code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __lowerCamelCase ( __UpperCamelCase ) -> List[Any]: """simple docstring""" return EnvironmentCommand() class __lowerCamelCase ( A__ ): '''simple docstring''' @staticmethod def lowerCamelCase ( a_ : ArgumentParser ): lowerCAmelCase_ : Dict = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = huggingface_hub.__version__ lowerCAmelCase_ : str = "not installed" lowerCAmelCase_ : str = "NA" if is_torch_available(): import torch lowerCAmelCase_ : Any = torch.__version__ lowerCAmelCase_ : Dict = torch.cuda.is_available() lowerCAmelCase_ : Dict = "not installed" if is_transformers_available(): import transformers lowerCAmelCase_ : Union[str, Any] = transformers.__version__ lowerCAmelCase_ : Optional[int] = "not installed" if is_accelerate_available(): import accelerate lowerCAmelCase_ : Optional[Any] = accelerate.__version__ lowerCAmelCase_ : int = "not installed" if is_xformers_available(): import xformers lowerCAmelCase_ : Any = xformers.__version__ lowerCAmelCase_ : Optional[int] = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def lowerCamelCase ( a_ : Any ): return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
241
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""CLIPFeatureExtractor"""] lowercase__ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
1
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> List[str]: lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std def __snake_case ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Dict = DPTImageProcessor if is_vision_available() else None def __snake_case ( self ) -> List[Any]: lowerCAmelCase = DPTImageProcessingTester(self ) @property def __snake_case ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """image_mean""" ) ) self.assertTrue(hasattr(A_ , """image_std""" ) ) self.assertTrue(hasattr(A_ , """do_normalize""" ) ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """size""" ) ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __snake_case ( self ) -> str: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __snake_case ( self ) -> int: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
351
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '▁' UpperCAmelCase = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } UpperCAmelCase = { 'facebook/m2m100_418M': 1024, } # fmt: off UpperCAmelCase = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : int = ["input_ids", "attention_mask"] UpperCAmelCase : List[int] = [] UpperCAmelCase : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase = language_codes lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] lowerCAmelCase = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} lowerCAmelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) lowerCAmelCase = vocab_file lowerCAmelCase = load_json(A_ ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} lowerCAmelCase = spm_file lowerCAmelCase = load_spm(A_ , self.sp_model_kwargs ) lowerCAmelCase = len(self.encoder ) lowerCAmelCase = { self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } lowerCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} lowerCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} lowerCAmelCase = src_lang if src_lang is not None else """en""" lowerCAmelCase = tgt_lang lowerCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowerCAmelCase = num_madeup_words @property def __snake_case ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def __snake_case ( self ) -> str: return self._src_lang @src_lang.setter def __snake_case ( self , A_ ) -> None: lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __snake_case ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def __snake_case ( self , A_ ) -> Any: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def __snake_case ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def __snake_case ( self , A_ ) -> List[str]: lowerCAmelCase = [] lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token lowerCAmelCase = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def __snake_case ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) lowerCAmelCase = [1] * len(self.prefix_tokens ) lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def __snake_case ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __snake_case ( self ) -> Dict: lowerCAmelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , A_ ) -> None: lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def __snake_case ( self , A_ , A_ = None ) -> Tuple[str]: lowerCAmelCase = Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) lowerCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) lowerCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def __snake_case ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: lowerCAmelCase = src_lang lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase = src_lang lowerCAmelCase = self(A_ , add_special_tokens=A_ , **A_ ) lowerCAmelCase = self.get_lang_id(A_ ) lowerCAmelCase = tgt_lang_id return inputs def __snake_case ( self ) -> Any: self.set_src_lang_special_tokens(self.src_lang ) def __snake_case ( self ) -> Optional[int]: self.set_tgt_lang_special_tokens(self.tgt_lang ) def __snake_case ( self , A_ ) -> None: lowerCAmelCase = self.get_lang_token(A_ ) lowerCAmelCase = self.lang_token_to_id[lang_token] lowerCAmelCase = [self.cur_lang_id] lowerCAmelCase = [self.eos_token_id] def __snake_case ( self , A_ ) -> None: lowerCAmelCase = self.get_lang_token(A_ ) lowerCAmelCase = self.lang_token_to_id[lang_token] lowerCAmelCase = [self.cur_lang_id] lowerCAmelCase = [self.eos_token_id] def __snake_case ( self , A_ ) -> str: return self.lang_code_to_token[lang] def __snake_case ( self , A_ ) -> int: lowerCAmelCase = self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" lowerCAmelCase = sentencepiece.SentencePieceProcessor(**_SCREAMING_SNAKE_CASE ) spm.Load(str(_SCREAMING_SNAKE_CASE ) ) return spm def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> Union[Dict, List]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=2 )
187
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
264
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ = logging.get_logger('transformers.models.encodec') lowercase__ = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } lowercase__ = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } lowercase__ = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } lowercase__ = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } lowercase__ = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ = [] lowercase__ = [] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: for attribute in key.split('.' ): a__: str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: a__: List[str] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: a__: Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__: str = value elif weight_type == "weight_g": a__: int = value elif weight_type == "weight_v": a__: Tuple = value elif weight_type == "bias": a__: Dict = value elif weight_type == "running_mean": a__: Any = value elif weight_type == "running_var": a__: Tuple = value elif weight_type == "num_batches_tracked": a__: List[str] = value elif weight_type == "weight_ih_l0": a__: List[Any] = value elif weight_type == "weight_hh_l0": a__: List[Any] = value elif weight_type == "bias_ih_l0": a__: List[Any] = value elif weight_type == "bias_hh_l0": a__: List[Any] = value elif weight_type == "weight_ih_l1": a__: int = value elif weight_type == "weight_hh_l1": a__: str = value elif weight_type == "bias_ih_l1": a__: Union[str, Any] = value elif weight_type == "bias_hh_l1": a__: Any = value else: a__: Union[str, Any] = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__: Optional[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": a__: Optional[int] = MAPPING_24K elif model_name == "encodec_48khz": a__: List[Any] = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(F'{name} was ignored' ) continue a__: int = False for key, mapped_key in MAPPING.items(): if "*" in key: a__ , a__: str = key.split('.*.' ) if prefix in name and suffix in name: a__: List[str] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue a__: List[str] = True if "*" in mapped_key: a__: List[str] = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] a__: str = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: a__: int = 'weight_g' elif "weight_v" in name: a__: Dict = 'weight_v' elif "weight_ih_l0" in name: a__: int = 'weight_ih_l0' elif "weight_hh_l0" in name: a__: Union[str, Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: a__: Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: a__: Optional[int] = 'bias_hh_l0' elif "weight_ih_l1" in name: a__: Dict = 'weight_ih_l1' elif "weight_hh_l1" in name: a__: Optional[Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: a__: List[str] = 'bias_ih_l1' elif "bias_hh_l1" in name: a__: Optional[Any] = 'bias_hh_l1' elif "bias" in name: a__: List[str] = 'bias' elif "weight" in name: a__: Any = 'weight' elif "running_mean" in name: a__: Dict = 'running_mean' elif "running_var" in name: a__: Dict = 'running_var' elif "num_batches_tracked" in name: a__: Dict = 'num_batches_tracked' else: a__: List[str] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->int: if config_path is not None: a__: Dict = EncodecConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: a__: Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": a__: Any = [8, 5, 4, 4] a__: List[str] = [2.2] a__: List[Any] = 64 a__: Dict = 32000 a__: Union[str, Any] = 2048 a__: Union[str, Any] = False a__: Any = False a__: Optional[Any] = False elif model_name == "encodec_48khz": a__: Optional[int] = [8, 5, 4, 2] a__: Union[str, Any] = [3.0, 6.0, 12.0, 24.0] a__: List[str] = 48000 a__: Tuple = 2 a__: Optional[Any] = False a__: Optional[int] = 'time_group_norm' a__: Union[str, Any] = True a__: Dict = 1.0 a__: str = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) a__: Optional[int] = EncodecModel(_SCREAMING_SNAKE_CASE ) a__: List[str] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) a__: int = torch.load(_SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights a__: str = original_checkpoint['best_state'] recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowercase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
290
0
import copy import re class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 'hp' lowerCAmelCase__ = {} lowerCAmelCase__ = None @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = prefix lowerCamelCase_ = defaults cls.build_naming_info() @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: if len(lowercase ) == 0: return "" lowerCamelCase_ = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowercase ) + 1 ): lowerCamelCase_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCamelCase_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowercase ): lowerCamelCase_ = "" while integer != 0: lowerCamelCase_ = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s lowerCamelCase_ = 0 while True: lowerCamelCase_ = word + "#" + int_to_alphabetic(lowercase ) if sword in info["reverse_short_word"]: continue else: lowerCamelCase_ = sword break lowerCamelCase_ = short_word lowerCamelCase_ = word return short_word @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> int: lowerCamelCase_ = param_name.split("_" ) lowerCamelCase_ = [TrialShortNamer.shortname_for_word(lowercase , lowercase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCamelCase_ = ["", "_"] for separator in separators: lowerCamelCase_ = separator.join(lowercase ) if shortname not in info["reverse_short_param"]: lowerCamelCase_ = shortname lowerCamelCase_ = param_name return shortname return param_name @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase ) -> Optional[Any]: lowerCamelCase_ = TrialShortNamer.shortname_for_key(lowercase , lowercase ) lowerCamelCase_ = short_name lowerCamelCase_ = param_name @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> Dict: if cls.NAMING_INFO is not None: return lowerCamelCase_ = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } lowerCamelCase_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowercase , lowercase ) lowerCamelCase_ = info @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> Optional[int]: cls.build_naming_info() assert cls.PREFIX is not None lowerCamelCase_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCamelCase_ = cls.NAMING_INFO["short_param"][k] if isinstance(lowercase , lowercase ): lowerCamelCase_ = 1 if v else 0 lowerCamelCase_ = "" if isinstance(lowercase , (int, float) ) else "-" lowerCamelCase_ = f'{key}{sep}{v}' name.append(lowercase ) return "_".join(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase ) -> List[Any]: lowerCamelCase_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCamelCase_ = [] else: lowerCamelCase_ = repr.split("_" ) lowerCamelCase_ = {} for value in values: if "-" in value: lowerCamelCase_ , lowerCamelCase_ = value.split("-" ) else: lowerCamelCase_ = re.sub("[0-9.]" , "" , lowercase ) lowerCamelCase_ = float(re.sub("[^0-9.]" , "" , lowercase ) ) lowerCamelCase_ = cls.NAMING_INFO["reverse_short_param"][p_k] lowerCamelCase_ = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCamelCase_ = cls.DEFAULTS[k] return parameters
47
from sklearn.metrics import recall_score import datasets __A =''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __A =''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __A =''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase=1 , lowercase="binary" , lowercase=None , lowercase="warn" , ) -> Optional[int]: lowerCamelCase_ = recall_score( lowercase , lowercase , labels=lowercase , pos_label=lowercase , average=lowercase , sample_weight=lowercase , zero_division=lowercase , ) return {"recall": float(lowercase ) if score.size == 1 else score}
47
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } a_ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off a_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__( self : List[Any] , a : Optional[Any]=None , a : Optional[int]=None , a : Optional[int]="<s>" , a : Dict="</s>" , a : int="</s>" , a : Any="<s>" , a : List[str]="<unk>" , a : Any="<pad>" , a : List[str]="<mask>" , a : Optional[int]=None , a : Optional[int]=None , a : List[Any]=None , **a : Tuple , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( vocab_file=a , tokenizer_file=a , bos_token=a , eos_token=a , sep_token=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , src_lang=a , tgt_lang=a , additional_special_tokens=a , **a , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) SCREAMING_SNAKE_CASE : str = { lang_code: self.convert_tokens_to_ids(a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : Any = src_lang if src_lang is not None else "en_XX" SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def __UpperCamelCase ( self : List[Any] , a : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : List[str] , a : Optional[Any] , a : str , a : Optional[str] , a : Optional[str] , **a : Optional[Any] ) -> str: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[Any] = self(a , add_special_tokens=a , return_tensors=a , **a ) SCREAMING_SNAKE_CASE : List[Any] = self.convert_tokens_to_ids(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase ( self : Any , a : List[str] , a : str = "en_XX" , a : Optional[List[str]] = None , a : str = "ro_RO" , **a : Tuple , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : Any = tgt_lang return super().prepare_seqaseq_batch(a , a , **a ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self : Any , a : Optional[Any] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(a ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[int] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : str = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : int = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase ( self : str , a : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.convert_tokens_to_ids(a ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase ( self : str , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return SCREAMING_SNAKE_CASE : str = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
76
from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = data SCREAMING_SNAKE_CASE : int = None def __repr__( self : str ) -> str: """simple docstring""" return F"Node({self.data})" class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = None def __iter__( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self : str ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return "->".join([str(a ) for item in self] ) def __getitem__( self : List[Any] , a : int ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Tuple , a : int , a : Any ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) SCREAMING_SNAKE_CASE : str = self.head for _ in range(a ): SCREAMING_SNAKE_CASE : str = current.next SCREAMING_SNAKE_CASE : Any = data def __UpperCamelCase ( self : List[str] , a : Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , a ) def __UpperCamelCase ( self : Union[str, Any] , a : Any ) -> None: """simple docstring""" self.insert_nth(0 , a ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Any ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) SCREAMING_SNAKE_CASE : Any = Node(a ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Optional[int] = self.head # link new_node to head SCREAMING_SNAKE_CASE : List[Any] = new_node else: SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Optional[int] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next SCREAMING_SNAKE_CASE : int = new_node def __UpperCamelCase ( self : Optional[int] ) -> None: # print every node data """simple docstring""" print(self ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" return self.delete_nth(0 ) def __UpperCamelCase ( self : Any ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __UpperCamelCase ( self : List[str] , a : int = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) SCREAMING_SNAKE_CASE : Tuple = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next.next return delete_node.data def __UpperCamelCase ( self : List[Any] ) -> bool: """simple docstring""" return self.head is None def __UpperCamelCase ( self : Optional[int] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : str = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Any = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : List[Any] = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : Any = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : str = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : Optional[Any] = prev def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(_a) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(_a) == i linked_list.insert_nth(_a , i + 1) assert str(_a) == "->".join(str(_a) for i in range(1 , 11)) linked_list.insert_head(0) linked_list.insert_tail(11) assert str(_a) == "->".join(str(_a) for i in range(0 , 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(_a) == 9 assert str(_a) == "->".join(str(_a) for i in range(1 , 10)) assert all(linked_list[i] == i + 1 for i in range(0 , 9)) is True for i in range(0 , 9): SCREAMING_SNAKE_CASE : str = -i assert all(linked_list[i] == -i for i in range(0 , 9)) is True linked_list.reverse() assert str(_a) == "->".join(str(_a) for i in range(-8 , 1)) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[Any] = [ -9, 100, Node(77345112), "dlrow olleH", 7, 5555, 0, -192.5_5555, "Hello, world!", 77.9, Node(10), None, None, 12.20, ] SCREAMING_SNAKE_CASE : List[Any] = LinkedList() for i in test_input: linked_list.insert_tail(_a) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_a) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : List[Any] = linked_list.delete_head() assert result == -9 assert ( str(_a) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Any = linked_list.delete_tail() assert result == 12.2 assert ( str(_a) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : Any = linked_list.delete_nth(10) assert result is None assert ( str(_a) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!")) assert ( str(_a) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_a) assert ( str(_a) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_a) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase__ ( ): from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() linked_list.insert_head(input("Inserting 1st at head ").strip()) linked_list.insert_head(input("Inserting 2nd at head ").strip()) print("\nPrint list:") linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail ").strip()) linked_list.insert_tail(input("Inserting 2nd at tail ").strip()) print("\nPrint list:") linked_list.print_list() print("\nDelete head") linked_list.delete_head() print("Delete tail") linked_list.delete_tail() print("\nPrint list:") linked_list.print_list() print("\nReverse linked list") linked_list.reverse() print("\nPrint list:") linked_list.print_list() print("\nString representation of linked list:") print(_a) print("\nReading/changing Node data using indexing:") print(f"Element at Position 1: {linked_list[1]}") SCREAMING_SNAKE_CASE : Dict = input("Enter New Value: ").strip() print("New list:") print(_a) print(f"length of linked_list is : {len(_a)}") if __name__ == "__main__": main()
76
1
"""simple docstring""" import os from collections.abc import Iterator def UpperCAmelCase__ ( lowerCAmelCase__ :str = "." ) -> str: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(lowerCAmelCase__ ): lowercase = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowerCAmelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ).lstrip("""./""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' return f'{i * " "}*' if i else "\n##" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> str: '''simple docstring''' lowercase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowerCAmelCase__ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(lowerCAmelCase__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def UpperCAmelCase__ ( lowerCAmelCase__ :str = "." ) -> Optional[int]: '''simple docstring''' lowercase = """""" for filepath in sorted(good_file_paths(lowerCAmelCase__ ) ): lowercase = os.path.split(lowerCAmelCase__ ) if filepath != old_path: lowercase = print_path(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase = f'{filepath}/{filename}'.replace(""" """ , """%20""" ) lowercase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'{md_prefix(lowerCAmelCase__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(""".""")
