[str] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _snake_case : Optional[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def lowerCAmelCase_ ( ): __snake_case : List[str] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __snake_case : List[str] = bs[:] __snake_case : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 __snake_case : Optional[int] = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = set() __snake_case : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : Union[str, Any] = char return pairs class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = ["input_ids", "attention_mask"] def __init__( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Optional[int]="<s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : str="</s>" , lowerCamelCase : str="<s>" , lowerCamelCase : Optional[int]="<unk>" , lowerCamelCase : List[str]="<pad>" , lowerCamelCase : Tuple="<mask>" , lowerCamelCase : Optional[Any]=False , **lowerCamelCase : str , ) -> List[str]: __snake_case : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __snake_case : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __snake_case : Optional[int] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __snake_case : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __snake_case : int = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __snake_case : Union[str, Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case : Optional[int] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __snake_case : Dict = json.load(lowerCamelCase ) __snake_case : Optional[Any] = {v: k for k, v in self.encoder.items()} __snake_case : Dict = errors # how to handle errors in decoding __snake_case : List[str] = bytes_to_unicode() __snake_case : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __snake_case : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] __snake_case : Dict = [tuple(merge.split() ) for merge in bpe_merges] __snake_case : Optional[int] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __snake_case : Union[str, Any] = {} __snake_case : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __snake_case ( self : Optional[int] ) -> List[str]: return len(self.encoder ) def __snake_case ( self : int ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self : Optional[Any] , lowerCamelCase : List[str] ) -> Optional[Any]: if token in self.cache: return self.cache[token] __snake_case : int = tuple(lowerCamelCase ) __snake_case : Optional[Any] = get_pairs(lowerCamelCase ) if not pairs: return token while True: __snake_case : List[Any] = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case : Tuple = bigram __snake_case : str = [] __snake_case : Any = 0 while i < len(lowerCamelCase ): try: __snake_case : Optional[int] = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case : Dict = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : Optional[int] = tuple(lowerCamelCase ) __snake_case : Tuple = new_word if len(lowerCamelCase ) == 1: break else: __snake_case : Optional[Any] = get_pairs(lowerCamelCase ) __snake_case : Union[str, Any] = " ".join(lowerCamelCase ) __snake_case : Optional[int] = word return word def __snake_case ( self : Optional[int] , lowerCamelCase : Dict ) -> List[Any]: __snake_case : Dict = [] for token in re.findall(self.pat , lowerCamelCase ): __snake_case : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def __snake_case ( self : List[str] , lowerCamelCase : List[str] ) -> Optional[int]: return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def __snake_case ( self : str , lowerCamelCase : Optional[Any] ) -> int: return self.decoder.get(lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : Any ) -> Union[str, Any]: __snake_case : int = "".join(lowerCamelCase ) __snake_case : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __snake_case ( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case : int = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __snake_case : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __snake_case : Tuple = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) __snake_case : str = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def __snake_case ( self : Optional[int] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self : List[str] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def __snake_case ( self : Any , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: __snake_case : Union[str, Any] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any]=False , **lowerCamelCase : Union[str, Any] ) -> List[str]: __snake_case : List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __snake_case : Tuple = " " + text return (text, kwargs)
123
from importlib import import_module from .logging import get_logger _snake_case : Optional[int] = get_logger(__name__) class a : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=None ) -> Any: __snake_case : Dict = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) __snake_case : int = module._original_module if isinstance(lowerCamelCase , _PatchedModuleObj ) else module class a : """simple docstring""" __UpperCAmelCase : List[Any] = [] def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=None ) -> List[Any]: __snake_case : Union[str, Any] = obj __snake_case : Dict = target __snake_case : Any = new __snake_case : List[str] = target.split("." )[0] __snake_case : Union[str, Any] = {} __snake_case : int = attrs or [] def __enter__( self : List[Any] ) -> Tuple: *__snake_case , __snake_case : int = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase ) ): try: __snake_case : Any = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __snake_case : Union[str, Any] = getattr(self.obj , lowerCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __snake_case : List[Any] = obj_attr # patch at top level setattr(self.obj , lowerCamelCase , _PatchedModuleObj(lowerCamelCase , attrs=self.attrs ) ) __snake_case : Optional[int] = getattr(self.obj , lowerCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase , lowerCamelCase , _PatchedModuleObj(getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , attrs=self.attrs ) ) __snake_case : List[Any] = getattr(lowerCamelCase , lowerCamelCase ) # finally set the target attribute setattr(lowerCamelCase , lowerCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __snake_case : Union[str, Any] = getattr(import_module(".".join(lowerCamelCase ) ) , lowerCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCamelCase ) is attr_value: __snake_case : Tuple = getattr(self.obj , lowerCamelCase ) setattr(self.obj , lowerCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __snake_case : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCamelCase , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Any , *lowerCamelCase : Any ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCamelCase , self.original.pop(lowerCamelCase ) ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: self.__enter__() self._active_patches.append(self ) def __snake_case ( self : Any ) -> List[str]: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
123
1
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=10 , lowerCAmelCase=3 , lowerCAmelCase=32 * 8 , lowerCAmelCase=32 * 8 , lowerCAmelCase=4 , lowerCAmelCase=64 , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = is_training snake_case = use_auxiliary_loss snake_case = num_queries snake_case = num_channels snake_case = min_size snake_case = max_size snake_case = num_labels snake_case = hidden_dim snake_case = hidden_dim def snake_case ( self ): """simple docstring""" snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCamelCase ) snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__UpperCamelCase ) snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__UpperCamelCase ) > 0.5 ).float() snake_case = (torch.rand((self.batch_size, self.num_labels) , device=__UpperCamelCase ) > 0.5).long() snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case ( self ): """simple docstring""" snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case = self.num_queries snake_case = self.num_labels snake_case = [1, 1, 1, 1] snake_case = self.num_channels snake_case = 64 snake_case = 1_28 snake_case = self.hidden_dim snake_case = self.hidden_dim snake_case = self.hidden_dim return config def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() snake_case = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = output.encoder_hidden_states snake_case = output.pixel_decoder_hidden_states snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCamelCase ) , config.decoder_layers ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" with torch.no_grad(): snake_case = MaskaFormerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case = model(pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase ) snake_case = model(__UpperCamelCase , output_hidden_states=__UpperCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCamelCase , __UpperCamelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = MaskaFormerForUniversalSegmentation(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() def comm_check_on_output(lowerCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case = model(pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase ) snake_case = model(__UpperCamelCase ) comm_check_on_output(__UpperCamelCase ) snake_case = model( pixel_values=__UpperCamelCase , pixel_mask=__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase ) comm_check_on_output(__UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCAmelCase : Optional[int] = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} _lowerCAmelCase : Dict = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Any = False def snake_case ( self ): """simple docstring""" snake_case = MaskaFormerModelTester(self ) snake_case = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCamelCase , **__UpperCamelCase , output_hidden_states=__UpperCamelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__UpperCamelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='Mask2Former is not a generative model' ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def snake_case ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def snake_case ( self ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__UpperCamelCase ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case = MaskaFormerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def snake_case ( self ): """simple docstring""" snake_case = (self.model_tester.min_size,) * 2 snake_case = { 'pixel_values': torch.randn((2, 3, *size) , device=__UpperCamelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=__UpperCamelCase ), 'class_labels': torch.zeros(2 , 10 , device=__UpperCamelCase ).long(), } snake_case = self.model_tester.get_config() snake_case = MaskaFormerForUniversalSegmentation(__UpperCamelCase ).to(__UpperCamelCase ) snake_case = model(**__UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCamelCase , **__UpperCamelCase , output_hidden_states=__UpperCamelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__UpperCamelCase ).to(__UpperCamelCase ) snake_case = model(**__UpperCamelCase , output_attentions=__UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def snake_case ( self ): """simple docstring""" if not self.model_tester.is_training: return snake_case = self.all_model_classes[1] snake_case = self.model_tester.prepare_config_and_inputs() snake_case = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() snake_case = model(__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase ).loss loss.backward() def snake_case ( self ): """simple docstring""" snake_case = self.all_model_classes[1] snake_case = self.model_tester.prepare_config_and_inputs() snake_case = True snake_case = True snake_case = model_class(__UpperCamelCase ).to(__UpperCamelCase ) model.train() snake_case = model(__UpperCamelCase , mask_labels=__UpperCamelCase , class_labels=__UpperCamelCase ) snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) SCREAMING_SNAKE_CASE__ = 1E-4 def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case ( self ): """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def snake_case ( self ): """simple docstring""" snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__UpperCamelCase ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) snake_case = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCamelCase , (1, 3, 3_84, 3_84) ) with torch.no_grad(): snake_case = model(**__UpperCamelCase ) snake_case = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(__UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) snake_case = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(__UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) snake_case = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(__UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def snake_case ( self ): """simple docstring""" snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__UpperCamelCase ).eval() snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) snake_case = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCamelCase , (1, 3, 3_84, 3_84) ) with torch.no_grad(): snake_case = model(**__UpperCamelCase ) # masks_queries_logits snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] snake_case = torch.tensor(__UpperCamelCase ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) # class_queries_logits snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def snake_case ( self ): """simple docstring""" snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__UpperCamelCase ).eval() snake_case = self.default_image_processor snake_case = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='pt' , ) snake_case = inputs['pixel_values'].to(__UpperCamelCase ) snake_case = [el.to(__UpperCamelCase ) for el in inputs['mask_labels']] snake_case = [el.to(__UpperCamelCase ) for el in inputs['class_labels']] with torch.no_grad(): snake_case = model(**__UpperCamelCase ) self.assertTrue(outputs.loss is not None )
150
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 0.9 ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Optional[int] = size if size is not None else {'shortest_edge': 224} lowercase_ : Union[str, Any] = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : Optional[int] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : List[str] = do_resize lowercase_ : List[Any] = size lowercase_ : int = crop_pct lowercase_ : Dict = resample lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : List[Any] = do_rescale lowercase_ : Tuple = rescale_factor lowercase_ : Tuple = do_normalize lowercase_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Any = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: lowercase_ : Union[str, Any] = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase_ : Tuple = int(size['height'] / crop_pct ) else: lowercase_ : Dict = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) lowercase_ : int = get_resize_output_image_size(__UpperCamelCase ,size=__UpperCamelCase ,default_to_square=__UpperCamelCase ) else: if "shortest_edge" in size: lowercase_ : Optional[int] = get_resize_output_image_size(__UpperCamelCase ,size=size['shortest_edge'] ,default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: lowercase_ : Dict = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) return resize(__UpperCamelCase ,size=__UpperCamelCase ,resample=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : List[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCamelCase ,size=(size['height'], size['width']) ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> str: '''simple docstring''' return rescale(__UpperCamelCase ,scale=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct lowercase_ : List[str] = resample if resample is not None else self.resample lowercase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Tuple = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : List[str] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : str = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase_ : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: lowercase_ : str = [self.resize(image=__UpperCamelCase ,size=__UpperCamelCase ,crop_pct=__UpperCamelCase ,resample=__UpperCamelCase ) for image in images] if do_center_crop: lowercase_ : str = [self.center_crop(image=__UpperCamelCase ,size=__UpperCamelCase ) for image in images] if do_rescale: lowercase_ : Any = [self.rescale(image=__UpperCamelCase ,scale=__UpperCamelCase ) for image in images] if do_normalize: lowercase_ : int = [self.normalize(image=__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ) for image in images] lowercase_ : Dict = [to_channel_dimension_format(__UpperCamelCase ,__UpperCamelCase ) for image in images] lowercase_ : Any = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase )
213
0
from collections.abc import Sequence def __lowercase ( __lowerCAmelCase : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) a__ = nums[0] for i in range(1 , len(__lowerCAmelCase ) ): a__ = nums[i] a__ = max(__lowerCAmelCase , ans + num , __lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user snake_case : Optional[int] = int(input('''Enter number of elements : ''').strip()) snake_case : Dict = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
109