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" A = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") A = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(UpperCAmelCase ): os.makedirs(UpperCAmelCase ) A = model.state_dict() def to_tf_var_name(UpperCAmelCase ): for patt, repl in iter(UpperCAmelCase ): A = name.replace(UpperCAmelCase , UpperCAmelCase ) return f"""bert/{name}""" def create_tf_var(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): A = tf.dtypes.as_dtype(tensor.dtype ) A = tf.get_variable(dtype=UpperCAmelCase , shape=tensor.shape , name=UpperCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: A = to_tf_var_name(UpperCAmelCase ) A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): A = torch_tensor.T A = create_tf_var(tensor=UpperCAmelCase , name=UpperCAmelCase , session=UpperCAmelCase ) tf.keras.backend.set_value(UpperCAmelCase , UpperCAmelCase ) A = session.run(UpperCAmelCase ) print(f"""Successfully created {tf_name}: {np.allclose(UpperCAmelCase , UpperCAmelCase )}""" ) A = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase , os.path.join(UpperCAmelCase , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def __a ( UpperCAmelCase=None ) ->Union[str, Any]: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=UpperCAmelCase , required=UpperCAmelCase , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=UpperCAmelCase , required=UpperCAmelCase , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=UpperCAmelCase , required=UpperCAmelCase , help="""Directory in which to save tensorflow model""" ) A = parser.parse_args(UpperCAmelCase ) A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
258
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __a ( UpperCAmelCase ) ->Tuple: # picklable for multiprocessing """simple docstring""" return x.sum() def __a ( UpperCAmelCase ) ->int: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : Tuple ): A = {} A = [] A = 1 A = [1, 2] A = {"""a""": 1, """b""": 2} A = {"""a""": [1, 2], """b""": [3, 4]} A = {"""a""": {"""1""": 1}, """b""": 2} A = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} A = {} A = [] A = 2 A = [2, 3] A = {"""a""": 2, """b""": 3} A = {"""a""": [2, 3], """b""": [4, 5]} A = {"""a""": {"""1""": 2}, """b""": 3} A = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) A = 2 self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) A = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} A = {"""a""": 2, """b""": 0, """c""": 2} A = { """a""": np.eye(2 ).astype(_lowerCAmelCase ), """b""": np.zeros(3 ).astype(_lowerCAmelCase ), """c""": np.ones(2 ).astype(_lowerCAmelCase ), } self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCAmelCase ): # can't pickle a local lambda map_nested(lambda _lowerCAmelCase : x + 1 , _lowerCAmelCase , num_proc=_lowerCAmelCase ) def A (self : List[Any] ): A = {"""a""": 1, """b""": 2} A = {"""a""": 3, """b""": 4} A = {"""a""": 5, """b""": 6} A = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) , _lowerCAmelCase ) def A (self : Union[str, Any] ): class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = '''bar''' A = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(_lowerCAmelCase , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: A = {f"""{i}""": i for i in range(UpperCAmelCase )} A = map_nested(lambda UpperCAmelCase : x + 10 , UpperCAmelCase , num_proc=UpperCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __UpperCAmelCase ( A__ ): '''simple docstring''' @require_tf def A (self : Dict ): import tensorflow as tf from tensorflow.keras import layers A = layers.Dense(2 ) def gen_random_output(): A = tf.random.uniform((1, 3) ) return model(_lowerCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=_lowerCAmelCase ): A = gen_random_output() with temp_seed(42 , set_tensorflow=_lowerCAmelCase ): A = gen_random_output() A = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A (self : Tuple ): import torch def gen_random_output(): A = torch.nn.Linear(3 , 2 ) A = torch.rand(1 , 3 ) return model(_lowerCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowerCAmelCase ): A = gen_random_output() with temp_seed(42 , set_pytorch=_lowerCAmelCase ): A = gen_random_output() A = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A (self : str ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A = gen_random_output() with temp_seed(42 ): A = gen_random_output() A = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" A = NestedDataStructure(UpperCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" A = NestedDataStructure(UpperCAmelCase ).flatten() assert output == expected_output def __a ( ) ->Optional[Any]: """simple docstring""" A = A(x=1 , y="""foobar""" ) A = {"""x""": 1, """y""": """foobar"""} assert asdict(UpperCAmelCase ) == expected_output A = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} A = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(UpperCAmelCase ) == expected_output with pytest.raises(UpperCAmelCase ): asdict([1, A(x=10 , y="""foo""" )] ) def __a ( UpperCAmelCase ) ->Tuple: """simple docstring""" return text.split() def __a ( UpperCAmelCase ) ->List[str]: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __a ( ) ->Optional[int]: """simple docstring""" with Pool(2 ) as pool: A = list(iflatmap_unordered(UpperCAmelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(UpperCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A = list(iflatmap_unordered(UpperCAmelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(UpperCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A = [] for yield_time, content in iflatmap_unordered( UpperCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCAmelCase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(UpperCAmelCase ) == 4
258
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase_ = (3, 9, -11, 0, 7, 5, 1, -1) lowercase_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 class A : """simple docstring""" def __init__( self : List[str],lowercase_ : Iterable[int] )-> None: '''simple docstring''' A__ = None for i in sorted(lowercase_,reverse=lowercase_ ): A__ = Node(lowercase_,self.head ) def __iter__( self : List[str] )-> Iterator[int]: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next_node def __len__( self : str )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Optional[int] )-> str: '''simple docstring''' return " -> ".join([str(lowercase_ ) for node in self] ) def _snake_case( SCREAMING_SNAKE_CASE__ : SortedLinkedList , SCREAMING_SNAKE_CASE__ : SortedLinkedList ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(SCREAMING_SNAKE_CASE__ ) + list(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
361
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 3 A__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
282
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = VideoClassificationPipeline(model=UpperCamelCase__ , image_processor=UpperCamelCase__ , top_k=2 ) UpperCamelCase = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def A ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): """simple docstring""" for example in examples: UpperCamelCase = video_classifier(UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {'score': ANY(UpperCamelCase__ ), 'label': ANY(UpperCamelCase__ )}, {'score': ANY(UpperCamelCase__ ), 'label': ANY(UpperCamelCase__ )}, ] , ) @require_torch def A ( self : Any ): """simple docstring""" UpperCamelCase = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCamelCase = VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0} ) UpperCamelCase = pipeline( 'video-classification' , model=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , frame_sampling_rate=4 ) UpperCamelCase = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = video_classifier(UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}] , ) UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], ] , ) @require_tf def A ( self : List[Any] ): """simple docstring""" pass
28
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : List[str] = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """informer""" _SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : str = "student_t" , SCREAMING_SNAKE_CASE_ : str = "nll" , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : List[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : int = 6_4 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : str = "gelu" , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : int = 1_0_0 , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str = "prob" , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : int , ): # time series specific configuration lowerCAmelCase_ : Dict = prediction_length lowerCAmelCase_ : List[str] = context_length or prediction_length lowerCAmelCase_ : List[Any] = distribution_output lowerCAmelCase_ : int = loss lowerCAmelCase_ : Optional[int] = input_size lowerCAmelCase_ : Tuple = num_time_features lowerCAmelCase_ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ : int = scaling lowerCAmelCase_ : List[Any] = num_dynamic_real_features lowerCAmelCase_ : Union[str, Any] = num_static_real_features lowerCAmelCase_ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : str = cardinality else: lowerCAmelCase_ : Any = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : Optional[int] = embedding_dimension else: lowerCAmelCase_ : Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase_ : Optional[int] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase_ : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase_ : Any = d_model lowerCAmelCase_ : Union[str, Any] = encoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_attention_heads lowerCAmelCase_ : Any = encoder_ffn_dim lowerCAmelCase_ : List[str] = decoder_ffn_dim lowerCAmelCase_ : Optional[Any] = encoder_layers lowerCAmelCase_ : Tuple = decoder_layers lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : Dict = attention_dropout lowerCAmelCase_ : int = activation_dropout lowerCAmelCase_ : Dict = encoder_layerdrop lowerCAmelCase_ : str = decoder_layerdrop lowerCAmelCase_ : Union[str, Any] = activation_function lowerCAmelCase_ : Union[str, Any] = init_std lowerCAmelCase_ : Union[str, Any] = use_cache # Informer lowerCAmelCase_ : Optional[int] = attention_type lowerCAmelCase_ : Any = sampling_factor lowerCAmelCase_ : int = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
224
0
from __future__ import annotations import numpy as np def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' return np.maximum(0 , _A ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
355
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case = 25_60_47 __snake_case = 25_61_45 @require_sentencepiece @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : int =NllbTokenizer A__ : Optional[int] =NllbTokenizerFast A__ : Union[str, Any] =True A__ : Dict =True A__ : Tuple ={} def A_ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = NllbTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = NllbTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ = tokenizer_r.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch def A_ ( self : Tuple ): if not self.test_seqaseq: return SCREAMING_SNAKE_CASE__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. SCREAMING_SNAKE_CASE__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: SCREAMING_SNAKE_CASE__ = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase_ , tgt_texts=UpperCAmelCase_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified SCREAMING_SNAKE_CASE__ = tokenizer.prepare_seqaseq_batch( UpperCAmelCase_ , tgt_texts=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) SCREAMING_SNAKE_CASE__ = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase_ , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , UpperCAmelCase_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def A_ ( self : List[Any] ): pass def A_ ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE__ = [AddedToken('<special>' , lstrip=UpperCAmelCase_ )] SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode('Hey this is a <special> token' ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode('<special>' , add_special_tokens=UpperCAmelCase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode('Hey this is a <special> token' ) SCREAMING_SNAKE_CASE__ = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): A__ : List[Any] ="""facebook/nllb-200-distilled-600M""" A__ : Tuple =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] A__ : Optional[Any] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] A__ : Optional[int] =[ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def A_ ( cls : Tuple ): SCREAMING_SNAKE_CASE__ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) SCREAMING_SNAKE_CASE__ = 1 return cls def A_ ( self : int ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 256057 ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def A_ ( self : Dict ): self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE__ = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [256203, 3] ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = NllbTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = targets['input_ids'] SCREAMING_SNAKE_CASE__ = shift_tokens_right( UpperCAmelCase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # A, test, EOS, en_XX 'input_ids': [[256047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 256057, } , ) @require_torch def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
169
0
def A ( _lowercase ): if n == 1 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def A ( _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : int = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE : int = len(str(fibonacci(SCREAMING_SNAKE_CASE__ ) ) ) return index def A ( _lowercase = 1_000 ): return fibonacci_digits_index(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
182
import pytest __UpperCAmelCase : Optional[Any] = "__dummy_dataset1__" __UpperCAmelCase : List[str] = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A__ ( ) -> Optional[int]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A__ ( ) -> Tuple: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Tuple: __snake_case: List[Any] = dataset_loading_script_name __snake_case: Any = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE__) __snake_case: int = script_dir / F'''{script_name}.py''' with open(SCREAMING_SNAKE_CASE__ , """w""") as f: f.write(SCREAMING_SNAKE_CASE__) return str(SCREAMING_SNAKE_CASE__)
111
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __UpperCamelCase : List[str] = 'hf-internal-testing/tiny-random-bert' __UpperCamelCase : int = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') __UpperCamelCase : List[str] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class lowercase__ ( unittest.TestCase): def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , '''refs''' , '''main''' ) ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''snapshots''' , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE : Union[str, Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE : List[Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision='''9b8c223''' ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''snapshots''' , UpperCamelCase__ , UpperCamelCase__ ) ) def __A ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , '''is not a valid model identifier''' ): SCREAMING_SNAKE_CASE : Optional[int] = cached_file('''tiny-random-bert''' , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , '''is not a valid git identifier''' ): SCREAMING_SNAKE_CASE : Tuple = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision='''aaaa''' ) with self.assertRaisesRegex(UpperCamelCase__ , '''does not appear to have a file named''' ): SCREAMING_SNAKE_CASE : str = cached_file(UpperCamelCase__ , '''conf''' ) def __A ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , '''does not appear to have a file named''' ): SCREAMING_SNAKE_CASE : Any = cached_file(UpperCamelCase__ , '''conf''' ) with open(os.path.join(UpperCamelCase__ , '''refs''' , '''main''' ) ) as f: SCREAMING_SNAKE_CASE : str = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''.no_exist''' , UpperCamelCase__ , '''conf''' ) ) ) SCREAMING_SNAKE_CASE : int = cached_file(UpperCamelCase__ , '''conf''' , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = cached_file(UpperCamelCase__ , '''conf''' , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = mock.Mock() SCREAMING_SNAKE_CASE : str = 500 SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Optional[int] = HTTPError SCREAMING_SNAKE_CASE : Dict = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase__ ) as mock_head: SCREAMING_SNAKE_CASE : str = cached_file(UpperCamelCase__ , '''conf''' , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def __A ( self : Any ): '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase__ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase__ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase__ ) ) def __A ( self : Dict ): '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , UpperCamelCase__ , revision='''ahaha''' ) SCREAMING_SNAKE_CASE : Any = get_file_from_repo('''bert-base-cased''' , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE : List[Any] = json.loads(open(UpperCamelCase__ , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def __A ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[int] = Path(UpperCamelCase__ ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , '''a.txt''' ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , '''b.txt''' ) )
258
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]="resnet50" , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE : List[Any] = stage_names SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : Optional[int] = backbone SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = is_training def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values def __A ( self : List[Any] ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = (TimmBackbone,) if is_torch_available() else () UpperCamelCase_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''resnet18''' SCREAMING_SNAKE_CASE : str = '''microsoft/resnet-18''' SCREAMING_SNAKE_CASE : Dict = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(UpperCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(UpperCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : Any ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self : int ): '''simple docstring''' pass def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Any = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE : Any = self.all_model_classes[0] SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE : Any = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(**UpperCamelCase__ )
258
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Dict = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class a__ ( __snake_case ): A__ : List[Any] = 'bert' def __init__( self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> int: super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class a__ ( __snake_case ): @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __a = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
197
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ : Dict = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
1
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = "x", lowerCamelCase = 1_0**-1_0, lowerCamelCase = 1, ): __lowerCAmelCase = symbols(lowerCamelCase) __lowerCAmelCase = lambdify(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = lambdify(lowerCamelCase, diff(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = starting_point while True: if diff_function(lowerCamelCase) != 0: __lowerCAmelCase = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError('''Could not find root''') from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess __lowerCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f"""{newton_raphson('exp(x) - 1', 1_0, precision=0.0_05)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
174
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
1
def lowerCAmelCase_ (lowerCAmelCase__: Tuple = 1_0_0 ): """simple docstring""" UpperCAmelCase_: Optional[int] = (n * (n + 1) // 2) ** 2 UpperCAmelCase_: Optional[int] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
358
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets a : Dict = datasets.logging.get_logger(__name__) a : Any = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' a : int = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' a : List[Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Dict=False , lowerCAmelCase__: List[Any]=False , lowerCAmelCase__: Any=True , lowerCAmelCase__: Union[str, Any]=False , lowerCAmelCase__: List[Any]="dummy_doc" ): """simple docstring""" UpperCAmelCase_: str = {doc: key_lines} UpperCAmelCase_: str = {doc: sys_lines} UpperCAmelCase_: Optional[Any] = {} UpperCAmelCase_: Optional[int] = 0 UpperCAmelCase_: Optional[Any] = 0 UpperCAmelCase_: str = 0 UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Union[str, Any] = 0 UpperCAmelCase_ , UpperCAmelCase_: List[str] = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_: List[str] = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: Any = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_: Tuple = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase_ , UpperCAmelCase_: str = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase_: Tuple = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: Dict , lowerCAmelCase__: int , lowerCAmelCase__: Any , lowerCAmelCase__: Optional[int] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Tuple = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Any = {} UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Optional[Any] = 0 for name, metric in metrics: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: UpperCAmelCase_: List[str] = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Dict = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: UpperCAmelCase_: Any = line.split()[5] if not parse_col == "-": UpperCAmelCase_: List[str] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def __snake_case (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ), codebase_urls=["""https://github.com/ns-moosavi/coval"""], reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ], ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> int: UpperCAmelCase_: Tuple = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: UpperCAmelCase_: str = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE_ ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase_: Tuple = evaluate( key_lines=SCREAMING_SNAKE_CASE_, sys_lines=SCREAMING_SNAKE_CASE_, metrics=SCREAMING_SNAKE_CASE_, NP_only=SCREAMING_SNAKE_CASE_, remove_nested=SCREAMING_SNAKE_CASE_, keep_singletons=SCREAMING_SNAKE_CASE_, min_span=SCREAMING_SNAKE_CASE_, ) return score
82
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[str] = '''perceiver''' def __init__(self , __magic_name__=256 , __magic_name__=1280 , __magic_name__=768 , __magic_name__=1 , __magic_name__=26 , __magic_name__=8 , __magic_name__=8 , __magic_name__=None , __magic_name__=None , __magic_name__="kv" , __magic_name__=1 , __magic_name__=1 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=True , __magic_name__=262 , __magic_name__=2048 , __magic_name__=56 , __magic_name__=[368, 496] , __magic_name__=16 , __magic_name__=1920 , __magic_name__=16 , __magic_name__=[1, 16, 224, 224] , **__magic_name__ , ) -> Any: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : Union[str, Any] = num_latents snake_case_ : Union[str, Any] = d_latents snake_case_ : Union[str, Any] = d_model snake_case_ : str = num_blocks snake_case_ : Optional[int] = num_self_attends_per_block snake_case_ : Optional[int] = num_self_attention_heads snake_case_ : Optional[int] = num_cross_attention_heads snake_case_ : Dict = qk_channels snake_case_ : Optional[Any] = v_channels snake_case_ : Tuple = cross_attention_shape_for_attention snake_case_ : Union[str, Any] = self_attention_widening_factor snake_case_ : Optional[int] = cross_attention_widening_factor snake_case_ : Dict = hidden_act snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : str = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : List[Any] = use_query_residual # masked language modeling attributes snake_case_ : int = vocab_size snake_case_ : List[Any] = max_position_embeddings # image classification attributes snake_case_ : Tuple = image_size # flow attributes snake_case_ : Any = train_size # multimodal autoencoding attributes snake_case_ : Any = num_frames snake_case_ : Optional[Any] = audio_samples_per_frame snake_case_ : Any = samples_per_patch snake_case_ : Optional[Any] = output_shape class __lowerCAmelCase ( _a ): @property def lowerCamelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def lowerCamelCase (self ) -> float: '''simple docstring''' return 1e-4 def lowerCamelCase (self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 3 , __magic_name__ = 40 , __magic_name__ = 40 , ) -> Mapping[str, Any]: '''simple docstring''' if isinstance(__magic_name__ , __magic_name__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ : Tuple = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ : Any = preprocessor.num_special_tokens_to_add(__magic_name__ ) snake_case_ : Dict = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence snake_case_ : Tuple = [''' '''.join(['''a'''] ) * seq_length] * batch_size snake_case_ : str = dict(preprocessor(__magic_name__ , return_tensors=__magic_name__ ) ) snake_case_ : Optional[Any] = inputs.pop('''input_ids''' ) return inputs elif isinstance(__magic_name__ , __magic_name__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ : Dict = compute_effective_axis_dimension(__magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch ) snake_case_ : str = self._generate_dummy_images(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) snake_case_ : List[Any] = dict(preprocessor(images=__magic_name__ , return_tensors=__magic_name__ ) ) snake_case_ : Dict = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
279
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : str = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : List[str] = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Tuple = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : Tuple = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : List[Any] = os.path.basename(_UpperCamelCase ) snake_case_ : Any = url.split('''/''' )[-2] snake_case_ : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : Dict = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : Any = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : str = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : int = original_checkpoint['''dims'''] snake_case_ : List[str] = original_checkpoint['''model_state_dict'''] snake_case_ : str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : Optional[int] = True snake_case_ : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : Union[str, Any] = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class a ( __lowerCamelCase ): __lowerCAmelCase : Tuple = """mra""" def __init__( self :int ,__lowercase :Union[str, Any]=5_0_2_6_5 ,__lowercase :Dict=7_6_8 ,__lowercase :int=1_2 ,__lowercase :Any=1_2 ,__lowercase :Union[str, Any]=3_0_7_2 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :str=0.1 ,__lowercase :Dict=0.1 ,__lowercase :List[str]=5_1_2 ,__lowercase :Optional[int]=1 ,__lowercase :Optional[Any]=0.02 ,__lowercase :int=1e-5 ,__lowercase :int="absolute" ,__lowercase :Optional[Any]=4 ,__lowercase :Tuple="full" ,__lowercase :Optional[Any]=0 ,__lowercase :Optional[Any]=0 ,__lowercase :Union[str, Any]=1 ,__lowercase :List[str]=0 ,__lowercase :List[str]=2 ,**__lowercase :Any ,): super().__init__(pad_token_id=__lowercase ,bos_token_id=__lowercase ,eos_token_id=__lowercase ,**__lowercase ) snake_case__ : List[Any] = vocab_size snake_case__ : int = max_position_embeddings snake_case__ : str = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : Any = initializer_range snake_case__ : Optional[int] = type_vocab_size snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : Tuple = position_embedding_type snake_case__ : List[str] = block_per_row snake_case__ : str = approx_mode snake_case__ : List[str] = initial_prior_first_n_blocks snake_case__ : List[Any] = initial_prior_diagonal_n_blocks
44
import argparse from collections import defaultdict def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : str = f.readlines() snake_case__ : List[str] = f"""class {class_name}(""" snake_case__ : Any = f"""{4 * ' '}def {test_name}(""" snake_case__ : Optional[int] = f"""{8 * ' '}{correct_line.split()[0]}""" snake_case__ : List[str] = f"""{16 * ' '}{correct_line.split()[0]}""" snake_case__ : Any = False snake_case__ : Optional[int] = False snake_case__ : Optional[Any] = False snake_case__ : int = False snake_case__ : Union[str, Any] = 0 snake_case__ : str = 0 snake_case__ : Union[str, Any] = [] for line in lines: if line.startswith(__lowerCAmelCase ): snake_case__ : Optional[Any] = True elif in_class and line.startswith(__lowerCAmelCase ): snake_case__ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCAmelCase ) or line.startswith(__lowerCAmelCase )): snake_case__ : int = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: snake_case__ : Tuple = True if in_class and in_func and in_line: if ")" not in line: continue else: snake_case__ : List[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) snake_case__ : Optional[int] = False else: new_lines.append(__lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' ) as f: for line in new_lines: f.write(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Dict: """simple docstring""" if fail is not None: with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : Optional[int] = {l.strip() for l in f.readlines()} else: snake_case__ : Tuple = None with open(__lowerCAmelCase , '''r''' ) as f: snake_case__ : Optional[int] = f.readlines() snake_case__ : Tuple = defaultdict(__lowerCAmelCase ) for line in correct_lines: snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) A__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
44