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = MvpTokenizer UpperCAmelCase__ : List[Any] = MvpTokenizerFast UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Tuple = filter_roberta_detectors def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: super().setUp() a__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a__ = {'unk_token': '<unk>'} a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowerCamelCase__( self :Optional[Any] ,**__snake_case :Tuple ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__snake_case ) def lowerCamelCase__( self :Optional[Any] ,**__snake_case :Dict ) -> Dict: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def lowerCamelCase__( self :Tuple ) -> Optional[int]: return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def lowerCamelCase__( self :Optional[int] ) -> str: return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def lowerCamelCase__( self :Optional[int] ) -> str: a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] a__ = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(__snake_case ,max_length=len(__snake_case ) ,padding=__snake_case ,return_tensors='pt' ) self.assertIsInstance(__snake_case ,__snake_case ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) a__ = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case ,__snake_case ) # Test that special tokens are reset @require_torch def lowerCamelCase__( self :Union[str, Any] ) -> List[Any]: a__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(__snake_case ,padding=__snake_case ,return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' ,__snake_case ) self.assertIn('attention_mask' ,__snake_case ) self.assertNotIn('labels' ,__snake_case ) self.assertNotIn('decoder_attention_mask' ,__snake_case ) @require_torch def lowerCamelCase__( self :Any ) -> int: a__ = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(text_target=__snake_case ,max_length=32 ,padding='max_length' ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) @require_torch def lowerCamelCase__( self :int ) -> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] ,padding=__snake_case ,truncation=__snake_case ,return_tensors='pt' ) self.assertIsInstance(__snake_case ,__snake_case ) self.assertEqual(batch.input_ids.shape ,(2, 10_24) ) @require_torch def lowerCamelCase__( self :List[Any] ) -> Any: a__ = ['A long paragraph for summarization.'] a__ = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ = tokenizer(__snake_case ,text_target=__snake_case ,return_tensors='pt' ) a__ = inputs['input_ids'] a__ = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase__( self :Union[str, Any] ) -> Tuple: pass def lowerCamelCase__( self :Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a__ = self.rust_tokenizer_class.from_pretrained(__snake_case ,**__snake_case ) a__ = self.tokenizer_class.from_pretrained(__snake_case ,**__snake_case ) a__ = 'A, <mask> AllenNLP sentence.' a__ = tokenizer_r.encode_plus(__snake_case ,add_special_tokens=__snake_case ,return_token_type_ids=__snake_case ) a__ = tokenizer_p.encode_plus(__snake_case ,add_special_tokens=__snake_case ,return_token_type_ids=__snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) a__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) a__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __snake_case ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __snake_case ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
109
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] ='''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' SCREAMING_SNAKE_CASE__ : Dict =Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return image def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =[] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =val def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : str ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE__ : Tuple =state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) SCREAMING_SNAKE_CASE__ : int =state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict SCREAMING_SNAKE_CASE__ : str =torch.cat((q_bias, torch.zeros_like(UpperCamelCase__, requires_grad=UpperCamelCase__ ), v_bias) ) SCREAMING_SNAKE_CASE__ : List[Any] =qkv_bias def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =3_6_4 if '''coco''' in model_name else 2_2_4 SCREAMING_SNAKE_CASE__ : int =InstructBlipVisionConfig(image_size=UpperCamelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: SCREAMING_SNAKE_CASE__ : str =TaConfig.from_pretrained('''google/flan-t5-xl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE__ : Any =TaConfig.from_pretrained('''google/flan-t5-xxl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: SCREAMING_SNAKE_CASE__ : str =LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''', vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] =LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''', vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() SCREAMING_SNAKE_CASE__ : Tuple =InstructBlipConfig(vision_config=UpperCamelCase__, text_config=UpperCamelCase__, qformer_config=UpperCamelCase__ ) return config, image_size @torch.no_grad() def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Tuple=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =AutoTokenizer.from_pretrained('''bert-base-uncased''', truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] =TaTokenizerFast.from_pretrained('''google/flan-t5-xl''', truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) SCREAMING_SNAKE_CASE__ : int =LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''', truncation_side='''left''', bos_token='''</s>''', unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =get_blipa_config(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =InstructBlipForConditionalGeneration(UpperCamelCase__ ).eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] ={ '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =model_name_to_original[model_name] # load original model print('''Loading