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) set_seed(770) _snake_case = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } _snake_case = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } _snake_case = os.path.dirname(os.path.abspath(__file__)) _snake_case = os.path.join(os.path.expanduser('~'), '.cache') _snake_case = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def _A ( snake_case , snake_case=False ) -> str: _lowercase : Dict = model_type if use_small: key += "_small" return os.path.join(a__ , REMOTE_MODEL_PATHS[key]["file_name"] ) def _A ( snake_case , snake_case ) -> Dict: os.makedirs(a__ , exist_ok=a__ ) hf_hub_download(repo_id=a__ , filename=a__ , local_dir=a__ ) def _A ( snake_case , snake_case , snake_case=False , snake_case="text" ) -> Tuple: if model_type == "text": _lowercase : Optional[int] = BarkSemanticModel _lowercase : int = BarkSemanticConfig _lowercase : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": _lowercase : Tuple = BarkCoarseModel _lowercase : List[str] = BarkCoarseConfig _lowercase : List[Any] = BarkCoarseGenerationConfig elif model_type == "fine": _lowercase : int = BarkFineModel _lowercase : Any = BarkFineConfig _lowercase : List[str] = BarkFineGenerationConfig else: raise NotImplementedError() _lowercase : Any = F'''{model_type}_small''' if use_small else model_type _lowercase : Optional[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a__ ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["repo_id"] , model_info["file_name"] ) _lowercase : Dict = torch.load(a__ , map_location=a__ ) # this is a hack _lowercase : Optional[int] = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: _lowercase : List[Any] = model_args["""vocab_size"""] _lowercase : Dict = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _lowercase : List[str] = model_args.pop("n_head" ) _lowercase : str = model_args.pop("n_embd" ) _lowercase : int = model_args.pop("n_layer" ) _lowercase : Union[str, Any] = ConfigClass(**checkpoint["model_args"] ) _lowercase : Optional[int] = ModelClass(config=a__ ) _lowercase : int = GenerationConfigClass() _lowercase : Optional[Any] = model_generation_config _lowercase : Optional[Any] = checkpoint["""model"""] # fixup checkpoint _lowercase : Tuple = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(a__ ): # replace part of the key with corresponding layer name in HF implementation _lowercase : List[str] = k[len(a__ ) :] for old_layer_name in new_layer_name_dict: _lowercase : Tuple = new_k.replace(a__ , new_layer_name_dict[old_layer_name] ) _lowercase : Optional[Any] = state_dict.pop(a__ ) _lowercase : int = set(state_dict.keys() ) - set(model.state_dict().keys() ) _lowercase : Any = {k for k in extra_keys if not k.endswith(".attn.bias" )} _lowercase : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _lowercase : Optional[Any] = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(a__ ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(a__ ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(a__ , strict=a__ ) _lowercase : Tuple = model.num_parameters(exclude_embeddings=a__ ) _lowercase : int = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(a__ , 3 )} loss''' ) model.eval() model.to(a__ ) del checkpoint, state_dict return model def _A ( snake_case , snake_case=False , snake_case="text" ) -> int: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _lowercase : int = """cpu""" # do conversion on cpu _lowercase : List[Any] = _get_ckpt_path(a__ , use_small=a__ ) _lowercase : List[str] = _load_model(a__ , a__ , model_type=a__ , use_small=a__ ) # load bark initial model _lowercase : Dict = _bark_load_model(a__ , "cpu" , model_type=a__ , use_small=a__ ) if model_type == "text": _lowercase : Optional[int] = bark_model["""model"""] if model.num_parameters(exclude_embeddings=a__ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model _lowercase : int = 5 _lowercase : Optional[int] = 10 if model_type in ["text", "coarse"]: _lowercase : Dict = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) _lowercase : str = bark_model(a__ )[0] _lowercase : int = model(a__ ) # take last logits _lowercase : Tuple = output_new_model_total.logits[:, [-1], :] else: _lowercase : Optional[int] = 3 _lowercase : Optional[int] = 8 _lowercase : Union[str, Any] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _lowercase : Tuple = model(a__ , a__ ) _lowercase : Optional[Any] = bark_model(a__ , a__ ) _lowercase : Union[str, Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) def _A ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> str: _lowercase : int = os.path.join(a__ , a__ ) _lowercase : str = BarkSemanticConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) _lowercase : Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) _lowercase : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) _lowercase : Any = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) _lowercase : List[str] = BarkSemanticModel.from_pretrained(a__ ) _lowercase : Optional[int] = BarkCoarseModel.from_pretrained(a__ ) _lowercase : Any = BarkFineModel.from_pretrained(a__ ) _lowercase : Optional[int] = EncodecModel.from_pretrained("facebook/encodec_24khz" ) _lowercase : Union[str, Any] = BarkConfig.from_sub_model_configs( a__ , a__ , a__ , a__ ) _lowercase : Optional[int] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _lowercase : List[Any] = BarkModel(a__ ) _lowercase : Dict = semantic _lowercase : List[str] = coarseAcoustic _lowercase : int = fineAcoustic _lowercase : Tuple = codec _lowercase : Any = bark_generation_config Path(a__ ).mkdir(exist_ok=a__ ) bark.save_pretrained(a__ , repo_id=a__ , push_to_hub=a__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') _snake_case = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
250
# Algorithm for the pigeonhole sorting def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[Any] = min(a__) # min() finds the minimum value a_ : List[str] = max(a__) # max() finds the maximum value a_ : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size a_ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(a__ , a__), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. a_ : Tuple = 0 for count in range(a__): while holes[count] > 0: holes[count] -= 1 a_ : Optional[Any] = count + min_val i += 1 def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a__) print("""Sorted order is:""" , """ """.join(a__)) if __name__ == "__main__": main()
248
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCAmelCase = pytest.mark.integration @require_faiss class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(lowerCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: import faiss lowerCAmelCase__ = self._create_dummy_dataset() lowerCAmelCase__ = dset.map( lambda lowerCamelCase_ , lowerCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ) lowerCAmelCase__ = dset.add_faiss_index('''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: import faiss lowerCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: import faiss lowerCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(lowerCamelCase_ , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: from elasticsearch import Elasticsearch lowerCAmelCase__ = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowerCAmelCase__ = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} lowerCAmelCase__ = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: import faiss lowerCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase__ = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase__ = 1 lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase__ = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase__ , lowerCAmelCase__ = index.search_batch(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search_batch , queries[0] ) lowerCAmelCase__ = [scores[0] for scores in total_scores] lowerCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: import faiss lowerCAmelCase__ = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase__ = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: import faiss lowerCAmelCase__ = faiss.IndexFlat(5 ) lowerCAmelCase__ = FaissIndex(custom_index=lowerCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: import faiss lowerCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase__ = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase__ = 1 lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _snake_case ( A ) -> Tuple: import faiss lowerCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase__ = '''index.faiss''' lowerCAmelCase__ = F"""mock://{index_name}""" index.save(A , storage_options=mockfs.storage_options ) lowerCAmelCase__ = FaissIndex.load(A , storage_options=mockfs.storage_options ) lowerCAmelCase__ = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase__ = 1 lowerCAmelCase__ , lowerCAmelCase__ = index.search(A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowerCAmelCase__ = Elasticsearch() lowerCAmelCase__ = {'''acknowledged''': True} lowerCAmelCase__ = ElasticSearchIndex(es_client=lowerCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query lowerCAmelCase__ = '''foo''' lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase__ = '''foo''' lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase__ = ['''foo''', '''bar''', '''foobar'''] lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search_batch(lowerCamelCase_ ) lowerCAmelCase__ = [scores[0] for scores in total_scores] lowerCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ ) # batched queries with timeout lowerCAmelCase__ = ['''foo''', '''bar''', '''foobar'''] lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search_batch(lowerCamelCase_ , request_timeout=30 ) lowerCAmelCase__ = [scores[0] for scores in total_scores] lowerCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ )
364
'''simple docstring''' from collections.abc import Iterable from typing import Any class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ = None ) -> List[str]: lowerCAmelCase__ = value lowerCAmelCase__ = None # Added in order to delete a node easier lowerCAmelCase__ = None lowerCAmelCase__ = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ = None ) -> Union[str, Any]: lowerCAmelCase__ = root def __str__( self ) -> str: return str(self.root ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if new_children is not None: # reset its kids lowerCAmelCase__ = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCamelCase_ ): # If it is the right children lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __SCREAMING_SNAKE_CASE ( self ) -> bool: return self.root is None def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = Node(lowerCamelCase_ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ = new_node # set its root else: # Tree is not empty lowerCAmelCase__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ = new_node break else: lowerCAmelCase__ = parent_node.right lowerCAmelCase__ = parent_node def __SCREAMING_SNAKE_CASE ( self , *lowerCamelCase_ ) -> None: for value in values: self.__insert(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ = node.left if value < node.value else node.right return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None ) -> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ = node.right return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None ) -> Node | None: if node is None: lowerCAmelCase__ = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ = self.root while node.left is not None: lowerCAmelCase__ = node.left return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = self.search(lowerCamelCase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCamelCase_ , lowerCamelCase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCamelCase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCamelCase_ , node.left ) else: lowerCAmelCase__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if node: self.inorder(lowerCamelCase_ , node.left ) arr.append(node.value ) self.inorder(lowerCamelCase_ , node.right ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = [] self.inorder(lowerCamelCase_ , lowerCamelCase_ ) # append all values to list using inorder traversal return arr[k - 1] def _snake_case ( A ) -> list[Node]: lowerCAmelCase__ = [] if curr_node is not None: lowerCAmelCase__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _snake_case ( ) -> None: lowerCAmelCase__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ = BinarySearchTree() for i in testlist: t.insert(A ) # Prints all the elements of the list in order traversal print(A ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(A ) print(A ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
228
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int=0 ): """simple docstring""" lowercase_ : Union[str, Any] = [] for old_item in old_list: lowercase_ : Optional[Any] = old_item.replace('''in_layers.0''' , '''norm1''' ) lowercase_ : Dict = new_item.replace('''in_layers.2''' , '''conv1''' ) lowercase_ : int = new_item.replace('''out_layers.0''' , '''norm2''' ) lowercase_ : Union[str, Any] = new_item.replace('''out_layers.3''' , '''conv2''' ) lowercase_ : List[Any] = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) lowercase_ : int = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) lowercase_ : Union[str, Any] = shave_segments(__SCREAMING_SNAKE_CASE , n_shave_prefix_segments=__SCREAMING_SNAKE_CASE ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=0 ): """simple docstring""" lowercase_ : List[Any] = [] for old_item in old_list: lowercase_ : Union[str, Any] = old_item lowercase_ : Optional[Any] = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) lowercase_ : List[str] = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) lowercase_ : Tuple = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) lowercase_ : List[Any] = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) lowercase_ : Tuple = shave_segments(__SCREAMING_SNAKE_CASE , n_shave_prefix_segments=__SCREAMING_SNAKE_CASE ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase_ : Tuple = old_checkpoint[path] lowercase_ : str = old_tensor.shape[0] // 3 lowercase_ : List[str] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase_ : List[Any] = old_tensor.shape[0] // config['''num_head_channels'''] // 3 lowercase_ : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = old_tensor.split(channels // num_heads , dim=1 ) lowercase_ : Tuple = query.reshape(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = key.reshape(__SCREAMING_SNAKE_CASE ) lowercase_ : int = value.reshape(__SCREAMING_SNAKE_CASE ) for path in paths: lowercase_ : List[str] = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase_ : str = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) lowercase_ : List[Any] = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) lowercase_ : Dict = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase_ : Dict = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase_ : Optional[Any] = old_checkpoint[path['''old''']][:, :, 0] else: lowercase_ : Optional[Any] = old_checkpoint[path['''old''']] def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Optional[int] = checkpoint['''time_embed.0.weight'''] lowercase_ : Optional[Any] = checkpoint['''time_embed.0.bias'''] lowercase_ : Optional[Any] = checkpoint['''time_embed.2.weight'''] lowercase_ : int = checkpoint['''time_embed.2.bias'''] lowercase_ : Optional[Any] = checkpoint['''input_blocks.0.0.weight'''] lowercase_ : List[str] = checkpoint['''input_blocks.0.0.bias'''] lowercase_ : int = checkpoint['''out.0.weight'''] lowercase_ : Tuple = checkpoint['''out.0.bias'''] lowercase_ : Dict = checkpoint['''out.2.weight'''] lowercase_ : Any = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only lowercase_ : int = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) lowercase_ : Union[str, Any] = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the middle blocks only lowercase_ : int = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) lowercase_ : str = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the output blocks only lowercase_ : List[Any] = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) lowercase_ : str = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } for i in range(1 , __SCREAMING_SNAKE_CASE ): lowercase_ : Any = (i - 1) // (config['''num_res_blocks'''] + 1) lowercase_ : Any = (i - 1) % (config['''num_res_blocks'''] + 1) lowercase_ : List[str] = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] lowercase_ : List[Any] = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: lowercase_ : List[Any] = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] lowercase_ : List[str] = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue lowercase_ : Union[str, Any] = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = {'''old''': F'''input_blocks.{i}.0''', '''new''': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} lowercase_ : List[Any] = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path, resnet_op] , config=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = renew_attention_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = { '''old''': F'''input_blocks.{i}.1''', '''new''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase_ : Dict = { F'''input_blocks.{i}.1.qkv.bias''': { '''key''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', '''query''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', '''value''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { '''key''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', '''query''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', '''value''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , ) lowercase_ : int = middle_blocks[0] lowercase_ : Union[str, Any] = middle_blocks[1] lowercase_ : Optional[Any] = middle_blocks[2] lowercase_ : Dict = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = renew_attention_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , attention_paths_to_split=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = i // (config['''num_res_blocks'''] + 1) lowercase_ : int = i % (config['''num_res_blocks'''] + 1) lowercase_ : Optional[Any] = [shave_segments(__SCREAMING_SNAKE_CASE , 2 ) for name in output_blocks[i]] lowercase_ : Any = {} for layer in output_block_layers: lowercase_ , lowercase_ : Any = layer.split('''.''' )[0], shave_segments(__SCREAMING_SNAKE_CASE , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Optional[Any] = [layer_name] if len(__SCREAMING_SNAKE_CASE ) > 1: lowercase_ : List[Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] lowercase_ : Union[str, Any] = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] lowercase_ : Optional[Any] = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = renew_resnet_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = {'''old''': F'''output_blocks.{i}.0''', '''new''': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase_ : Any = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) lowercase_ : str = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] lowercase_ : Union[str, Any] = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__SCREAMING_SNAKE_CASE ) == 2: lowercase_ : Tuple = [] if len(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = renew_attention_paths(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = { '''old''': F'''output_blocks.{i}.1''', '''new''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase_ : List[str] = { F'''output_blocks.{i}.1.qkv.bias''': { '''key''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', '''query''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', '''value''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { '''key''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', '''query''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', '''value''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=__SCREAMING_SNAKE_CASE , ) else: lowercase_ : int = renew_resnet_paths(__SCREAMING_SNAKE_CASE , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase_ : Optional[int] = '''.'''.join(['''output_blocks''', str(__SCREAMING_SNAKE_CASE ), path['''old''']] ) lowercase_ : Union[str, Any] = '''.'''.join(['''up_blocks''', str(__SCREAMING_SNAKE_CASE ), '''resnets''', str(__SCREAMING_SNAKE_CASE ), path['''new''']] ) lowercase_ : Optional[Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") _lowercase : int = parser.parse_args() _lowercase : Dict = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : str = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : str = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) _lowercase : List[str] = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
93
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Optional[int] = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''mask2former''' snake_case__ : Any = ['''swin'''] snake_case__ : str = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 6 , SCREAMING_SNAKE_CASE__ : int = 1_0 , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 2_5_5 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 2.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : int = 1_2_5_4_4 , SCREAMING_SNAKE_CASE__ : float = 3.0 , SCREAMING_SNAKE_CASE__ : float = 0.75 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 1_6, 3_2] , SCREAMING_SNAKE_CASE__ : bool = None , **SCREAMING_SNAKE_CASE__ : int , ) -> List[Any]: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) a_ : Dict = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Any = backbone_config.pop('model_type' ) a_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] a_ : List[str] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) a_ : Dict = backbone_config a_ : List[str] = feature_size a_ : List[str] = mask_feature_size a_ : int = hidden_dim a_ : Dict = encoder_feedforward_dim a_ : str = activation_function a_ : List[str] = encoder_layers a_ : List[str] = decoder_layers a_ : Dict = num_attention_heads a_ : str = dropout a_ : Tuple = dim_feedforward a_ : List[str] = pre_norm a_ : Optional[int] = enforce_input_projection a_ : Any = common_stride a_ : Optional[int] = ignore_value a_ : int = num_queries a_ : Tuple = no_object_weight a_ : Dict = class_weight a_ : Optional[int] = mask_weight a_ : Optional[int] = dice_weight a_ : str = train_num_points a_ : List[str] = oversample_ratio a_ : List[Any] = importance_sample_ratio a_ : Any = init_std a_ : Union[str, Any] = init_xavier_std a_ : Union[str, Any] = use_auxiliary_loss a_ : Dict = feature_strides a_ : List[str] = output_auxiliary_logits a_ : Dict = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, any]: a_ : Optional[int] = copy.deepcopy(self.__dict__ ) a_ : List[Any] = self.backbone_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output
32
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def snake_case ( A__ ): return EnvironmentCommand() class UpperCamelCase_ (__A ): @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : ArgumentParser ) -> Any: UpperCAmelCase_ : int = parser.add_parser("env" ) download_parser.set_defaults(func=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : Optional[int] = huggingface_hub.__version__ UpperCAmelCase_ : Optional[Any] = "not installed" UpperCAmelCase_ : List[Any] = "NA" if is_torch_available(): import torch UpperCAmelCase_ : Dict = torch.__version__ UpperCAmelCase_ : List[str] = torch.cuda.is_available() UpperCAmelCase_ : List[str] = "not installed" if is_transformers_available(): import transformers UpperCAmelCase_ : Tuple = transformers.__version__ UpperCAmelCase_ : Tuple = "not installed" if is_accelerate_available(): import accelerate UpperCAmelCase_ : Tuple = accelerate.__version__ UpperCAmelCase_ : Dict = "not installed" if is_xformers_available(): import xformers UpperCAmelCase_ : int = xformers.__version__ UpperCAmelCase_ : List[Any] = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : Tuple ) -> Union[str, Any]: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
253
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case ( A__ ,A__ ): assert isinstance(A__ ,A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[int] = tmp_path / "cache" UpperCAmelCase_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : Union[str, Any] = ParquetDatasetReader(A__ ,cache_dir=A__ ,keep_in_memory=A__ ).read() _check_parquet_dataset(A__ ,A__ ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : str = tmp_path / "cache" UpperCAmelCase_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : Any = features.copy() if features else default_expected_features UpperCAmelCase_ : int = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : List[Any] = ParquetDatasetReader(A__ ,features=A__ ,cache_dir=A__ ).read() _check_parquet_dataset(A__ ,A__ ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[Any] = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : int = ParquetDatasetReader(A__ ,cache_dir=A__ ,split=A__ ).read() _check_parquet_dataset(A__ ,A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" ,[str, list] ) def snake_case ( A__ ,A__ ,A__ ): if issubclass(A__ ,A__ ): UpperCAmelCase_ : int = parquet_path elif issubclass(A__ ,A__ ): UpperCAmelCase_ : Any = [parquet_path] UpperCAmelCase_ : Dict = tmp_path / "cache" UpperCAmelCase_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : Tuple = ParquetDatasetReader(A__ ,cache_dir=A__ ).read() _check_parquet_dataset(A__ ,A__ ) def snake_case ( A__ ,A__ ,A__=("train",) ): assert isinstance(A__ ,A__ ) for split in splits: UpperCAmelCase_ : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = tmp_path / "cache" UpperCAmelCase_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : Dict = ParquetDatasetReader( {"train": parquet_path} ,cache_dir=A__ ,keep_in_memory=A__ ).read() _check_parquet_datasetdict(A__ ,A__ ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[int] = tmp_path / "cache" UpperCAmelCase_ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : int = features.copy() if features else default_expected_features UpperCAmelCase_ : int = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Any = ParquetDatasetReader({"train": parquet_path} ,features=A__ ,cache_dir=A__ ).read() _check_parquet_datasetdict(A__ ,A__ ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def snake_case ( A__ ,A__ ,A__ ): if split: UpperCAmelCase_ : Optional[Any] = {split: parquet_path} else: UpperCAmelCase_ : Union[str, Any] = "train" UpperCAmelCase_ : Dict = {"train": parquet_path, "test": parquet_path} UpperCAmelCase_ : Union[str, Any] = tmp_path / "cache" UpperCAmelCase_ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : str = ParquetDatasetReader(A__ ,cache_dir=A__ ).read() _check_parquet_datasetdict(A__ ,A__ ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : str = ParquetDatasetWriter(A__ ,tmp_path / "foo.parquet" ) assert writer.write() > 0 UpperCAmelCase_ : List[str] = pq.ParquetFile(tmp_path / "foo.parquet" ) UpperCAmelCase_ : Optional[Any] = pf.read() assert dataset.data.table == output_table def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[str] = str(shared_datadir / "test_image_rgb.jpg" ) UpperCAmelCase_ : Optional[Any] = {"image": [image_path]} UpperCAmelCase_ : Optional[Any] = Features({"image": Image()} ) UpperCAmelCase_ : List[Any] = Dataset.from_dict(A__ ,features=A__ ) UpperCAmelCase_ : str = ParquetDatasetWriter(A__ ,tmp_path / "foo.parquet" ) assert writer.write() > 0 UpperCAmelCase_ : Tuple = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features UpperCAmelCase_ : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) ,streaming=A__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" ,[ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] ,) def snake_case ( A__ ,A__ ): assert get_writer_batch_size(A__ ) == expected
253
1
def A (__A : int ) -> list: """simple docstring""" UpperCAmelCase_ = int(__A ) if n_element < 1: UpperCAmelCase_ = ValueError('''a should be a positive number''' ) raise my_error UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (0, 0, 0) UpperCAmelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": snake_case_ : Optional[Any] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") snake_case_ : str = hamming(int(n)) print("-----------------------------------------------------") print(f"The list with nth numbers is: {hamming_numbers}") print("-----------------------------------------------------")
51
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : int = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = emb.weight.shape lowerCAmelCase__ : List[str] = nn.Linear(_a , _a , bias=_a ) lowerCAmelCase__ : str = emb.weight.data return lin_layer def lowerCamelCase_ ( _a , _a=None ): """simple docstring""" lowerCAmelCase__ : Dict = {} for old_key in state_dict.keys(): lowerCAmelCase__ : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase__ : int = key.replace('''moe_layer.experts.0''' , f'ffn.experts.expert_{expert_idx}' ) else: lowerCAmelCase__ : str = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase__ : List[str] = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase__ : Any = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase__ : List[Any] = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase__ : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase__ : Dict = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase__ : Union[str, Any] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase__ : Any = state_dict[old_key] return new_dict def lowerCamelCase_ ( _a , _a , _a , _a , _a = WEIGHTS_NAME ): """simple docstring""" lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : int = 0 os.makedirs(_a , exist_ok=_a ) for expert in range(_a ): lowerCAmelCase__ : Dict = switch_checkpoint_path + f'-rank-{expert}.pt' if os.path.isfile(_a ): lowerCAmelCase__ : Any = torch.load(_a )['''model'''] remove_ignore_keys_(_a ) lowerCAmelCase__ : Any = rename_fairseq_keys(_a , _a ) lowerCAmelCase__ : List[Any] = os.path.join( _a , weights_name.replace('''.bin''' , f'-{len(_a )+1:05d}-of-???.bin' ) ) torch.save(_a , _a ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_a )[0]].dtype ) # Add the last block lowerCAmelCase__ : Optional[int] = os.path.join(_a , weights_name.replace('''.bin''' , f'-{len(_a )+1:05d}-of-???.bin' ) ) lowerCAmelCase__ : List[str] = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_a ) lowerCAmelCase__ : int = rename_fairseq_keys(_a , _a ) lowerCAmelCase__ : Optional[Any] = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_a ) == 1: lowerCAmelCase__ : str = os.path.join(_a , _a ) torch.save(_a , _a ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_a , _a ) # Otherwise, let's build the index lowerCAmelCase__ : Dict = {} for idx, shard in enumerate(_a ): lowerCAmelCase__ : str = weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-{len(_a ):05d}.bin' ) lowerCAmelCase__ : Union[str, Any] = os.path.join(_a , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(_a , os.path.join(_a , _a ) ) for key in shard: lowerCAmelCase__ : List[str] = shard_file # Add the metadata lowerCAmelCase__ : List[str] = {'''total_size''': total_size} lowerCAmelCase__ : Tuple = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_a , _a ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : Tuple = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) return metadata, index if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) lowerCamelCase = parser.parse_args() lowerCamelCase, lowerCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCamelCase = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
211
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''BeitFeatureExtractor'''] lowerCamelCase = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
211
1
from ..utils import DummyObject, requires_backends class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :List[str] , *_UpperCamelCase :int , **_UpperCamelCase :Dict )-> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :int , *_UpperCamelCase :Union[str, Any] , **_UpperCamelCase :Tuple )-> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Any , *_UpperCamelCase :Optional[int] , **_UpperCamelCase :Any )-> Optional[int]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :List[str] , *_UpperCamelCase :Dict , **_UpperCamelCase :Tuple )-> int: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :int , *_UpperCamelCase :List[Any] , **_UpperCamelCase :Union[str, Any] )-> str: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Optional[Any] , *_UpperCamelCase :Tuple , **_UpperCamelCase :int )-> int: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :int , *_UpperCamelCase :Tuple , **_UpperCamelCase :Dict )-> int: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Any , *_UpperCamelCase :str , **_UpperCamelCase :Optional[Any] )-> int: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Any , *_UpperCamelCase :Tuple , **_UpperCamelCase :str )-> List[Any]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :Optional[int] , *_UpperCamelCase :Union[str, Any] , **_UpperCamelCase :Any )-> int: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Union[str, Any] , *_UpperCamelCase :List[str] , **_UpperCamelCase :Union[str, Any] )-> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Tuple , *_UpperCamelCase :List[Any] , **_UpperCamelCase :Optional[Any] )-> str: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :Optional[Any] , *_UpperCamelCase :Optional[int] , **_UpperCamelCase :Dict )-> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Tuple , *_UpperCamelCase :Dict , **_UpperCamelCase :Tuple )-> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :int , *_UpperCamelCase :Any , **_UpperCamelCase :List[Any] )-> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :Optional[Any] , *_UpperCamelCase :Dict , **_UpperCamelCase :Union[str, Any] )-> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Optional[int] , *_UpperCamelCase :Optional[Any] , **_UpperCamelCase :Any )-> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :str , *_UpperCamelCase :str , **_UpperCamelCase :Union[str, Any] )-> str: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :str , *_UpperCamelCase :Any , **_UpperCamelCase :int )-> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Any , *_UpperCamelCase :List[Any] , **_UpperCamelCase :Union[str, Any] )-> int: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :List[Any] , *_UpperCamelCase :Tuple , **_UpperCamelCase :Dict )-> int: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :int , *_UpperCamelCase :Optional[int] , **_UpperCamelCase :Optional[Any] )-> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :int , *_UpperCamelCase :Optional[int] , **_UpperCamelCase :Optional[int] )-> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Tuple , *_UpperCamelCase :int , **_UpperCamelCase :Optional[Any] )-> str: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :Optional[int] , *_UpperCamelCase :int , **_UpperCamelCase :int )-> int: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Dict , *_UpperCamelCase :Dict , **_UpperCamelCase :Tuple )-> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Dict , *_UpperCamelCase :Any , **_UpperCamelCase :Optional[int] )-> Optional[int]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :Optional[int] , *_UpperCamelCase :Any , **_UpperCamelCase :List[Any] )-> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Optional[Any] , *_UpperCamelCase :Union[str, Any] , **_UpperCamelCase :Tuple )-> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Optional[Any] , *_UpperCamelCase :Optional[int] , **_UpperCamelCase :Union[str, Any] )-> List[str]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :Optional[int] , *_UpperCamelCase :Optional[Any] , **_UpperCamelCase :str )-> Any: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Optional[Any] , *_UpperCamelCase :Any , **_UpperCamelCase :Union[str, Any] )-> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Tuple , *_UpperCamelCase :Union[str, Any] , **_UpperCamelCase :Optional[Any] )-> List[str]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :int , *_UpperCamelCase :Optional[Any] , **_UpperCamelCase :List[Any] )-> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Dict , *_UpperCamelCase :str , **_UpperCamelCase :Optional[int] )-> str: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Any , *_UpperCamelCase :Union[str, Any] , **_UpperCamelCase :Any )-> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class A_ ( metaclass=_lowerCamelCase ): lowerCAmelCase__ = ["""flax"""] def __init__(self :Optional[Any] , *_UpperCamelCase :str , **_UpperCamelCase :Optional[Any] )-> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :Dict , *_UpperCamelCase :Dict , **_UpperCamelCase :str )-> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def _lowerCAmelCase (cls :List[str] , *_UpperCamelCase :str , **_UpperCamelCase :Optional[int] )-> Tuple: requires_backends(cls , ['''flax'''] )
117
from __future__ import annotations def _a ( lowerCamelCase: list[float] , lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCamelCase ): print(F"""{i}\t\t{d}""" ) def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: list[float] , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: int ) -> list[float]: '''simple docstring''' __A = [float('''inf''' )] * vertex_count __A = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __A = distance[u] + w __A = check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Dict = int(input('Enter number of vertices: ').strip()) snake_case__ : Optional[int] = int(input('Enter number of edges: ').strip()) snake_case__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) snake_case__ , snake_case__ , snake_case__ : Dict = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) snake_case__ : List[Any] = {'src': src, 'dst': dest, 'weight': weight} snake_case__ : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) snake_case__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
117
1
import argparse import os import re _UpperCAmelCase = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _UpperCAmelCase = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings _UpperCAmelCase = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def UpperCamelCase ( __lowercase : Tuple ,__lowercase : bool = False ): '''simple docstring''' with open(__lowercase ,'r' ,encoding='utf-8' ) as f: A_ : int = f.read() A_ : Tuple = content.split('\n' ) A_ : Any = [] A_ : int = 0 while line_idx < len(__lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: A_ : Dict = len(re.search(r'^(\s*)\S' ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 A_ : int = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": A_ : str = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers A_ : List[Any] = sorted(__lowercase ,key=lambda __lowercase : _re_identifier.search(__lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__lowercase ,'w' ,encoding='utf-8' ) as f: f.write('\n'.join(__lowercase ) ) elif "\n".join(__lowercase ) != content: return True def UpperCamelCase ( __lowercase : bool = False ): '''simple docstring''' A_ : Dict = [os.path.join(__lowercase ,__lowercase ) for f in os.listdir(__lowercase ) if f.endswith('.py' )] A_ : Any = [sort_auto_mapping(__lowercase ,overwrite=__lowercase ) for fname in fnames] if not overwrite and any(__lowercase ): A_ : Dict = [f for f, d in zip(__lowercase ,__lowercase ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(__lowercase )}. Run `make style` to fix''' ' this.' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _UpperCAmelCase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
367
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : int = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.dummy_uncond_unet A_ : List[Any] = DDIMScheduler() A_ : Any = self.dummy_vq_model A_ : int = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) A_ : Any = torch.manual_seed(0 ) A_ : Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' ).images A_ : Any = torch.manual_seed(0 ) A_ : List[str] = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase )[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A_ : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) A_ : str = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) A_ : Any = torch.manual_seed(0 ) A_ : List[str] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy' ).images A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) A_ : Tuple = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) A_ : Dict = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
192
0
"""simple docstring""" import socket def lowerCamelCase__ ( ) -> Optional[int]: lowerCamelCase_ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCamelCase_ = socket.gethostname() lowerCamelCase_ = 12312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: lowerCamelCase_ = sock.recv(1024 ) if not data: break out_file.write(_lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
183
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = {'vocab_file': 'spiece.model'} __lowerCAmelCase : Optional[int] = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __lowerCAmelCase : Dict = {'bert_for_seq_generation': 512} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[str] , ) -> None: a = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def __UpperCAmelCase ( self : Dict ) -> Dict: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Optional[Any]: a = self.__dict__.copy() a = None return state def __setstate__( self : Optional[Any] , __lowerCamelCase : Dict ) -> Optional[Any]: a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] ) -> int: return self.sp_model.piece_to_id(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ) -> Any: a = self.sp_model.IdToPiece(__lowerCamelCase ) return token def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict ) -> Any: a = [] a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token a = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
107
0
def _a ( ) -> Any: '''simple docstring''' for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : Any = 2 while i * i <= n: SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _a ( ) -> Optional[int]: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_00 ) if __name__ == "__main__": print(solution())
361
class lowerCamelCase : """simple docstring""" def __init__( self : int, _UpperCAmelCase : Dict, _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = name SCREAMING_SNAKE_CASE__ : Tuple = val def __str__( self : str ) -> List[Any]: """simple docstring""" return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : str, _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" return self.val < other.val class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any], _UpperCAmelCase : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.build_heap(_UpperCAmelCase ) def __getitem__( self : Union[str, Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return self.get_value(_UpperCAmelCase ) def A_ ( self : int, _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" return (idx - 1) // 2 def A_ ( self : Optional[Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return idx * 2 + 1 def A_ ( self : str, _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" return idx * 2 + 2 def A_ ( self : Tuple, _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" return self.heap_dict[key] def A_ ( self : Optional[int], _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = len(_UpperCAmelCase ) - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_parent_idx(_UpperCAmelCase ) for idx, i in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = idx SCREAMING_SNAKE_CASE__ : Optional[Any] = i.val for i in range(_UpperCAmelCase, -1, -1 ): self.sift_down(_UpperCAmelCase, _UpperCAmelCase ) return array def A_ ( self : List[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" while True: SCREAMING_SNAKE_CASE__ : str = self.get_left_child_idx(_UpperCAmelCase ) # noqa: E741 SCREAMING_SNAKE_CASE__ : Tuple = self.get_right_child_idx(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = idx if l < len(_UpperCAmelCase ) and array[l] < array[idx]: SCREAMING_SNAKE_CASE__ : List[Any] = l if r < len(_UpperCAmelCase ) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE__ : int = r if smallest != idx: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE__ : Optional[Any] = smallest else: break def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_parent_idx(_UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE__ : Dict = p SCREAMING_SNAKE_CASE__ : List[str] = self.get_parent_idx(_UpperCAmelCase ) def A_ ( self : str ) -> List[str]: """simple docstring""" return self.heap[0] def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE__ : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0, self.heap ) return x def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" self.heap.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = len(self.heap ) - 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.heap ) == 0 def A_ ( self : Any, _UpperCAmelCase : Tuple, _UpperCAmelCase : str ) -> Dict: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE__ : Tuple = new_value SCREAMING_SNAKE_CASE__ : List[Any] = new_value self.sift_up(self.idx_of_element[node] ) _lowerCamelCase : Tuple = Node('''R''', -1) _lowerCamelCase : int = Node('''B''', 6) _lowerCamelCase : str = Node('''A''', 3) _lowerCamelCase : Optional[Any] = Node('''X''', 1) _lowerCamelCase : str = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCamelCase : int = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
191
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( snake_case__ ): """simple docstring""" UpperCamelCase_ : Optional[Any] =["pixel_values"] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> str: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = size if size is not None else {"shortest_edge": 384} UpperCamelCase :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = do_resize UpperCamelCase :Optional[int] = size # Default value set here for backwards compatibility where the value in config is None UpperCamelCase :str = crop_pct if crop_pct is not None else 224 / 256 UpperCamelCase :Tuple = resample UpperCamelCase :Union[str, Any] = do_rescale UpperCamelCase :List[str] = rescale_factor UpperCamelCase :Tuple = do_normalize UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase :Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> int: UpperCamelCase :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) UpperCamelCase :Optional[Any] = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCamelCase :Dict = int(shortest_edge / crop_pct ) UpperCamelCase :Optional[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE_ , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE_ , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> int: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Dict: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: UpperCamelCase :Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCamelCase :str = crop_pct if crop_pct is not None else self.crop_pct UpperCamelCase :Dict = resample if resample is not None else self.resample UpperCamelCase :List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :str = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCamelCase :Dict = image_std if image_std is not None else self.image_std UpperCamelCase :Tuple = size if size is not None else self.size UpperCamelCase :List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCamelCase :List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase :List[Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase :Any = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase :Any = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :Optional[Any] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
259
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() _UpperCAmelCase : Optional[int] = nn.ModuleList(A ) def _A ( self : Dict , A : torch.FloatTensor , A : Union[torch.Tensor, float, int] , A : torch.Tensor , A : List[torch.tensor] , A : List[float] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[Dict[str, Any]] = None , A : bool = False , A : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(A , A , self.nets ) ): _UpperCAmelCase , _UpperCAmelCase : str = controlnet( A , A , A , A , A , A , A , A , A , A , A , ) # merge samples if i == 0: _UpperCAmelCase , _UpperCAmelCase : List[Any] = down_samples, mid_sample else: _UpperCAmelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A , A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _A ( self : List[str] , A : Union[str, os.PathLike] , A : bool = True , A : Callable = None , A : bool = False , A : Optional[str] = None , ): _UpperCAmelCase : str = 0 _UpperCAmelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( A , is_main_process=A , save_function=A , safe_serialization=A , variant=A , ) idx += 1 _UpperCAmelCase : Tuple = model_path_to_save + F"""_{idx}""" @classmethod def _A ( cls : int , A : Optional[Union[str, os.PathLike]] , **A : Tuple ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _UpperCAmelCase : int = pretrained_model_path while os.path.isdir(A ): _UpperCAmelCase : List[str] = ControlNetModel.from_pretrained(A , **A ) controlnets.append(A ) idx += 1 _UpperCAmelCase : Dict = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(A )} controlnets loaded from {pretrained_model_path}.""" ) if len(A ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(A )
31
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """linear""" lowerCAmelCase_ = """cosine""" lowerCAmelCase_ = """cosine_with_restarts""" lowerCAmelCase_ = """polynomial""" lowerCAmelCase_ = """constant""" lowerCAmelCase_ = """constant_with_warmup""" lowerCAmelCase_ = """piecewise_constant""" def A_( A : Optimizer , A : int = -1): return LambdaLR(A , lambda A: 1 , last_epoch=A) def A_( A : Optimizer , A : int , A : int = -1): def lr_lambda(A : int): if current_step < num_warmup_steps: return float(A) / float(max(1.0 , A)) return 1.0 return LambdaLR(A , A , last_epoch=A) def A_( A : Optimizer , A : str , A : int = -1): UpperCamelCase = {} UpperCamelCase = step_rules.split(',') for rule_str in rule_list[:-1]: UpperCamelCase , UpperCamelCase = rule_str.split(':') UpperCamelCase = int(A) UpperCamelCase = float(A) UpperCamelCase = value UpperCamelCase = float(rule_list[-1]) def create_rules_function(A : Any , A : Optional[int]): def rule_func(A : int) -> float: UpperCamelCase = sorted(rules_dict.keys()) for i, sorted_step in enumerate(A): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCamelCase = create_rules_function(A , A) return LambdaLR(A , A , last_epoch=A) def A_( A : Tuple , A : List[Any] , A : Any , A : int=-1): def lr_lambda(A : int): if current_step < num_warmup_steps: return float(A) / float(max(1 , A)) return max( 0.0 , float(num_training_steps - current_step) / float(max(1 , num_training_steps - num_warmup_steps))) return LambdaLR(A , A , A) def A_( A : Optimizer , A : int , A : int , A : float = 0.5 , A : int = -1): def lr_lambda(A : List[str]): if current_step < num_warmup_steps: return float(A) / float(max(1 , A)) UpperCamelCase = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(A) * 2.0 * progress))) return LambdaLR(A , A , A) def A_( A : Optimizer , A : int , A : int , A : int = 1 , A : int = -1): def lr_lambda(A : List[Any]): if current_step < num_warmup_steps: return float(A) / float(max(1 , A)) UpperCamelCase = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(A) * progress) % 1.0)))) return LambdaLR(A , A , A) def A_( A : Any , A : int , A : Union[str, Any] , A : Dict=1E-7 , A : Optional[Any]=1.0 , A : List[Any]=-1): UpperCamelCase = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''') def lr_lambda(A : int): if current_step < num_warmup_steps: return float(A) / float(max(1 , A)) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCamelCase = lr_init - lr_end UpperCamelCase = num_training_steps - num_warmup_steps UpperCamelCase = 1 - (current_step - num_warmup_steps) / decay_steps UpperCamelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(A , A , A) lowerCAmelCase : Dict = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A_( A : Union[str, SchedulerType] , A : Optimizer , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : int = 1 , A : float = 1.0 , A : int = -1 , ): UpperCamelCase = SchedulerType(A) UpperCamelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(A , last_epoch=A) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(A , step_rules=A , last_epoch=A) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''') if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(A , num_warmup_steps=A , last_epoch=A) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''') if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , num_cycles=A , last_epoch=A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , power=A , last_epoch=A , ) return schedule_func( A , num_warmup_steps=A , num_training_steps=A , last_epoch=A)
251
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A_( A : List[Any]): UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A , A) def A_( A : Any): UpperCamelCase = list(s_dict.keys()) for key in keys: if "transformer_layers" in key: UpperCamelCase = s_dict.pop(A) elif "subsample" in key: UpperCamelCase = s_dict.pop(A) def A_( A : Optional[int]): UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(A , A , bias=A) UpperCamelCase = emb.weight.data return lin_layer def A_( A : Optional[int] , A : List[str]): UpperCamelCase = torch.load(A , map_location='cpu') UpperCamelCase = mam_aaa['args'] UpperCamelCase = mam_aaa['model'] UpperCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(A) rename_keys(A) UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCamelCase = args.share_decoder_input_output_embed UpperCamelCase = [int(A) for i in args.conv_kernel_sizes.split(',')] UpperCamelCase = SpeechaTextConfig( vocab_size=A , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(A) , conv_channels=args.conv_channels , conv_kernel_sizes=A , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=A , num_beams=5 , max_length=200 , use_cache=A , decoder_start_token_id=2 , early_stopping=A , ) UpperCamelCase = SpeechaTextForConditionalGeneration(A) UpperCamelCase , UpperCamelCase = model.model.load_state_dict(A , strict=A) if len(A) > 0 and not set(A) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f''' but all the following weights are missing {missing}''') if tie_embeds: UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens) else: UpperCamelCase = lm_head_weights model.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : List[str] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
251
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = XLMProphetNetTokenizer __lowercase = False __lowercase = True def lowerCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _snake_case = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = '[PAD]' _snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowerCAmelCase_ ) , 10_12 ) def lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _snake_case = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _snake_case = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _snake_case = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def lowerCamelCase ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'Hello World!' _snake_case = [3_53_89, 66_72, 49, 2] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = {'input_ids': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
42
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _UpperCAmelCase ( snake_case ): """simple docstring""" if isinstance(snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class __lowerCAmelCase : def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_snake_case , _snake_case , F'Difference between torch and flax is {diff} (>= {tol}).' ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFViTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFRobertaModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_snake_case ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_snake_case , padding=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _snake_case , atol=1e-3 ) )
82
0
import random def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = a[left_index] lowerCamelCase : Tuple = left_index + 1 for j in range(left_index + 1, a_ ): if a[j] < pivot: lowerCamelCase : Union[str, Any] = a[i], a[j] i += 1 lowerCamelCase : Optional[Any] = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' if left < right: lowerCamelCase : int = random.randint(a_, right - 1 ) lowerCamelCase : int = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase : Tuple = partition(a_, a_, a_ ) quick_sort_random( a_, a_, a_ ) # recursive quicksort to the left of the pivot point quick_sort_random( a_, pivot_index + 1, a_ ) # recursive quicksort to the right of the pivot point def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : str = input('Enter numbers separated by a comma:\n' ).strip() lowerCamelCase : Optional[int] = [int(a_ ) for item in user_input.split(',' )] quick_sort_random(a_, 0, len(a_ ) ) print(a_ ) if __name__ == "__main__": main()
359
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( __UpperCAmelCase ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'ChineseCLIPImageProcessor' lowercase_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> List[str]: lowerCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) lowerCamelCase : int = kwargs.pop('feature_extractor' ) lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Tuple = self.image_processor def __call__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> str: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase : Any = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: lowerCamelCase : Dict = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: lowerCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class
205
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") a_ : Tuple = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } a_ : int = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } a_ : List[Any] = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } a_ : Optional[Any] = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } a_ : str = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } a_ : Tuple = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } a_ : List[Any] = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } a_ : Union[str, Any] = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } a_ : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a_ : Tuple = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ : int = [] a_ : int = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] a_ : Dict = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] a_ : str = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] a_ : Tuple = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def __snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): for attribute in key.split("." ): lowerCamelCase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowerCamelCase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value elif weight_type == "running_mean": lowerCamelCase_ = value elif weight_type == "running_var": lowerCamelCase_ = value elif weight_type == "num_batches_tracked": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase_ ,lowerCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): lowerCamelCase_ = [] if task == "s2t": lowerCamelCase_ = hf_model.speechta.encoder.prenet.feature_encoder lowerCamelCase_ = MAPPING_S2T lowerCamelCase_ = IGNORE_KEYS_S2T elif task == "t2s": lowerCamelCase_ = None lowerCamelCase_ = MAPPING_T2S lowerCamelCase_ = IGNORE_KEYS_T2S elif task == "s2s": lowerCamelCase_ = hf_model.speechta.encoder.prenet.feature_encoder lowerCamelCase_ = MAPPING_S2S lowerCamelCase_ = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__lowerCamelCase , __lowerCamelCase ): logger.info(F'''{name} was ignored''' ) continue lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowerCamelCase_ ,lowerCamelCase_ = key.split(".*." ) if prefix in name and suffix in name: lowerCamelCase_ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "bias" in name: lowerCamelCase_ = "bias" elif "weight" in name: lowerCamelCase_ = "weight" elif "running_mean" in name: lowerCamelCase_ = "running_mean" elif "running_var" in name: lowerCamelCase_ = "running_var" elif "num_batches_tracked" in name: lowerCamelCase_ = "num_batches_tracked" else: lowerCamelCase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Union[str, Any]=None , ): if config_path is not None: lowerCamelCase_ = SpeechTaConfig.from_pretrained(__lowerCamelCase ) else: lowerCamelCase_ = SpeechTaConfig() if task == "s2t": lowerCamelCase_ = config.max_text_positions lowerCamelCase_ = SpeechTaForSpeechToText(__lowerCamelCase ) elif task == "t2s": lowerCamelCase_ = 1876 lowerCamelCase_ = 600 lowerCamelCase_ = config.max_speech_positions lowerCamelCase_ = SpeechTaForTextToSpeech(__lowerCamelCase ) elif task == "s2s": lowerCamelCase_ = 1876 lowerCamelCase_ = config.max_speech_positions lowerCamelCase_ = SpeechTaForSpeechToSpeech(__lowerCamelCase ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: lowerCamelCase_ = SpeechTaTokenizer(__lowerCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken("<mask>" , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) lowerCamelCase_ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) lowerCamelCase_ = SpeechTaFeatureExtractor() lowerCamelCase_ = SpeechTaProcessor(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowerCamelCase_ = torch.load(__lowerCamelCase ) recursively_load_weights(fairseq_checkpoint["model"] , __lowerCamelCase , __lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a_ : str = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