original model...''' ) SCREAMING_SNAKE_CASE__ : Dict ='''cuda:1''' if torch.cuda.is_available() else '''cpu''' SCREAMING_SNAKE_CASE__ : Optional[int] ='''cuda:2''' if torch.cuda.is_available() else '''cpu''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =load_model_and_preprocess( name=UpperCamelCase__, model_type=UpperCamelCase__, is_eval=UpperCamelCase__, device=UpperCamelCase__ ) original_model.eval() print('''Done!''' ) # update state dict keys SCREAMING_SNAKE_CASE__ : Any =original_model.state_dict() SCREAMING_SNAKE_CASE__ : List[Any] =create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict.pop(UpperCamelCase__ ) if key.startswith('''Qformer.bert''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] =key.replace('''Qformer.bert''', '''qformer''' ) if "attention.self" in key: SCREAMING_SNAKE_CASE__ : Dict =key.replace('''self''', '''attention''' ) if "llm_proj" in key: SCREAMING_SNAKE_CASE__ : Any =key.replace('''llm_proj''', '''language_projection''' ) if "t5_proj" in key: SCREAMING_SNAKE_CASE__ : Tuple =key.replace('''t5_proj''', '''language_projection''' ) if key.startswith('''llm_model''' ): SCREAMING_SNAKE_CASE__ : int =key.replace('''llm_model''', '''language_model''' ) if key.startswith('''t5''' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =key.replace('''t5''', '''language''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =val # read in qv biases read_in_q_v_bias(UpperCamelCase__, UpperCamelCase__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =load_demo_image() SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''What is unusual about this image?''' # create processor SCREAMING_SNAKE_CASE__ : List[Any] =BlipImageProcessor( size={'''height''': image_size, '''width''': image_size}, image_mean=UpperCamelCase__, image_std=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] =InstructBlipProcessor( image_processor=UpperCamelCase__, tokenizer=UpperCamelCase__, qformer_tokenizer=UpperCamelCase__, ) SCREAMING_SNAKE_CASE__ : List[Any] =processor(images=UpperCamelCase__, text=UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # make sure processor creates exact same pixel values SCREAMING_SNAKE_CASE__ : int =vis_processors['''eval'''](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ), UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) hf_model.to(UpperCamelCase__ ) with torch.no_grad(): if "vicuna" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] =original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits SCREAMING_SNAKE_CASE__ : Tuple =hf_model(**UpperCamelCase__ ).logits else: SCREAMING_SNAKE_CASE__ : Tuple =original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits SCREAMING_SNAKE_CASE__ : int =tokenizer('''\n''', return_tensors='''pt''' ).input_ids.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] =label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -1_0_0 ) SCREAMING_SNAKE_CASE__ : Optional[int] =hf_model(**UpperCamelCase__, labels=UpperCamelCase__ ).logits print('''First values of original logits:''', original_logits[0, :3, :3] ) print('''First values of HF logits:''', logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape SCREAMING_SNAKE_CASE__ : Tuple =1e-4 if '''vicuna''' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ), UpperCamelCase__, atol=UpperCamelCase__ ) print('''Looks ok!''' ) print('''Generating with original model...''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt}, num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) SCREAMING_SNAKE_CASE__ : Tuple =hf_model.generate( **UpperCamelCase__, do_sample=UpperCamelCase__, num_beams=5, max_length=2_5_6, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? SCREAMING_SNAKE_CASE__ : List[Any] =2 print('''Original generation:''', UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] =processor.batch_decode(UpperCamelCase__, skip_special_tokens=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[text.strip() for text in output_text] print('''HF generation:''', UpperCamelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if push_to_hub: processor.push_to_hub(f"Salesforce/{model_name}" ) hf_model.push_to_hub(f"Salesforce/{model_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
152
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""input_features""", """attention_mask"""] def __init__( self : Tuple , __lowercase : Optional[int]=80 , __lowercase : Optional[int]=1_60_00 , __lowercase : str=80 , __lowercase : Dict=0.0 , __lowercase : int=True , __lowercase : List[Any]=True , __lowercase : List[Any]=True , **__lowercase : int , ) -> int: super().__init__(feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =num_mel_bins SCREAMING_SNAKE_CASE__ : Optional[Any] =do_ceptral_normalize SCREAMING_SNAKE_CASE__ : List[str] =normalize_means SCREAMING_SNAKE_CASE__ : Optional[int] =normalize_vars SCREAMING_SNAKE_CASE__ : Tuple =True def __magic_name__ ( self : Tuple , __lowercase : np.ndarray , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Any =waveform * (2**15) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.from_numpy(__lowercase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] =ta_kaldi.fbank(__lowercase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __magic_name__ ( __lowercase : np.ndarray , __lowercase : int , __lowercase : Optional[bool] = True , __lowercase : Optional[bool] = True , __lowercase : float = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: SCREAMING_SNAKE_CASE__ : str =x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.subtract(__lowercase , __lowercase ) if normalize_vars: SCREAMING_SNAKE_CASE__ : Tuple =x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.divide(__lowercase , __lowercase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ : Tuple =padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ : str =x.astype(np.floataa ) return x def __magic_name__ ( self : Optional[int] , __lowercase : List[np.ndarray] , __lowercase : Optional[np.ndarray] = None ) -> List[np.ndarray]: SCREAMING_SNAKE_CASE__ : int =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowercase , __lowercase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowercase , __lowercase ) ] def __call__( self : int , __lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowercase : Union[bool, str, PaddingStrategy] = False , __lowercase : Optional[int] = None , __lowercase : bool = False , __lowercase : Optional[int] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Optional[int] = None , __lowercase : Optional[bool] = None , **__lowercase : str , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE__ : List[str] =isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE__ : str =is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ : Optional[Any] =[np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): SCREAMING_SNAKE_CASE__ : int =np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ : Tuple =raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ : List[str] =[raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ : Tuple =[self._extract_fbank_features(__lowercase ) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ : Optional[int] =BatchFeature({'''input_features''': features} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.pad( __lowercase , padding=__lowercase , max_length=__lowercase , truncation=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ : Optional[Any] =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __lowercase ): SCREAMING_SNAKE_CASE__ : Any =[np.asarray(__lowercase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ : Dict =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ : str =[np.asarray(__lowercase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE__ : str =( np.array(__lowercase , dtype=np.intaa ) if self._get_padding_strategies(__lowercase , max_length=__lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE__ : int =self.normalize( padded_inputs['''input_features'''] , attention_mask=__lowercase ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ : Dict =padded_inputs.convert_to_tensors(__lowercase ) return padded_inputs
152
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCAmelCase = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def _lowerCamelCase( lowercase__ = "dhaka" , lowercase__ = 5 ) -> int: '''simple docstring''' __lowercase= min(lowercase__ , 5_0 ) # Prevent abuse! __lowercase= { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } __lowercase= requests.get('https://www.google.com/search' , params=lowercase__ , headers=lowercase__ ) __lowercase= BeautifulSoup(html.text , 'html.parser' ) __lowercase= ''.join( re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) __lowercase= json.dumps(lowercase__ ) __lowercase= json.loads(lowercase__ ) __lowercase= re.findall( R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , lowercase__ , ) if not matched_google_image_data: return 0 __lowercase= re.sub( R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(lowercase__ ) , ) __lowercase= re.findall( R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , lowercase__ , ) for index, fixed_full_res_image in enumerate(lowercase__ ): if index >= max_images: return index __lowercase= bytes(lowercase__ , 'ascii' ).decode( 'unicode-escape' ) __lowercase= bytes(lowercase__ , 'ascii' ).decode( 'unicode-escape' ) __lowercase= urllib.request.build_opener() __lowercase= [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(lowercase__ ) __lowercase= F'query_{query.replace(" " , "_" )}' if not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) urllib.request.urlretrieve( # noqa: S310 lowercase__ , F'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: lowerCAmelCase = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
352
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _a ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) AutoTokenizer.from_pretrained(UpperCAmelCase ).save_pretrained(UpperCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
142
def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
142
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = "megatron-bert" def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[Any]=29056 , lowerCAmelCase : Tuple=1024 , lowerCAmelCase : Tuple=24 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Any=4096 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Dict=1E-12 , lowerCAmelCase : Any=0 , lowerCAmelCase : Any="absolute" , lowerCAmelCase : Tuple=True , **lowerCAmelCase : Optional[Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
91
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase__: __magic_name__ : List[str] __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="Translation" , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self : Union[str, Any] )-> str: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def a__( self : int )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCamelCase__: __magic_name__ : Optional[List] = None __magic_name__ : Optional[int] = None __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase , repr=lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase = len(self.languages ) if self.languages else None def __call__( self : int )-> Optional[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def a__( self : Optional[int] , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = set(self.languages ) if self.languages and set(lowerCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase , UpperCAmelCase = zip(*sorted(lowerCAmelCase ) ) return {"language": languages, "translation": translations} def a__( self : Any )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
91
1