55
"""simple docstring""" from math import pow def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _snake_case = int(pow(__lowerCamelCase , __lowerCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _snake_case , _snake_case = backtrack( __lowerCamelCase , __lowerCamelCase , current_number + 1 , __lowerCamelCase , __lowerCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _snake_case , _snake_case = backtrack( __lowerCamelCase , __lowerCamelCase , current_number + 1 , __lowerCamelCase , __lowerCamelCase ) return current_sum, solutions_count def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) -> int: if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(__lowerCamelCase , __lowerCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
288
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "efficientformer" def __init__( self : Tuple , __lowerCamelCase : List[int] = [3, 2, 6, 4] , __lowerCamelCase : List[int] = [48, 96, 224, 448] , __lowerCamelCase : List[bool] = [True, True, True, True] , __lowerCamelCase : int = 448 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 4 , __lowerCamelCase : int = 7 , __lowerCamelCase : int = 5 , __lowerCamelCase : int = 8 , __lowerCamelCase : int = 4 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : float = 1e-5 , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.02 , __lowerCamelCase : float = 1e-12 , __lowerCamelCase : int = 224 , __lowerCamelCase : float = 1e-05 , **__lowerCamelCase : str , ) -> None: super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = mlp_expansion_ratio SCREAMING_SNAKE_CASE__ = downsamples SCREAMING_SNAKE_CASE__ = dim SCREAMING_SNAKE_CASE__ = key_dim SCREAMING_SNAKE_CASE__ = attention_ratio SCREAMING_SNAKE_CASE__ = resolution SCREAMING_SNAKE_CASE__ = pool_size SCREAMING_SNAKE_CASE__ = downsample_patch_size SCREAMING_SNAKE_CASE__ = downsample_stride SCREAMING_SNAKE_CASE__ = downsample_pad SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = num_metaad_blocks SCREAMING_SNAKE_CASE__ = distillation SCREAMING_SNAKE_CASE__ = use_layer_scale SCREAMING_SNAKE_CASE__ = layer_scale_init_value SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = batch_norm_eps
218
import datasets from .evaluate import evaluate _SCREAMING_SNAKE_CASE : Union[str, Any] = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' _SCREAMING_SNAKE_CASE : Dict = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' _SCREAMING_SNAKE_CASE : str = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE__ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE__ = evaluate(dataset=__lowerCamelCase , predictions=__lowerCamelCase ) return score
218
1
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> list[list[int]]: UpperCamelCase__ : list[list[int]] = [] create_all_state(1 , __UpperCAmelCase , __UpperCAmelCase , [] , __UpperCAmelCase ) return result def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: list[int] , __UpperCAmelCase: list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__UpperCAmelCase , total_number - level + 2 ): current_list.append(__UpperCAmelCase ) create_all_state(i + 1 , __UpperCAmelCase , level - 1 , __UpperCAmelCase , __UpperCAmelCase ) current_list.pop() def lowerCAmelCase_ ( __UpperCAmelCase: list[list[int]] ) -> None: for i in total_list: print(*__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = 4 UpperCAmelCase_ = 2 UpperCAmelCase_ = generate_all_combinations(n, k) print_all_state(total_list)
201
import random def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: Optional[int] ) -> tuple: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: int ) -> List[str]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__UpperCAmelCase ) or index < 0: return None UpperCamelCase__ : List[str] = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = _partition(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = len(__UpperCAmelCase ) UpperCamelCase__ : Dict = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
201
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = LEDTokenizer __UpperCamelCase = LEDTokenizerFast __UpperCamelCase = True def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() lowerCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCamelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowerCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCamelCase = {"""unk_token""": """<unk>"""} lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _a ): """simple docstring""" return "lower newer", "lower newer" @cached_property def _lowerCAmelCase ( self ): """simple docstring""" return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _lowerCAmelCase ( self ): """simple docstring""" return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCamelCase = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase = tokenizer(__SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE ) , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIn("""input_ids""" , __SCREAMING_SNAKE_CASE ) self.assertIn("""attention_mask""" , __SCREAMING_SNAKE_CASE ) self.assertNotIn("""labels""" , __SCREAMING_SNAKE_CASE ) self.assertNotIn("""decoder_attention_mask""" , __SCREAMING_SNAKE_CASE ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase = tokenizer(text_target=__SCREAMING_SNAKE_CASE , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ["""A long paragraph for summarization."""] lowerCamelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) lowerCamelCase = tokenizer(text_target=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) lowerCamelCase = inputs["""input_ids"""] lowerCamelCase = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase = ["""Summary of the text.""", """Another summary."""] lowerCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) lowerCamelCase = [[0] * len(__SCREAMING_SNAKE_CASE ) for x in encoded_output["""input_ids"""]] lowerCamelCase = tokenizer.pad(__SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , __SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase = """A, <mask> AllenNLP sentence.""" lowerCamelCase = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) lowerCamelCase = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
352
"""simple docstring""" def a__ ( snake_case__ , snake_case__ ) -> int: return number | (1 << position) def a__ ( snake_case__ , snake_case__ ) -> int: return number & ~(1 << position) def a__ ( snake_case__ , snake_case__ ) -> int: return number ^ (1 << position) def a__ ( snake_case__ , snake_case__ ) -> bool: return ((number >> position) & 1) == 1 def a__ ( snake_case__ , snake_case__ ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
168
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase__ :int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , UpperCamelCase_ = 1 , UpperCamelCase_ = None , UpperCamelCase_ = 0.0 , UpperCamelCase_ = 50 , UpperCamelCase_ = None , UpperCamelCase_ = "pil" , UpperCamelCase_ = True , ): '''simple docstring''' if isinstance(self.unet.config.sample_size , _SCREAMING_SNAKE_CASE ): UpperCamelCase__ :Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCamelCase__ :List[Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase__ :Optional[Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase__ :Union[str, Any] = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase__ :Union[str, Any] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ :Dict = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ :Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ :Any = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
97
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCamelCase = 1.5 UpperCamelCase = int(factor * num_class_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: UpperCamelCase = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCamelCase = int(factor * num_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: UpperCamelCase = class_images[count] count += 1 try: UpperCamelCase = requests.get(images["""url"""] ) if img.status_code == 200: UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( )-> str: UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
321
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _A = logging.getLogger(__name__) class _lowerCamelCase ( a_ ): _lowerCamelCase :Union[str, Any] = "token-classification" def __init__( self : Dict , UpperCamelCase : Any ) -> Optional[int]: """simple docstring""" if type(UpperCamelCase ) == dict: lowerCAmelCase__ : Optional[int] = Namespace(**UpperCamelCase ) lowerCAmelCase__ : Tuple = import_module("""tasks""" ) try: lowerCAmelCase__ : Union[str, Any] = getattr(UpperCamelCase , hparams.task_type ) lowerCAmelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) lowerCAmelCase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowerCAmelCase__ : Dict = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase , len(self.labels ) , self.mode ) def _lowerCAmelCase ( self : int , **UpperCamelCase : List[Any] ) -> str: """simple docstring""" return self.model(**UpperCamelCase ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : Tuple = self(**UpperCamelCase ) lowerCAmelCase__ : List[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.hparams for mode in ["train", "dev", "test"]: lowerCAmelCase__ : Union[str, Any] = self._feature_file(UpperCamelCase ) if os.path.exists(UpperCamelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.load(UpperCamelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) lowerCAmelCase__ : Union[str, Any] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase ) lowerCAmelCase__ : Tuple = self.token_classification_task.convert_examples_to_features( UpperCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , UpperCamelCase ) torch.save(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : bool = False ) -> DataLoader: """simple docstring""" lowerCAmelCase__ : int = self._feature_file(UpperCamelCase ) logger.info("""Loading features from cached file %s""" , UpperCamelCase ) lowerCAmelCase__ : int = torch.load(UpperCamelCase ) lowerCAmelCase__ : str = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase__ : Any = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCAmelCase__ : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCAmelCase__ : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCAmelCase__ : Union[str, Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , batch_size=UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" """Compute validation""" "" lowerCAmelCase__ : str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : List[Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : Union[str, Any] = self(**UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = outputs[:2] lowerCAmelCase__ : Optional[Any] = logits.detach().cpu().numpy() lowerCAmelCase__ : Optional[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCAmelCase ( self : Tuple , UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = torch.stack([x["""val_loss"""] for x in outputs] ).mean() lowerCAmelCase__ : Any = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) lowerCAmelCase__ : List[str] = np.argmax(UpperCamelCase , axis=2 ) lowerCAmelCase__ : str = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) lowerCAmelCase__ : Any = dict(enumerate(self.labels ) ) lowerCAmelCase__ : str = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCAmelCase__ : Optional[int] = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(UpperCamelCase , UpperCamelCase ), """precision""": precision_score(UpperCamelCase , UpperCamelCase ), """recall""": recall_score(UpperCamelCase , UpperCamelCase ), """f1""": fa_score(UpperCamelCase , UpperCamelCase ), } lowerCAmelCase__ : Dict = dict(results.items() ) lowerCAmelCase__ : List[Any] = results return ret, preds_list, out_label_list def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[Any] ) -> Any: """simple docstring""" # when stable lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = self._eval_end(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCAmelCase ( self : Dict , UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" # updating to test_epoch_end instead of deprecated test_end lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self._eval_end(UpperCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCAmelCase__ : int = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCAmelCase ( UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ) -> List[str]: """simple docstring""" # Add NER specific options BaseTransformer.add_model_specific_args(UpperCamelCase , UpperCamelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=UpperCamelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=UpperCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=UpperCamelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=UpperCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": _A = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _A = NERTransformer.add_model_specific_args(parser, os.getcwd()) _A = parser.parse_args() _A = NERTransformer(args) _A = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _A = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) _A = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
212
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging A__ = """\ """ A__ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ A__ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def snake_case ( self , _snake_case , _snake_case , _snake_case = 16 , _snake_case = True , _snake_case=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _lowerCAmelCase = """cuda""" else: _lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" _lowerCAmelCase = AutoModelForCausalLM.from_pretrained(_snake_case ) _lowerCAmelCase = model.to(_snake_case ) _lowerCAmelCase = AutoTokenizer.from_pretrained(_snake_case ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_snake_case ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _lowerCAmelCase = model.config.max_length - 1 else: _lowerCAmelCase = model.config.max_length _lowerCAmelCase = tokenizer( _snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors="""pt""" , return_attention_mask=_snake_case , ).to(_snake_case ) _lowerCAmelCase = encodings["""input_ids"""] _lowerCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _lowerCAmelCase = [] _lowerCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_snake_case ) , _snake_case ) ): _lowerCAmelCase = min(start_index + batch_size , len(_snake_case ) ) _lowerCAmelCase = encoded_texts[start_index:end_index] _lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: _lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_snake_case ) _lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_snake_case ), attn_mask] , dim=1 ) _lowerCAmelCase = encoded_batch with torch.no_grad(): _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ).logits _lowerCAmelCase = out_logits[..., :-1, :].contiguous() _lowerCAmelCase = labels[..., 1:].contiguous() _lowerCAmelCase = attn_mask[..., 1:].contiguous() _lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _snake_case ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_snake_case )}
82
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
249
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" a__ : Dict = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) a__ : Optional[int] = "document_qa" a__ : Dict = AutoProcessor a__ : Optional[int] = VisionEncoderDecoderModel a__ : List[Any] = ["image", "text"] a__ : List[Any] = ["text"] def __init__( self : Any , *_lowercase : Optional[int] , **_lowercase : int ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_lowercase , **_lowercase ) def a ( self : List[Any] , _lowercase : "Image" , _lowercase : str ): __UpperCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __UpperCAmelCase = task_prompt.replace('''{user_input}''' , _lowercase ) __UpperCAmelCase = self.pre_processor.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors='''pt''' ).input_ids __UpperCAmelCase = self.pre_processor(_lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def a ( self : Any , _lowercase : int ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowercase , ).sequences def a ( self : Dict , _lowercase : int ): __UpperCAmelCase = self.pre_processor.batch_decode(_lowercase )[0] __UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __UpperCAmelCase = re.sub(r'''<.*?>''' , '''''' , _lowercase , count=1 ).strip() # remove first task start token __UpperCAmelCase = self.pre_processor.tokenajson(_lowercase ) return sequence["answer"]
86
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): a__ : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING a__ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def a ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a ( self : Tuple ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : Optional[int] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def a ( self : Any ): __UpperCAmelCase = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() __UpperCAmelCase = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowercase , _lowercase ) @slow @require_torch def a ( self : int ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowercase ) @slow @require_tf def a ( self : Optional[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowercase ) def a ( self : Dict , _lowercase : str ): __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 6_10, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 15_73, '''token_str''': ''' Chris'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 22_01, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_27_90, '''token_str''': ''' Lyon''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : List[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) @require_tf def a ( self : str ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) def a ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a ( self : int , _lowercase : Tuple , _lowercase : Tuple ): __UpperCAmelCase = fill_masker.tokenizer __UpperCAmelCase = fill_masker.model __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , ) with self.assertRaises(_lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowercase ): fill_masker('''This is''' ) self.run_test_top_k(_lowercase , _lowercase ) self.run_test_targets(_lowercase , _lowercase ) self.run_test_top_k_targets(_lowercase , _lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowercase , _lowercase ) self.fill_mask_with_multiple_masks(_lowercase , _lowercase ) def a ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : List[Any] ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , targets=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Call argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Score equivalence __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''token_str'''] for top_mask in outputs] __UpperCAmelCase = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ) == set(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) # Raises with invalid with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='''''' ) def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , top_k=2 ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Optional[int] , _lowercase : int , _lowercase : Tuple ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) # top_k=2, ntargets=3 __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase = [el['''token_str'''] for el in sorted(_lowercase , key=lambda _lowercase : x["score"] , reverse=_lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ).issubset(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Union[str, Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowercase ) , 3 ) def a ( self : Dict , _lowercase : Dict , _lowercase : Any ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , )
86
1
'''simple docstring''' from __future__ import annotations _A : List[Any] ='''Muhammad Umer Farooq''' _A : Union[str, Any] ='''MIT''' _A : List[Any] ='''1.0.0''' _A : List[str] ='''Muhammad Umer Farooq''' _A : str ='''[email protected]''' _A : List[Any] ='''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class _lowercase ( _lowercase ): def __init__( self: Tuple , UpperCamelCase__: str ): super().__init__() lowerCamelCase__ : list[str] = [] lowerCamelCase__ : int = domain def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str , UpperCamelCase__: list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCamelCase__ : str = parse.urljoin(self.domain , UpperCamelCase__ ) self.urls.append(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: return ".".join(get_sub_domain_name(UpperCamelCase ).split(""".""" )[-2:] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: return parse.urlparse(UpperCamelCase ).netloc def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "https://github.com" ) -> list[str]: lowerCamelCase__ : List[Any] = get_domain_name(UpperCamelCase ) # Initialize the parser lowerCamelCase__ : Optional[int] = Parser(UpperCamelCase ) try: # Open URL lowerCamelCase__ : Union[str, Any] = requests.get(UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCamelCase__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCamelCase__ : Optional[Any] = requests.get(UpperCamelCase ) # Get the valid email. lowerCamelCase__ : Union[str, Any] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCamelCase ) if __name__ == "__main__": _A : List[str] =emails_from_url('''https://github.com''') print(F'{len(emails)} emails found:') print('''\n'''.join(sorted(emails)))
41
"""simple docstring""" from __future__ import annotations import math def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if len(__lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowercase_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowercase_ = len(__lowerCAmelCase ) lowercase_ = matrix_length // 2 lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowercase_ = [ [a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase ) ] lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )] return top_left, top_right, bot_left, bot_right def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[int, int]: '''simple docstring''' return len(__lowerCAmelCase ), len(matrix[0] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None: '''simple docstring''' print("""\n""".join(str(__lowerCAmelCase ) for line in matrix ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase ) == (2, 2): return default_matrix_multiplication(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase ) lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase_ = matrix_addition(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) # construct the new matrix from our 4 quadrants lowercase_ = [] for i in range(len(__lowerCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase )[1] != matrix_dimensions(__lowerCAmelCase )[0]: lowercase_ = ( """Unable to multiply these matrices, please check the dimensions.\n""" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__lowerCAmelCase ) lowercase_ = matrix_dimensions(__lowerCAmelCase ) lowercase_ = matrix_dimensions(__lowerCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase_ = max(*__lowerCAmelCase , *__lowerCAmelCase ) lowercase_ = int(math.pow(2 , math.ceil(math.loga(__lowerCAmelCase ) ) ) ) lowercase_ = matrixa lowercase_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase_ = actual_strassen(__lowerCAmelCase , __lowerCAmelCase ) # Removing the additional zeros for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCAmelCase : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCAmelCase : Optional[int] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
136
0
"""simple docstring""" from __future__ import annotations def lowercase ( A_ , A_ )-> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) a : Optional[Any] = number_of_bytes // partitions a : int = [] for i in range(snake_case_ ): a : Optional[Any] = i * bytes_per_partition + 1 a : Optional[Any] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
368
"""simple docstring""" import sys import turtle def lowercase ( A_ , A_ )-> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase ( A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
226
0
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class a : def __init__( self : Union[str, Any] ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : float ): if nodea not in self.connections: self.add_node(__lowerCAmelCase ) if nodea not in self.connections: self.add_node(__lowerCAmelCase ) _UpperCAmelCase = probability def lowerCAmelCase_ ( self : Optional[Any] ): return list(self.connections ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = 0 _UpperCAmelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = Counter(graph.get_nodes() ) _UpperCAmelCase = start for _ in range(lowercase ): _UpperCAmelCase = graph.transition(lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = StableUnCLIPPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 32 _UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
289
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = StableDiffusionPanoramaPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self: int ): torch.manual_seed(0 ) lowercase :List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase :Any = DDIMScheduler() torch.manual_seed(0 ) lowercase :Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase :Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowercase :Any = CLIPTextModel(_lowerCAmelCase ) lowercase :str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase :Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict=0 ): lowercase :Any = torch.manual_seed(_lowerCAmelCase ) lowercase :Any = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :int = self.get_dummy_components() lowercase :int = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Tuple = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :List[str] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = sd_pipe(**_lowerCAmelCase ).images lowercase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :List[str] = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE ( self: int ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[str] = self.get_dummy_components() lowercase :Optional[Any] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Optional[int] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = "french fries" lowercase :int = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase :int = output.images lowercase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[Any] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :int = self.get_dummy_components() lowercase :List[str] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :int = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Dict = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :Any = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase :Union[str, Any] = output.images lowercase :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[int] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: str ): lowercase :int = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[Any] = self.get_dummy_components() lowercase :Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" ) lowercase :Tuple = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Optional[Any] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = sd_pipe(**_lowerCAmelCase ).images lowercase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[Any] = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[Any] = self.get_dummy_components() lowercase :int = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , skip_prk_steps=_lowerCAmelCase ) lowercase :List[str] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :int = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Union[str, Any] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :Any = sd_pipe(**_lowerCAmelCase ).images lowercase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Tuple = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Union[str, Any]=0 ): lowercase :Any = torch.manual_seed(_lowerCAmelCase ) lowercase :Optional[int] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Dict = "stabilityai/stable-diffusion-2-base" lowercase :Optional[Any] = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :List[str] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :Any = self.get_inputs() lowercase :Optional[int] = pipe(**_lowerCAmelCase ).images lowercase :int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowercase :Tuple = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=_lowerCAmelCase ) lowercase :int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :int = self.get_inputs() lowercase :Optional[int] = pipe(**_lowerCAmelCase ).images lowercase :List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowercase :Union[str, Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Dict = 0 def callback_fn(_lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor ) -> None: lowercase :Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase :Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowercase :Optional[int] = latents[0, -3:, -3:, -1] lowercase :Any = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase :str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowercase :Optional[int] = latents[0, -3:, -3:, -1] lowercase :Optional[Any] = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase :int = False lowercase :Tuple = "stabilityai/stable-diffusion-2-base" lowercase :Optional[Any] = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase :Optional[int] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :int = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE ( self: str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase :Optional[Any] = "stabilityai/stable-diffusion-2-base" lowercase :Dict = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase :Union[str, Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase :Optional[int] = self.get_inputs() lowercase :Union[str, Any] = pipe(**_lowerCAmelCase ) lowercase :List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
158
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase__ ( lowerCamelCase ): if is_torch_version("<", "2.0.0" ) or not hasattr(lowerCamelCase, "_dynamo" ): return False return isinstance(lowerCamelCase, torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase = True ): lowercase :Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase :str = is_compiled_module(lowerCamelCase ) if is_compiled: lowercase :str = model lowercase :str = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase, lowerCamelCase ): lowercase :Any = model.module if not keep_fpaa_wrapper: lowercase :List[Any] = getattr(lowerCamelCase, "forward" ) lowercase :Union[str, Any] = model.__dict__.pop("_original_forward", lowerCamelCase ) if original_forward is not None: while hasattr(lowerCamelCase, "__wrapped__" ): lowercase :Tuple = forward.__wrapped__ if forward == original_forward: break lowercase :Tuple = forward if getattr(lowerCamelCase, "_converted_to_transformer_engine", lowerCamelCase ): convert_model(lowerCamelCase, to_transformer_engine=lowerCamelCase ) if is_compiled: lowercase :List[Any] = model lowercase :Optional[int] = compiled_model return model def UpperCAmelCase__ ( ): PartialState().wait_for_everyone() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase, lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase, lowerCamelCase ) @contextmanager def UpperCAmelCase__ ( **lowerCamelCase ): for key, value in kwargs.items(): lowercase :List[str] = str(lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase__ ( lowerCamelCase ): if not hasattr(lowerCamelCase, "__qualname__" ) and not hasattr(lowerCamelCase, "__name__" ): lowercase :Optional[int] = getattr(lowerCamelCase, "__class__", lowerCamelCase ) if hasattr(lowerCamelCase, "__qualname__" ): return obj.__qualname__ if hasattr(lowerCamelCase, "__name__" ): return obj.__name__ return str(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for key, value in source.items(): if isinstance(lowerCamelCase, lowerCamelCase ): lowercase :Tuple = destination.setdefault(lowerCamelCase, {} ) merge_dicts(lowerCamelCase, lowerCamelCase ) else: lowercase :Optional[Any] = value return destination def UpperCAmelCase__ ( lowerCamelCase = None ): if port is None: lowercase :Tuple = 29500 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
158
1
def UpperCamelCase_( lowerCamelCase_ ) -> list: if len(lowerCamelCase_ ) < 2: return collection def circle_sort_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> bool: _lowercase : Any = False if low == high: return swapped _lowercase : Union[str, Any] = low _lowercase : List[Any] = high while left < right: if collection[left] > collection[right]: _lowercase , _lowercase : Optional[int] = ( collection[right], collection[left], ) _lowercase : int = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowercase , _lowercase : Optional[int] = ( collection[right + 1], collection[left], ) _lowercase : List[Any] = True _lowercase : Tuple = low + int((high - low) / 2 ) _lowercase : Tuple = circle_sort_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Any = circle_sort_util(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) return swapped or left_swap or right_swap _lowercase : Union[str, Any] = True while is_not_sorted is True: _lowercase : Union[str, Any] = circle_sort_util(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE : int = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
21
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A: int = 5_0_0_0_0 A: List[Any] = 5_0_0_0 A , A: Tuple = os.path.split(__file__) A: Dict = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _snake_case ( UpperCamelCase : datasets.Dataset , UpperCamelCase : List[str] ): for i in range(lowerCAmelCase__ ): UpperCAmelCase : str = dataset[i] @get_duration def _snake_case ( UpperCamelCase : datasets.Dataset , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase : Optional[int] = dataset[i : i + batch_size] @get_duration def _snake_case ( UpperCamelCase : datasets.Dataset , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): UpperCAmelCase : Dict = dataset[i] @get_duration def _snake_case ( UpperCamelCase : datasets.Dataset , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : int ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase : int = dataset[i : i + batch_size] def _snake_case ( ): UpperCAmelCase : Any = {'''num examples''': SPEED_TEST_N_EXAMPLES} UpperCAmelCase : List[Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] UpperCAmelCase : Union[str, Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) UpperCAmelCase : Optional[Any] = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) UpperCAmelCase : Optional[int] = generate_example_dataset( os.path.join(lowerCAmelCase__ , """dataset.arrow""" ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase : str = func(lowerCAmelCase__ , **lowerCAmelCase__ ) print("""shuffling dataset""" ) UpperCAmelCase : int = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(lowerCAmelCase__ ) ) UpperCAmelCase : List[Any] = func( lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , """wb""" ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
351
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A: str = None A: List[Any] = logging.get_logger(__name__) A: Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A: Union[str, Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } A: Tuple = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off A: Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Tuple = ['input_ids', 'attention_mask'] __lowerCAmelCase : str = MBartTokenizer __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = vocab_file UpperCAmelCase : Optional[int] = False if not self.vocab_file else True UpperCAmelCase : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCAmelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase : int = src_lang if src_lang is not None else """en_XX""" UpperCAmelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase : List[str] = src_lang UpperCAmelCase : Union[str, Any] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "en_XX" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "ro_RO" , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : int = src_lang UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = [] UpperCAmelCase : Tuple = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Tuple = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : str = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return UpperCAmelCase : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
76
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = '''falcon''' __lowercase : Optional[int] = ['''past_key_values'''] def __init__( self ,__UpperCAmelCase=6_5024 ,__UpperCAmelCase=4544 ,__UpperCAmelCase=32 ,__UpperCAmelCase=71 ,__UpperCAmelCase=1E-5 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=True ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=11 ,__UpperCAmelCase=11 ,**__UpperCAmelCase ,) -> Union[str, Any]: lowerCAmelCase__ : List[str] = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase__ : List[str] = kwargs.pop("""n_embed""" ,__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = hidden_size if n_embed is None else n_embed lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Optional[Any] = num_attention_heads lowerCAmelCase__ : str = layer_norm_epsilon lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : str = use_cache lowerCAmelCase__ : str = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : Tuple = bos_token_id lowerCAmelCase__ : Union[str, Any] = eos_token_id lowerCAmelCase__ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads lowerCAmelCase__ : int = alibi lowerCAmelCase__ : Any = new_decoder_architecture lowerCAmelCase__ : Optional[int] = multi_query # Ignored when new_decoder_architecture is True lowerCAmelCase__ : Union[str, Any] = parallel_attn lowerCAmelCase__ : str = bias super().__init__(bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) @property def UpperCAmelCase_ ( self ) -> str: return self.hidden_size // self.num_attention_heads @property def UpperCAmelCase_ ( self ) -> Tuple: return not self.alibi
37
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } _lowerCAmelCase = '''▁''' class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase="[CLS]" ,__UpperCAmelCase="[SEP]" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="[SEP]" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="[CLS]" ,__UpperCAmelCase="[MASK]" ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : Tuple = ( AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ,normalized=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token ) lowerCAmelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : str = do_lower_case lowerCAmelCase__ : int = remove_space lowerCAmelCase__ : Tuple = keep_accents lowerCAmelCase__ : Any = vocab_file lowerCAmelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return len(self.sp_model ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: lowerCAmelCase__ : Optional[Any] = self.__dict__.copy() lowerCAmelCase__ : Optional[Any] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: if self.remove_space: lowerCAmelCase__ : int = """ """.join(inputs.strip().split() ) else: lowerCAmelCase__ : str = inputs lowerCAmelCase__ : Tuple = outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: lowerCAmelCase__ : Any = unicodedata.normalize("""NFKD""" ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = """""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: lowerCAmelCase__ : Tuple = outputs.lower() return outputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) lowerCAmelCase__ : str = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCAmelCase__ : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase__ : str = cur_pieces[1:] else: lowerCAmelCase__ : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: return self.sp_model.IdToPiece(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : str = [] lowerCAmelCase__ : Tuple = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : List[str] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : int = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : int = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
37
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase__ : Tuple = Lock() def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_UpperCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __UpperCAmelCase : Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __UpperCAmelCase : str = min(_UpperCAmelCase, _UpperCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_UpperCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __UpperCAmelCase : List[str] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __UpperCAmelCase : List[Any] = max(_UpperCAmelCase, _UpperCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_UpperCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Dict = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __UpperCAmelCase : List[Any] = Pipe() __UpperCAmelCase : Any = Pipe() process_array_.append( Process( target=_UpperCAmelCase, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) __UpperCAmelCase : Any = temp_rs __UpperCAmelCase : List[Any] = temp_rr for i in range(1, len(_UpperCAmelCase ) - 1 ): __UpperCAmelCase : Union[str, Any] = Pipe() __UpperCAmelCase : str = Pipe() process_array_.append( Process( target=_UpperCAmelCase, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) __UpperCAmelCase : Dict = temp_rs __UpperCAmelCase : List[str] = temp_rr process_array_.append( Process( target=_UpperCAmelCase, args=( len(_UpperCAmelCase ) - 1, arr[len(_UpperCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_UpperCAmelCase ) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(_UpperCAmelCase ) ): __UpperCAmelCase : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = list(range(10, 0, -1 ) ) print("Initial List" ) print(*_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = odd_even_transposition(_UpperCAmelCase ) print("Sorted List\n" ) print(*_UpperCAmelCase ) if __name__ == "__main__": main()
37
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowerCAmelCase__ : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __UpperCamelCase ( ): __UpperCAmelCase : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) __UpperCAmelCase : Union[str, Any] = g.get_repo("huggingface/transformers" ) __UpperCAmelCase : Union[str, Any] = repo.get_issues(state="open" ) for issue in open_issues: __UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase : i.created_at, reverse=_UpperCAmelCase ) __UpperCAmelCase : Any = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
37
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self : Any ): A_ = 1 A_ = 3 A_ = (32, 32) A_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def __A ( self : Union[str, Any] ): torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def __A ( self : Dict ): torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __A ( self : str ): torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): def extract(*UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ): class _a : """simple docstring""" def __init__( self : str ): A_ = torch.ones([0] ) def __A ( self : List[Any] , UpperCAmelCase : List[str] ): self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def __A ( self : Dict ): A_ = "cpu" # ensure determinism for the device-dependent torch.Generator A_ = self.dummy_cond_unet A_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) A_ = self.dummy_vae A_ = self.dummy_text_encoder A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk A_ = StableDiffusionPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) A_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = "A painting of a squirrel eating a burger" A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) A_ = sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) A_ = output.images A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=UpperCAmelCase , )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : List[Any] ): A_ = "cpu" # ensure determinism for the device-dependent torch.Generator A_ = self.dummy_cond_unet A_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) A_ = self.dummy_vae A_ = self.dummy_text_encoder A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk A_ = StableDiffusionPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) A_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = "A painting of a squirrel eating a burger" A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) A_ = sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) A_ = output.images A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=UpperCAmelCase , )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : Any ): A_ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=UpperCAmelCase ) assert isinstance(UpperCAmelCase , UpperCAmelCase ) assert isinstance(pipe.scheduler , UpperCAmelCase ) assert pipe.safety_checker is None A_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase ) A_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None A_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __A ( self : Dict ): A_ = self.dummy_cond_unet A_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) A_ = self.dummy_vae A_ = self.dummy_text_encoder A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 A_ = unet.half() A_ = vae.half() A_ = bert.half() # make sure here that pndm scheduler skips prk A_ = StableDiffusionPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) A_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = "A painting of a squirrel eating a burger" A_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ): A_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=UpperCAmelCase ) A_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) A_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) A_ = 4003660346 A_ = 7 # without safety guidance (sld_guidance_scale = 0) A_ = torch.manual_seed(UpperCAmelCase ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) A_ = output.images A_ = image[0, -3:, -3:, -1] A_ = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) A_ = torch.manual_seed(UpperCAmelCase ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) A_ = output.images A_ = image[0, -3:, -3:, -1] A_ = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : Tuple ): A_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=UpperCAmelCase ) A_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) A_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = "padme amidala taking a bath artwork, safe for work, no nudity" A_ = 2734971755 A_ = 7 A_ = torch.manual_seed(UpperCAmelCase ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) A_ = output.images A_ = image[0, -3:, -3:, -1] A_ = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 A_ = torch.manual_seed(UpperCAmelCase ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) A_ = output.images A_ = image[0, -3:, -3:, -1] A_ = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : List[str] ): A_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) A_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) A_ = 1044355234 A_ = 12 A_ = torch.manual_seed(UpperCAmelCase ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) A_ = output.images A_ = image[0, -3:, -3:, -1] A_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 A_ = torch.manual_seed(UpperCAmelCase ) A_ = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) A_ = output.images A_ = image[0, -3:, -3:, -1] A_ = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
312
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _a : """simple docstring""" @property def __A ( self : Union[str, Any] ): return self.get_dummy_input() @property def __A ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=False , ): A_ = 4 A_ = 32 A_ = (32, 32) A_ = torch.manual_seed(0 ) A_ = torch.device(UpperCAmelCase ) A_ = (batch_size, num_channels) + sizes A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ) A_ = {"hidden_states": hidden_states} if include_temb: A_ = 128 A_ = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase , device=UpperCAmelCase ) if include_res_hidden_states_tuple: A_ = torch.manual_seed(1 ) A_ = (randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase ),) if include_encoder_hidden_states: A_ = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase ) if include_skip_sample: A_ = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase , device=UpperCAmelCase ) return dummy_input def __A ( self : Optional[int] ): A_ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": A_ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A_ = self.dummy_input return init_dict, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) unet_block.to(UpperCAmelCase ) unet_block.eval() with torch.no_grad(): A_ = unet_block(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] self.assertEqual(output.shape , self.output_shape ) A_ = output[0, -1, -3:, -3:] A_ = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self : Union[str, Any] ): A_ , A_ = self.prepare_init_args_and_inputs_for_common() A_ = self.block_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = model(**UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = output[0] A_ = torch.device(UpperCAmelCase ) A_ = randn_tensor(output.shape , device=UpperCAmelCase ) A_ = torch.nn.functional.mse_loss(UpperCAmelCase , UpperCAmelCase ) loss.backward()
312
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class snake_case__(unittest.TestCase ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : Tuple=7 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Tuple=99 , SCREAMING_SNAKE_CASE : Optional[int]=32 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : List[Any]=37 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : str=512 , SCREAMING_SNAKE_CASE : Any=16 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : List[Any]=4 , ): lowercase__ : List[Any] = parent lowercase__ : int = batch_size lowercase__ : Tuple = seq_length lowercase__ : int = is_training lowercase__ : Dict = use_attention_mask lowercase__ : Optional[Any] = use_token_type_ids lowercase__ : Any = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : str = type_vocab_size lowercase__ : Optional[int] = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Optional[Any] = num_choices def snake_case ( self : int ): lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Union[str, Any] = None if self.use_attention_mask: lowercase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[Any] = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Tuple = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case ( self : List[Any] ): lowercase__ : List[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self : str ): lowercase__ : int = FlaxAlbertModelTester(self ) @slow def snake_case ( self : str ): for model_class_name in self.all_model_classes: lowercase__ : str = model_class_name.from_pretrained("albert-base-v2" ) lowercase__ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : Optional[int] ): lowercase__ : Union[str, Any] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) lowercase__ : Dict = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase__ : List[str] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ : Dict = model(_lowercase , attention_mask=_lowercase )[0] lowercase__ : Any = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) lowercase__ : Optional[int] = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
366
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} lowerCAmelCase__ = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } lowerCAmelCase__ = {'''vinai/bartpho-syllable''': 1_0_2_4} class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]="<s>" , SCREAMING_SNAKE_CASE : Optional[int]="</s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : List[str]="<s>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE : Tuple="<pad>" , SCREAMING_SNAKE_CASE : List[str]="<mask>" , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : int , ): # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Dict = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token lowercase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) lowercase__ : Dict = vocab_file lowercase__ : Union[str, Any] = monolingual_vocab_file lowercase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ : Any = {} lowercase__ : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: lowercase__ : Dict = cnt cnt += 1 with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as f: for line in f.readlines(): lowercase__ : int = line.strip().split()[0] lowercase__ : List[str] = len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: lowercase__ : Optional[Any] = len(self.fairseq_tokens_to_ids ) lowercase__ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): lowercase__ : Dict = self.__dict__.copy() lowercase__ : Union[str, Any] = None lowercase__ : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase__ : Dict = {} lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] lowercase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self : Optional[int] ): return len(self.fairseq_ids_to_tokens ) def snake_case ( self : List[Any] ): lowercase__ : Any = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : int ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Any ): return self.fairseq_ids_to_tokens[index] def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : str = "".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , " " ).strip() return out_string def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : str = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[str] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , "wb" ) as fi: lowercase__ : str = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(SCREAMING_SNAKE_CASE )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
121
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : int , lowercase : int=1024 , lowercase : int=1024 , lowercase : Tuple=False , **lowercase : Optional[int] ) -> Union[str, Any]: _a = AutoTokenizer.from_pretrained(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="train" , **lowercase ) _a = tok.pad_token_id def get_lens(lowercase : Optional[int] ): _a = tqdm( DataLoader(lowercase , batch_size=512 , num_workers=8 , shuffle=lowercase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _a = [] for batch in dl: _a = batch["input_ids"].ne(lowercase ).sum(1 ).tolist() _a = batch["labels"].ne(lowercase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase , lowercase ): max_lens.append(max(lowercase , lowercase ) ) else: max_lens.extend(lowercase ) return max_lens _a = get_lens(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="val" , **lowercase ) _a = get_lens(lowercase ) pickle_save(lowercase , train_ds.len_file ) pickle_save(lowercase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
63
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): A = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = 'sgugger/tiny-distilbert-classification' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,only_pretrain_model=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,torchscript=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,fpaa=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` A = None A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' ,'Can\'t do half precision' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,save_to_csv=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(A_ ,'inf_time.csv' ) ,train_memory_csv_file=os.path.join(A_ ,'train_mem.csv' ) ,inference_memory_csv_file=os.path.join(A_ ,'inf_mem.csv' ) ,train_time_csv_file=os.path.join(A_ ,'train_time.csv' ) ,env_info_csv_file=os.path.join(A_ ,'env.csv' ) ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'env.csv' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A_ : Optional[int] ): self.assertTrue(hasattr(A_ ,'sequential' ) ) self.assertTrue(hasattr(A_ ,'cumulative' ) ) self.assertTrue(hasattr(A_ ,'current' ) ) self.assertTrue(hasattr(A_ ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(A_ ,'log.txt' ) ,log_print=A_ ,trace_memory_line_by_line=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ ,'log.txt' ) ).exists() )
74
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __a :int = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if "resnet-50" in model_name: A_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: A_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) A_ = DetrConfig(use_timm_backbone=a__ ,backbone_config=a__ ) # set label attributes A_ = "panoptic" in model_name if is_panoptic: A_ = 250 else: A_ = 91 A_ = "huggingface/label-files" A_ = "coco-detection-id2label.json" A_ = json.load(open(hf_hub_download(a__ ,a__ ,repo_type="dataset" ) ,"r" ) ) A_ = {int(a__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = state_dict.pop(a__ ) A_ = val def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Union[str, Any]=False ): """simple docstring""" A_ = "" if is_panoptic: A_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) A_ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:256, :] A_ = in_proj_bias[:256] A_ = in_proj_weight[256:512, :] A_ = in_proj_bias[256:512] A_ = in_proj_weight[-256:, :] A_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) A_ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:256, :] A_ = in_proj_bias[:256] A_ = in_proj_weight[256:512, :] A_ = in_proj_bias[256:512] A_ = in_proj_weight[-256:, :] A_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A_ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) A_ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ = in_proj_weight_cross_attn[:256, :] A_ = in_proj_bias_cross_attn[:256] A_ = in_proj_weight_cross_attn[256:512, :] A_ = in_proj_bias_cross_attn[256:512] A_ = in_proj_weight_cross_attn[-256:, :] A_ = in_proj_bias_cross_attn[-256:] def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(a__ ,stream=a__ ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Dict=None ,__UpperCamelCase : Any=False ): """simple docstring""" A_ , A_ = get_detr_config(a__ ) # load original model from torch hub A_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f'''Converting model {model_name}...''' ) A_ = torch.hub.load("facebookresearch/detr" ,model_name_to_original_name[model_name] ,pretrained=a__ ).eval() A_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(a__ ): if is_panoptic: A_ = "detr." + src rename_key(a__ ,a__ ,a__ ) # query, key and value matrices need special treatment read_in_q_k_v(a__ ,is_panoptic=a__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): A_ = state_dict.pop(a__ ) A_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ = state_dict.pop(a__ ) A_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: A_ = state_dict.pop(a__ ) A_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): A_ = state_dict.pop(a__ ) A_ = val # finally, create HuggingFace model and load state dict A_ = DetrForSegmentation(a__ ) if is_panoptic else DetrForObjectDetection(a__ ) model.load_state_dict(a__ ) model.eval() # verify our conversion on an image A_ = "coco_panoptic" if is_panoptic else "coco_detection" A_ = DetrImageProcessor(format=a__ ) A_ = processor(images=prepare_img() ,return_tensors="pt" ) A_ = encoding["pixel_values"] A_ = detr(a__ ) A_ = model(a__ ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1E-3 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __a :Tuple = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') __a :Optional[int] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
361
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
0
from heapq import heappop, heappush import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : tuple[int, int] , _A : tuple[int, int] , _A : bool , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =grid.shape lowerCamelCase_ =[-1, 1, 0, 0] lowerCamelCase_ =[0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase_ , lowerCamelCase_ =[(0, source)], set() lowerCamelCase_ =np.full((rows, cols) , np.inf ) lowerCamelCase_ =0 lowerCamelCase_ =np.empty((rows, cols) , dtype=_A ) lowerCamelCase_ =None while queue: ((lowerCamelCase_) , (lowerCamelCase_)) =heappop(_A ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase_ =[] while (x, y) != source: path.append((x, y) ) lowerCamelCase_ , lowerCamelCase_ =predecessors[x, y] path.append(_A ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_A ) ): lowerCamelCase_ , lowerCamelCase_ =x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase_ =grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_A , (dist + 1, (nx, ny)) ) lowerCamelCase_ =dist + 1 lowerCamelCase_ =(x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
154
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __UpperCamelCase ( _A : Dict=None ) ->Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""tpu-config""" , description=_description ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments lowerCamelCase_ =parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_A , default=_A , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_A , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_A , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) lowerCamelCase_ =parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_A , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Tuple ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase_ =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase_ =defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase_ =defaults.commands if not args.tpu_name: lowerCamelCase_ =defaults.tpu_name if not args.tpu_zone: lowerCamelCase_ =defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase_ ="""git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowerCamelCase_ ="""accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _A ): lowerCamelCase_ =f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: lowerCamelCase_ =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): lowerCamelCase_ =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase_ =["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowerCamelCase_ ="""; """.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase_ =["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =tpu_command_parser() lowerCamelCase_ =parser.parse_args() tpu_command_launcher(_A )
154
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
368
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase_ : Any = """examples/""" UpperCAmelCase_ : Optional[int] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ : List[Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ : Optional[int] = """README.md""" def _A (__a , __a , __a ) -> int: """simple docstring""" with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a ) SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a ) with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__a ) def _A (__a ) -> int: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' ) def _A (__a , __a=False ) -> List[str]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a , __a , __a ) if not patch: update_version_in_examples(__a ) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?''' with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__a ) def _A () -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.read() SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _A (__a=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version print(f'Updating version to {version}.' ) global_version_update(__a , patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def _A () -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_version() SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version print(f'Updating version to {version}.' ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
318
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCAmelCase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE : dict[str, str | None] = {} SCREAMING_SNAKE_CASE : List[str] = source_vertex def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vertex queue.append(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE : Tuple = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCamelCase_ ) return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}''' if __name__ == "__main__": __UpperCAmelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
323
1
def A ( _UpperCAmelCase : int ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) _UpperCAmelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _UpperCAmelCase = 1 if upper_limit > 0: _UpperCAmelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_UpperCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: UpperCAmelCase__ = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
290
UpperCAmelCase__ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def A ( _UpperCAmelCase : dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ) -> list[str]: '''simple docstring''' _UpperCAmelCase = set() # keep track of all the paths to be checked _UpperCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _UpperCAmelCase = queue.pop(0 ) # get the last node from the path _UpperCAmelCase = path[-1] if node not in explored: _UpperCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _UpperCAmelCase = list(_UpperCAmelCase ) new_path.append(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCAmelCase ) # in case there's no path between the 2 nodes return [] def A ( _UpperCAmelCase : dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _UpperCAmelCase = [start] _UpperCAmelCase = set(_UpperCAmelCase ) # Keep tab on distances from `start` node. _UpperCAmelCase = {start: 0, target: -1} while queue: _UpperCAmelCase = queue.pop(0 ) if node == target: _UpperCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) _UpperCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
290
1
'''simple docstring''' def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2, arr_size - 1, 2 ): if arr[i + 1] < arr[i]: SCREAMING_SNAKE_CASE__ : Any =arr[i + 1], arr[i] return arr if __name__ == "__main__": a_ = list(range(1_0, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
152
"""simple docstring""" __A = [ (1_0_0_0, "M"), (9_0_0, "CM"), (5_0_0, "D"), (4_0_0, "CD"), (1_0_0, "C"), (9_0, "XC"), (5_0, "L"), (4_0, "XL"), (1_0, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: lowercase__: Dict = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} lowercase__: List[str] = 0 lowercase__: List[Any] = 0 while place < len(__UpperCAmelCase ): if (place + 1 < len(__UpperCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> str: lowercase__: Optional[Any] = [] for arabic, roman in ROMAN: ((lowercase__), (lowercase__)): Tuple = divmod(__UpperCAmelCase , __UpperCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
177
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : Union[tf.Tensor, np.ndarray] ): if isinstance(__lowerCamelCase ,np.ndarray ): return list(tensor.shape ) lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic lowercase_ :Union[str, Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 ,axis=__lowerCamelCase ,name=__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : List[str]=1e-5 ,__lowerCamelCase : List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase ,__lowerCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized lowercase_ :List[str] = tf.nn.moments(__lowerCamelCase ,axes=[axis] ,keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ :Union[str, Any] = [1] * inputs.shape.rank lowercase_ :Optional[Any] = shape_list(__lowerCamelCase )[axis] lowercase_ :List[str] = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Dict = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. lowercase_ :Union[str, Any] = tf.nn.batch_normalization( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,offset=__lowerCamelCase ,scale=__lowerCamelCase ,variance_epsilon=__lowerCamelCase ,) return outputs def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any]=0 ,__lowerCamelCase : Dict=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) lowercase_ :Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ :List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 ) return tf.reshape(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ): if not isinstance(__lowerCamelCase ,tf.Tensor ): lowercase_ :str = tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ :List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ :Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ :str = ( tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : int ,__lowerCamelCase : str = "input_ids" ): tf.debugging.assert_less( __lowerCamelCase ,tf.cast(__lowerCamelCase ,dtype=tensor.dtype ) ,message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ): lowercase_ :int = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ :Union[str, Any] = [x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}' ) lowercase_ :Union[str, Any] = np.asarray(__lowerCamelCase ) lowercase_ :Optional[int] = 1 lowercase_ :int = np.array_split(__lowerCamelCase ,__lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ :List[Any] = np.array_split(__lowerCamelCase ,__lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): lowercase_ :int = chunk_data else: lowercase_ :Tuple = data def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Tuple ): if name in group.attrs: lowercase_ :Optional[Any] = [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs[name]] else: lowercase_ :List[str] = [] lowercase_ :str = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase_ ( __lowerCamelCase : str ): def _expand_single_ad_tensor(__lowerCamelCase : Tuple ): if isinstance(__lowerCamelCase ,tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase ,axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor ,__lowerCamelCase )
353
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int | float | str ): try: lowercase_ :Optional[int] = float(__lowerCamelCase ) except ValueError: raise ValueError("Please enter a valid number" ) lowercase_ :Dict = decimal - int(__lowerCamelCase ) if fractional_part == 0: return int(__lowerCamelCase ), 1 else: lowercase_ :Tuple = len(str(__lowerCamelCase ).split("." )[1] ) lowercase_ :Optional[Any] = int(decimal * (10**number_of_frac_digits) ) lowercase_ :Dict = 10**number_of_frac_digits lowercase_ , lowercase_ :Optional[int] = denominator, numerator while True: lowercase_ :Any = dividend % divisor if remainder == 0: break lowercase_ , lowercase_ :Optional[int] = divisor, remainder lowercase_ , lowercase_ :Optional[int] = numerator / divisor, denominator / divisor return int(__lowerCamelCase ), int(__lowerCamelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction('67') = }''') print(F'''{decimal_to_fraction('45.0') = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction('6.25') = }''') print(F'''{decimal_to_fraction('78td') = }''')
147
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
249
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
249
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __lowercase = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' __lowercase = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' __lowercase = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) __UpperCamelCase :Optional[Any] = float(spearmanr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32'''), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32'''), }) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Tuple: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__lowercase , __lowercase)} elif self.config_name == "stsb": return pearson_and_spearman(__lowercase , __lowercase) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__lowercase , __lowercase) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__lowercase , __lowercase)} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''')
105
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
105
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase__ ( __lowerCamelCase): UpperCamelCase_ = ["pixel_values"] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : bool = True , **UpperCamelCase__ : str , ): '''simple docstring''' super().__init__(**__A ) SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {'''shortest_edge''': 224} SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__A , default_to_square=__A ) SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE : int = get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE : List[str] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Tuple = do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size SCREAMING_SNAKE_CASE : Any = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_normalize SCREAMING_SNAKE_CASE : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE : Tuple = do_convert_rgb def __A ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def __A ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def __A ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' return rescale(__A , scale=__A , data_format=__A , **__A ) def __A ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , ): '''simple docstring''' return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def __A ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__A , param_name='''size''' , default_to_square=__A ) SCREAMING_SNAKE_CASE : int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE : int = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE : Any = [convert_to_rgb(__A ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Optional[int] = [to_numpy_array(__A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : List[str] = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : str = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : str = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] SCREAMING_SNAKE_CASE : Tuple = [to_channel_dimension_format(__A , __A ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
182
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[str] ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ), end="\t" ) else: print("INF", end="\t" ) print() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = [[float("inf" ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _SCREAMING_SNAKE_CASE : int = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase, __lowerCamelCase ) return dist, v if __name__ == "__main__": UpperCamelCase__ =int(input('Enter number of vertices: ')) UpperCamelCase__ =int(input('Enter number of edges: ')) UpperCamelCase__ =[[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ =0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ =int(input('Enter source:')) UpperCamelCase__ =int(input('Enter destination:')) UpperCamelCase__ =float(input('Enter weight:')) UpperCamelCase__ =weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
325
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase_ : Optional[Any] = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> List[Any]: """simple docstring""" a_ : Union[str, Any] = list(s_dict.keys() ) for key in keys: a_ : Union[str, Any] = R'.*/layers_(\d+)' a_ : Optional[int] = key if re.match(__A , __A ): a_ : Any = re.sub(R'layers_(\d+)' , R'block/\1/layer' , __A ) a_ : int = R'(encoder|decoder)\/' if re.match(__A , __A ): a_ : List[str] = re.match(__A , __A ).groups() if groups[0] == "encoder": a_ : int = re.sub(R'/mlp/' , R'/1/mlp/' , __A ) a_ : Optional[int] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , __A ) elif groups[0] == "decoder": a_ : List[str] = re.sub(R'/mlp/' , R'/2/mlp/' , __A ) a_ : List[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , __A ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: a_ : List[Any] = new_key.replace(__A , __A ) print(F"""{key} -> {new_key}""" ) a_ : List[Any] = s_dict.pop(__A ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a_ : int = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a_ : int = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: a_ : List[Any] = s_dict[key].shape[0] a_ : str = s_dict[key] for idx in range(__A ): a_ : str = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(__A ) return s_dict UpperCAmelCase_ : Optional[Any] = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Tuple ) -> List[Any]: """simple docstring""" import regex as re with open(__A , 'r' ) as f: a_ : int = f.read() a_ : Optional[int] = re.findall(R'(.*) = ([0-9.]*)' , __A ) a_ : Optional[int] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": a_ : int = float(__A ) if '.' in value else int(__A ) a_ : int = re.findall(R'(.*activations) = \(\'(.*)\',\)' , __A )[0] a_ : int = str(activation[1] ) a_ : Union[str, Any] = num_experts a_ : str = SwitchTransformersConfig(**__A ) return config def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[int]=None , __A : Dict="./" , __A : Optional[int]=8 ) -> Union[str, Any]: """simple docstring""" print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) a_ : Any = checkpoints.load_tax_checkpoint(__A ) if gin_file is not None: a_ : Tuple = convert_gin_to_config(__A , __A ) else: a_ : Dict = SwitchTransformersConfig.from_pretrained(__A ) a_ : Union[str, Any] = SwitchTransformersForConditionalGeneration(__A ) a_ : Tuple = flax_params['target'] a_ : Union[str, Any] = flatten_dict(__A , sep='/' ) a_ : Dict = rename_keys(__A ) a_ : List[str] = unflatten_dict(__A , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__A , __A ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(__A ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
32
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') a_ = parser.parse_args() if args.model_type == "roberta": a_ = RobertaForMaskedLM.from_pretrained(args.model_name) a_ = 'roberta' elif args.model_type == "gpt2": a_ = GPTaLMHeadModel.from_pretrained(args.model_name) a_ = 'transformer' a_ = model.state_dict() a_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a_ = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a_ = F"""{prefix}.embeddings.{w}.weight""" a_ = state_dict[param_name] for w in ["weight", "bias"]: a_ = F"""{prefix}.embeddings.LayerNorm.{w}""" a_ = state_dict[param_name] # Transformer Blocks # a_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] a_ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a_ = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: a_ = state_dict[F"""lm_head.dense.{w}"""] a_ = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a_ = state_dict[F"""{prefix}.ln_f.{w}"""] a_ = state_dict['lm_head.weight'] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
175
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = TaConfig.from_json_file(a__ ) print(F"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : Dict = TaForConditionalGeneration(a__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(a__ , a__ , a__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(a__ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
19
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a_ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : Optional[Any] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Union[PIL.Image.Image, np.ndarray] class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" super().__init__() self.register_modules( prior=lowerCAmelCase, image_encoder=lowerCAmelCase, image_processor=lowerCAmelCase, scheduler=lowerCAmelCase, renderer=lowerCAmelCase, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if latents is None: lowerCamelCase_ =randn_tensor(lowerCAmelCase, generator=lowerCAmelCase, device=lowerCAmelCase, dtype=lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase_ =latents.to(lowerCAmelCase ) lowerCamelCase_ =latents * scheduler.init_noise_sigma return latents def lowercase__ ( self, lowerCAmelCase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase_ =torch.device(f'''cuda:{gpu_id}''' ) lowerCamelCase_ =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase, lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder, '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCAmelCase, '''_hf_hook''' ) and hasattr(module._hf_hook, '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(image[0], torch.Tensor ): lowerCamelCase_ =torch.cat(lowerCAmelCase, axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCAmelCase, axis=0 ) if not isinstance(lowerCAmelCase, torch.Tensor ): lowerCamelCase_ =self.image_processor(lowerCAmelCase, return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ =image.to(dtype=self.image_encoder.dtype, device=lowerCAmelCase ) lowerCamelCase_ =self.image_encoder(lowerCAmelCase )['''last_hidden_state'''] lowerCamelCase_ =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ =image_embeds.repeat_interleave(lowerCAmelCase, dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ =torch.zeros_like(lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = 1, lowerCAmelCase = 25, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 4.0, lowerCAmelCase = 64, lowerCAmelCase = "pil", lowerCAmelCase = True, ): """simple docstring""" if isinstance(lowerCAmelCase, PIL.Image.Image ): lowerCamelCase_ =1 elif isinstance(lowerCAmelCase, torch.Tensor ): lowerCamelCase_ =image.shape[0] elif isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(image[0], (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ =len(lowerCAmelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCAmelCase )}''' ) lowerCamelCase_ =self._execution_device lowerCamelCase_ =batch_size * num_images_per_prompt lowerCamelCase_ =guidance_scale > 1.0 lowerCamelCase_ =self._encode_image(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) # prior self.scheduler.set_timesteps(lowerCAmelCase, device=lowerCAmelCase ) lowerCamelCase_ =self.scheduler.timesteps lowerCamelCase_ =self.prior.config.num_embeddings lowerCamelCase_ =self.prior.config.embedding_dim lowerCamelCase_ =self.prepare_latents( (batch_size, num_embeddings * embedding_dim), image_embeds.dtype, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, self.scheduler, ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ =latents.reshape(latents.shape[0], lowerCAmelCase, lowerCAmelCase ) for i, t in enumerate(self.progress_bar(lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ =self.scheduler.scale_model_input(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.prior( lowerCAmelCase, timestep=lowerCAmelCase, proj_embedding=lowerCAmelCase, ).predicted_image_embedding # remove the variance lowerCamelCase_, lowerCamelCase_ =noise_pred.split( scaled_model_input.shape[2], dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_, lowerCamelCase_ =noise_pred.chunk(2 ) lowerCamelCase_ =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ =self.scheduler.step( lowerCAmelCase, timestep=lowerCAmelCase, sample=lowerCAmelCase, ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCAmelCase ) lowerCamelCase_ =[] for i, latent in enumerate(lowerCAmelCase ): print() lowerCamelCase_ =self.renderer.decode( latent[None, :], lowerCAmelCase, size=lowerCAmelCase, ray_batch_size=4_096, n_coarse_samples=64, n_fine_samples=128, ) images.append(lowerCAmelCase ) lowerCamelCase_ =torch.stack(lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) lowerCamelCase_ =images.cpu().numpy() if output_type == "pil": lowerCamelCase_ =[self.numpy_to_pil(lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self, '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCAmelCase )
75
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def _snake_case ( UpperCamelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( UpperCamelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( UpperCamelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. UpperCAmelCase : int = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : Any = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : Any = Node(5 ) UpperCAmelCase : Optional[int] = Node(6 ) UpperCAmelCase : int = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : str = Node(9 ) print(is_full_binary_tree(UpperCamelCase ) ) print(depth_of_tree(UpperCamelCase ) ) print("""Tree is: """ ) display(UpperCamelCase ) if __name__ == "__main__": main()
109
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase ( _a ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : int=0.01 , lowerCAmelCase_ : Tuple=1_0_0_0 ): """simple docstring""" _A: Union[str, Any] = p_stop _A: Dict = max_length def __iter__( self : Union[str, Any] ): """simple docstring""" _A: int = 0 _A: Any = False while not stop and count < self.max_length: yield count count += 1 _A: List[str] = random.random() < self.p_stop class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[int]=True ): """simple docstring""" _A: Union[str, Any] = [ BatchSamplerShard(_a , 2 , _a , split_batches=_a , even_batches=_a ) for i in range(2 ) ] _A: Union[str, Any] = [list(_a ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_a ) for shard in batch_sampler_shards] , [len(_a ) for e in expected] ) self.assertListEqual(_a , _a ) def __magic_name__ ( self : List[Any] ): """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. _A: Optional[int] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) _A: int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a ) _A: Tuple = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A: int = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(_a , _a ) _A: List[str] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A: Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(_a , _a ) _A: Optional[int] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A: List[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(_a , _a ) _A: Optional[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is very small. _A: str = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_a , _a ) _A: Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [[], []] self.check_batch_sampler_shards(_a , _a ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. _A: List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) _A: Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: str = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size. _A: List[Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: str = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: int = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A: Any = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: Tuple = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is very small. _A: Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _A: List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: List[Any] = [[], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) def __magic_name__ ( self : List[str] ): """simple docstring""" # Check the shards when the dataset is a round multiple of total batch size. _A: str = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) _A: Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Optional[Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A: Optional[Any] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=_a ) _A: str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A: List[str] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Optional[Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=_a ) _A: Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A: Optional[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: List[str] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=_a ) _A: Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is very small. _A: Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _A: Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _A: Optional[Any] = [[], []] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) def __magic_name__ ( self : List[Any] ): """simple docstring""" # Check the shards when the dataset is a round multiple of batch size. _A: Optional[int] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) _A: Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size. _A: Dict = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: Tuple = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=_a ) _A: Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A: Optional[Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: List[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: int = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=_a ) _A: List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is very small. _A: int = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _A: Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _A: int = [[], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] _A: List[str] = [BatchSamplerShard(_a , 2 , _a , even_batches=_a ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Optional[Any]=False ): """simple docstring""" random.seed(_a ) _A: int = list(_a ) _A: List[str] = [ IterableDatasetShard( _a , batch_size=_a , drop_last=_a , num_processes=_a , process_index=_a , split_batches=_a , ) for i in range(_a ) ] _A: List[str] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_a ) iterable_dataset_lists.append(list(_a ) ) _A: Optional[int] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _A: Optional[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_a ) , len(_a ) ) self.assertTrue(len(_a ) % shard_batch_size == 0 ) _A: Tuple = [] for idx in range(0 , len(_a ) , _a ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_a ) < len(_a ): reference += reference self.assertListEqual(_a , reference[: len(_a )] ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[Any] = 4_2 _A: int = RandomIterableDataset() self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) # Edge case with a very small dataset _A: str = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: List[str] = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=_a ) _A: Any = SkipBatchSampler(_a , 2 ) self.assertListEqual(list(_a ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = DataLoader(list(range(1_6 ) ) , batch_size=4 ) _A: Any = skip_first_batches(_a , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __magic_name__ ( self : Any ): """simple docstring""" _A: str = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __magic_name__ ( self : List[Any] ): """simple docstring""" Accelerator() _A: List[Any] = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
370
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , **_UpperCamelCase , ) -> int: UpperCAmelCase_ : Dict = path_or_paths UpperCAmelCase_ : Union[str, Any] = split if split or isinstance(_UpperCamelCase , _UpperCamelCase ) else 'train' UpperCAmelCase_ : Dict = features UpperCAmelCase_ : Optional[int] = cache_dir UpperCAmelCase_ : int = keep_in_memory UpperCAmelCase_ : List[str] = streaming UpperCAmelCase_ : Any = num_proc UpperCAmelCase_ : List[Any] = kwargs @abstractmethod def __UpperCAmelCase ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , **_UpperCamelCase , ) -> Any: UpperCAmelCase_ : Any = features UpperCAmelCase_ : List[Any] = cache_dir UpperCAmelCase_ : List[Any] = keep_in_memory UpperCAmelCase_ : Any = streaming UpperCAmelCase_ : str = num_proc UpperCAmelCase_ : Optional[Any] = kwargs @abstractmethod def __UpperCAmelCase ( self ) -> Union[Dataset, IterableDataset]: pass
29
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __A = logging.get_logger(__name__) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def __A ( _lowercase , _lowercase , _lowercase = None ): '''simple docstring''' _A = tesseract_config if tesseract_config is not None else '''''' # apply OCR _A = to_pil_image(_lowercase ) _A ,_A = pil_image.size _A = pytesseract.image_to_data(_lowercase , lang=_lowercase , output_type='''dict''' , config=_lowercase ) _A ,_A ,_A ,_A ,_A = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _A = [idx for idx, word in enumerate(_lowercase ) if not word.strip()] _A = [word for idx, word in enumerate(_lowercase ) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] _A = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _A = [] for x, y, w, h in zip(_lowercase , _lowercase , _lowercase , _lowercase ): _A = [x, y, x + w, y + h] actual_boxes.append(_lowercase ) # finally, normalize the bounding boxes _A = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowercase , _lowercase , _lowercase ) ) assert len(_lowercase ) == len(_lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = ["pixel_values"] def __init__( self: str , __A: bool = True , __A: Dict[str, int] = None , __A: PILImageResampling = PILImageResampling.BILINEAR , __A: bool = True , __A: Optional[str] = None , __A: Optional[str] = "" , **__A: Tuple , ) -> None: super().__init__(**__A ) _A = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _A = get_size_dict(__A ) _A = do_resize _A = size _A = resample _A = apply_ocr _A = ocr_lang _A = tesseract_config def __A ( self: str , __A: np.ndarray , __A: Dict[str, int] , __A: PILImageResampling = PILImageResampling.BILINEAR , __A: Optional[Union[str, ChannelDimension]] = None , **__A: Optional[Any] , ) -> np.ndarray: _A = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _A = (size['''height'''], size['''width''']) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def __A ( self: Tuple , __A: ImageInput , __A: bool = None , __A: Dict[str, int] = None , __A: PILImageResampling = None , __A: bool = None , __A: Optional[str] = None , __A: Optional[str] = None , __A: Optional[Union[str, TensorType]] = None , __A: ChannelDimension = ChannelDimension.FIRST , **__A: int , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = size if size is not None else self.size _A = get_size_dict(__A ) _A = resample if resample is not None else self.resample _A = apply_ocr if apply_ocr is not None else self.apply_ocr _A = ocr_lang if ocr_lang is not None else self.ocr_lang _A = tesseract_config if tesseract_config is not None else self.tesseract_config _A = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. _A = [to_numpy_array(__A ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) _A = [] _A = [] for image in images: _A ,_A = apply_tesseract(__A , __A , __A ) words_batch.append(__A ) boxes_batch.append(__A ) if do_resize: _A = [self.resize(image=__A , size=__A , resample=__A ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _A = [flip_channel_order(__A ) for image in images] _A = [to_channel_dimension_format(__A , __A ) for image in images] _A = BatchFeature(data={'''pixel_values''': images} , tensor_type=__A ) if apply_ocr: _A = words_batch _A = boxes_batch return data
75
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __A ( self: str ) -> Any: _A = tempfile.mkdtemp() _A = 8 # DPR tok _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__A , exist_ok=__A ) _A = os.path.join(__A , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _A = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _A = dict(zip(__A , range(len(__A ) ) ) ) _A = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _A = {'''unk_token''': '''<unk>'''} _A = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__A , exist_ok=__A ) _A = os.path.join(__A , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(__A , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__A ) ) def __A ( self: List[str] ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __A ( self: List[str] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __A ( self: Tuple ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __A ( self: Union[str, Any] ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __A ( self: Dict ) -> Dict: _A = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __A ( self: Dict ) -> Union[str, Any]: _A = self.get_dummy_dataset() _A = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _A = dataset _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __A ( self: Optional[int] , __A: bool ) -> Any: _A = self.get_dummy_dataset() _A = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _A = os.path.join(self.tmpdirname , '''dataset''' ) _A = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __A ) , ) return retriever def __A ( self: Dict ) -> Dict: _A = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _A = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _A = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _A = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__A , open(__A , '''wb''' ) ) _A = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _A = RagRetriever( __A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __A ( self: Tuple ) -> Optional[int]: _A = 1 _A = self.get_dummy_canonical_hf_index_retriever() _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __A ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: Any ) -> Optional[Any]: _A = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _A = self.get_dummy_dataset() retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def __A ( self: str ) -> Any: _A = 1 _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __A ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: int ) -> Optional[int]: _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def __A ( self: str ) -> List[Any]: _A = 1 _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __A ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: List[Any] ) -> Any: _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) def __A ( self: Tuple ) -> List[Any]: _A = 1 _A = self.get_dummy_legacy_index_retriever() _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A ,_A ,_A = retriever.retrieve(__A , n_docs=__A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __A ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __A ( self: List[str] ) -> Optional[int]: _A = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__A ) _A = RagRetriever.from_pretrained(__A ) self.assertIsInstance(__A , __A ) _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever.retrieve(__A , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __A ( self: Tuple ) -> Union[str, Any]: import torch _A = 1 _A = self.get_dummy_canonical_hf_index_retriever() _A = [[5, 7], [10, 11]] _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever(__A , __A , prefix=retriever.config.generator.prefix , n_docs=__A ) _A ,_A ,_A = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__A , __A ) self.assertIsInstance(__A , __A ) self.assertIsInstance(__A , np.ndarray ) _A = retriever( __A , __A , prefix=retriever.config.generator.prefix , n_docs=__A , return_tensors='''pt''' , ) _A ,_A ,_A ,_A = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__A , torch.Tensor ) self.assertIsInstance(__A , torch.Tensor ) self.assertIsInstance(__A , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __A ( self: int ) -> Dict: _A = self.get_dpr_ctx_encoder_tokenizer() _A = 1 _A = self.get_dummy_custom_hf_index_retriever(from_disk=__A ) retriever.set_ctx_encoder_tokenizer(__A ) _A = [[5, 7], [10, 11]] _A = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _A = retriever(__A , __A , prefix=retriever.config.generator.prefix , n_docs=__A ) self.assertEqual( len(__A ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __A ) # check for doc token related keys in dictionary.
75
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): '''simple docstring''' def __init__( self: int ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Tuple ) -> None: warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" ,lowerCamelCase_ ,) super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ )
345
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase__ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE : Optional[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''pt''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) __lowercase = text_classifier('''This is great !''' ,top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) ,[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}] ) __lowercase = text_classifier(['''This is great !''', '''This is bad'''] ,top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) ,[ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] ,) __lowercase = text_classifier('''This is great !''' ,top_k=1 ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) # Legacy behavior __lowercase = text_classifier('''This is great !''' ,return_all_scores=lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) __lowercase = text_classifier('''This is great !''' ,return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) ,[[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}]] ) __lowercase = text_classifier(['''This is great !''', '''Something else'''] ,return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) ,[ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] ,) __lowercase = text_classifier(['''This is great !''', '''Something else'''] ,return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) ,[ {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, ] ,) @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ): import torch __lowercase = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''pt''' ,device=torch.device('''cpu''' ) ,) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @require_tf def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = pipeline( task='''text-classification''' ,model='''hf-internal-testing/tiny-random-distilbert''' ,framework='''tf''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = pipeline('''text-classification''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) @slow @require_tf def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = pipeline('''text-classification''' ,framework='''tf''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ): __lowercase = TextClassificationPipeline(model=lowercase__ ,tokenizer=lowercase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : str ): __lowercase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowercase = '''HuggingFace is in''' __lowercase = text_classifier(lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) ,[{'''label''': ANY(lowercase__ ), '''score''': ANY(lowercase__ )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) __lowercase = ['''HuggingFace is in ''', '''Paris is in France'''] __lowercase = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) ,[{'''label''': ANY(lowercase__ ), '''score''': ANY(lowercase__ )}, {'''label''': ANY(lowercase__ ), '''score''': ANY(lowercase__ )}] ,) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowercase = text_classifier(lowercase__ ,top_k=lowercase__ ) __lowercase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowercase__ ) ,[[{'''label''': ANY(lowercase__ ), '''score''': ANY(lowercase__ )}] * N, [{'''label''': ANY(lowercase__ ), '''score''': ANY(lowercase__ )}] * N] ,) __lowercase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} __lowercase = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) ,{'''label''': ANY(lowercase__ ), '''score''': ANY(lowercase__ )} ,) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowercase = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(lowercase__ ): text_classifier(lowercase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowercase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(lowercase__ ) ,[{'''label''': ANY(lowercase__ ), '''score''': ANY(lowercase__ )}] ,) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
52
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'gpt_neo' SCREAMING_SNAKE_CASE : Any = ['past_key_values'] SCREAMING_SNAKE_CASE : Union[str, Any] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Any ,lowercase__ : Tuple=5_0_2_5_7 ,lowercase__ : Union[str, Any]=2_0_4_8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : Optional[Any]=2_4 ,lowercase__ : Union[str, Any]=[[["global", "local"], 1_2]] ,lowercase__ : List[Any]=1_6 ,lowercase__ : Optional[Any]=None ,lowercase__ : Optional[int]=2_5_6 ,lowercase__ : Union[str, Any]="gelu_new" ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Dict=0.0 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[str]=1e-5 ,lowercase__ : Dict=0.0_2 ,lowercase__ : str=True ,lowercase__ : int=5_0_2_5_6 ,lowercase__ : Any=5_0_2_5_6 ,**lowercase__ : Optional[Any] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_layers __lowercase = num_heads __lowercase = intermediate_size __lowercase = window_size __lowercase = activation_function __lowercase = resid_dropout __lowercase = embed_dropout __lowercase = attention_dropout __lowercase = classifier_dropout __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id __lowercase = attention_types __lowercase = self.expand_attention_types_params(lowercase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " F"`config.num_layers = {self.num_layers}`. " '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Tuple ): __lowercase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" import torch __lowercase = input.size() __lowercase = len(A__ ) __lowercase = shape[dimension] __lowercase = torch.arange(0 , A__ , A__ ) __lowercase = torch.div(sizedim - size , A__ , rounding_mode='''floor''' ) + 1 __lowercase = torch.arange(A__ ) + low_indices[:min_length][:, None] __lowercase = [slice(A__ )] * rank __lowercase = indices __lowercase = input[s] __lowercase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def _A ( A__ , A__ ): """simple docstring""" import torch __lowercase = torch.arange(1 , A__ ) __lowercase = torch.remainder(A__ , A__ ) __lowercase = remainders == 0 __lowercase = candidates[divisor_indices] __lowercase = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode='''floor''' ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) __lowercase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self._config.num_heads def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = super(lowercase__ ,self ).generate_dummy_inputs( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) # We need to order the input in the way they appears in the forward() __lowercase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers ) ] __lowercase = common_inputs['''attention_mask'''] if self.use_past: __lowercase = ordered_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ): return 1_3
52
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = StableDiffusionXLImgaImgPipeline __magic_name__ :List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __magic_name__ :Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} __magic_name__ :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ :str = IMAGE_TO_IMAGE_IMAGE_PARAMS __magic_name__ :Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) lowerCAmelCase__ :str = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) lowerCAmelCase__ :int = CLIPTextModel(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :Any = CLIPTextModelWithProjection(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :Optional[int] = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :int = self.get_dummy_components() lowerCAmelCase__ :List[str] = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = sd_pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase__ :List[str] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.get_dummy_components() lowerCAmelCase__ :str = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # forward without prompt embeds lowerCAmelCase__ :int = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 3 * ['this is a negative prompt'] lowerCAmelCase__ :Tuple = negative_prompt lowerCAmelCase__ :str = 3 * [inputs['prompt']] lowerCAmelCase__ :Optional[Any] = sd_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase__ :Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = 3 * ['this is a negative prompt'] lowerCAmelCase__ :str = 3 * [inputs.pop('prompt' )] ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :List[str] = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe( **__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , ) lowerCAmelCase__ :Optional[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Any = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 6_4, 6_4) ) lowerCAmelCase__ :Optional[int] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) lowerCAmelCase__ :int = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :List[str] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
293
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
293
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Tuple = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case_ : List[Any] = logging.get_logger(__name__) class lowercase__ ( lowercase ): lowercase__ = """AutoTokenizer""" lowercase__ = ["""tokenizer"""] lowercase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : List[str] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple=None ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : Dict = speaker_embeddings @classmethod def UpperCamelCase_ ( cls : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : str="speaker_embeddings_path.json" ,**lowerCamelCase__ : Optional[Any] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: _UpperCamelCase : Optional[Any] = get_file_from_repo( lowerCamelCase__ ,lowerCamelCase__ ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowerCamelCase__ ,lowerCamelCase__ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) _UpperCamelCase : Union[str, Any] = None else: with open(lowerCamelCase__ ) as speaker_embeddings_json: _UpperCamelCase : Optional[int] = json.load(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = None _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) return cls(tokenizer=lowerCamelCase__ ,speaker_embeddings=lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : int="speaker_embeddings_path.json" ,lowerCamelCase__ : Dict="speaker_embeddings" ,lowerCamelCase__ : bool = False ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ,'v2' ) ,exist_ok=lowerCamelCase__ ) _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCamelCase : Any = self._load_voice_preset(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,lowerCamelCase__ ,F'{prompt_key}_{key}' ) ,voice_preset[key] ,allow_pickle=lowerCamelCase__ ,) _UpperCamelCase : List[str] = os.path.join(lowerCamelCase__ ,F'{prompt_key}_{key}.npy' ) _UpperCamelCase : str = tmp_dict with open(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) ,'w' ) as fp: json.dump(lowerCamelCase__ ,lowerCamelCase__ ) super().save_pretrained(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str = None ,**lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = self.speaker_embeddings[voice_preset] _UpperCamelCase : Union[str, Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) _UpperCamelCase : Dict = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) _UpperCamelCase : List[str] = np.load(lowerCamelCase__ ) return voice_preset_dict def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Any ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any="pt" ,lowerCamelCase__ : Dict=256 ,lowerCamelCase__ : int=False ,lowerCamelCase__ : int=True ,lowerCamelCase__ : List[str]=False ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' if voice_preset is not None and not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): if ( isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCamelCase : Optional[int] = self._load_voice_preset(lowerCamelCase__ ) else: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and not voice_preset.endswith('.npz' ): _UpperCamelCase : Tuple = voice_preset + '.npz' _UpperCamelCase : str = np.load(lowerCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.tokenizer( lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,padding='max_length' ,max_length=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) if voice_preset is not None: _UpperCamelCase : Optional[Any] = voice_preset return encoded_text
83
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Union[str, Any] = None A_ : Any = 20 A_ : Any = self._get_uniform_logits(batch_size=2 , length=_SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore A_ : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch A_ : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax A_ : List[str] = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) A_ : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) A_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) A_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Any = None A_ : List[Any] = 10 A_ : str = 2 # create ramp distribution A_ : Any = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() A_ : List[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : Tuple = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case A_ : Optional[int] = 5 A_ : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) A_ : Optional[Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() A_ : Dict = top_k_warp_safety_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = None A_ : Optional[Any] = 10 A_ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A_ : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) A_ : str = FlaxTopPLogitsWarper(0.8 ) A_ : Optional[int] = np.exp(top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A_ : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # check edge cases with negative and extreme logits A_ : Union[str, Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A_ : str = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept A_ : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) A_ : str = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = 20 A_ : Union[str, Any] = 4 A_ : Optional[Any] = 0 A_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 A_ : int = ids_tensor((batch_size, 20) , vocab_size=20 ) A_ : List[Any] = 5 A_ : Optional[int] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 A_ : Tuple = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = 15 A_ : int = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Optional[int] = 20 A_ : Optional[int] = 4 A_ : Optional[int] = 0 A_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score A_ : Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) A_ : str = 1 A_ : List[str] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A_ : Optional[int] = 3 A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = 20 A_ : str = 4 A_ : Dict = 0 A_ : Optional[int] = 5 A_ : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached A_ : List[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) A_ : Any = 4 A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A_ : int = 3 A_ : Union[str, Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Dict = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->str: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Union[str, Any] = 15 A_ : str = 2 A_ : int = 1 A_ : List[str] = 15 # dummy input_ids and scores A_ : Tuple = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : int = input_ids.copy() A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = scores.copy() # instantiate all dist processors A_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = 10 # no processor list A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[str] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # with processor list A_ : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : List[str] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Tuple = 15 A_ : List[str] = 2 A_ : List[str] = 1 A_ : Union[str, Any] = 15 # dummy input_ids and scores A_ : Any = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = input_ids.copy() A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = scores.copy() # instantiate all dist processors A_ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[Any] = FlaxTopKLogitsWarper(3 ) A_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : str = 10 # no processor list def run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : Optional[int] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores A_ : Optional[int] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Dict = jitted_run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = jitted_run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
186
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase__ = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
362
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _A = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _A = parser.parse_args() if args.model_type == "bert": _A = BertForMaskedLM.from_pretrained(args.model_name) _A = 'bert' else: raise ValueError('args.model_type should be "bert".') _A = model.state_dict() _A = {} for w in ["word_embeddings", "position_embeddings"]: _A = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _A = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _A = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _A = state_dict['cls.predictions.decoder.weight'] _A = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: _A = state_dict[f"""cls.predictions.transform.dense.{w}"""] _A = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
117
0
"""simple docstring""" import os import pytest from attr import dataclass lowerCAmelCase__ : Any = 'us-east-1' # defaults region @dataclass class snake_case : """simple docstring""" snake_case__ = 42 snake_case__ = "arn:aws:iam::558105141721:role/sagemaker_execution_role" snake_case__ = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_00, "save_steps": 55_00, } snake_case__ = {**hyperparameters, "max_steps": 10_00} @property def __lowerCAmelCase ( self : Dict ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCAmelCase ( self : List[str] ): return f'''{self.framework}-transfromers-test''' @property def __lowerCAmelCase ( self : int ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def __lowerCAmelCase ( self : List[str] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = SageMakerTestEnvironment(framework=request.cls.framework )
98
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
from datetime import datetime import requests def _lowercase ( _UpperCAmelCase ) -> bytes: lowerCamelCase ="""https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" lowerCamelCase =requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(_UpperCAmelCase ).content if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] =input('''Enter Video/IGTV url: ''').strip() UpperCAmelCase__ : str =F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
362
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ : List[Any] =logging.get_logger(__name__) UpperCAmelCase__ : Dict ={'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ : Dict ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCAmelCase__ : List[str] ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCAmelCase__ : Any =0 UpperCAmelCase__ : List[Any] =1 UpperCAmelCase__ : Union[str, Any] =2 UpperCAmelCase__ : Tuple =3 UpperCAmelCase__ : int =4 class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = """left""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=["<eop>", "<eod>"] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token lowerCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase =3 lowerCamelCase =do_lower_case lowerCamelCase =remove_space lowerCamelCase =keep_accents lowerCamelCase =vocab_file lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def _snake_case ( self ): return len(self.sp_model ) def _snake_case ( self ): lowerCamelCase ={self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCamelCase =self.__dict__.copy() lowerCamelCase =None return state def __setstate__( self , UpperCAmelCase_ ): lowerCamelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase ={} lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , UpperCAmelCase_ ): if self.remove_space: lowerCamelCase =""" """.join(inputs.strip().split() ) else: lowerCamelCase =inputs lowerCamelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase =unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) lowerCamelCase ="""""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: lowerCamelCase =outputs.lower() return outputs def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.preprocess_text(UpperCAmelCase_ ) lowerCamelCase =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) lowerCamelCase =[] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase =cur_pieces[1:] else: lowerCamelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.PieceToId(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.IdToPiece(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase ="""""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , **UpperCAmelCase_ , ): lowerCamelCase =kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase_ ) lowerCamelCase =self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase =[] lowerCamelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) lowerCamelCase =[] sub_texts.append(UpperCAmelCase_ ) else: current_sub_text.append(UpperCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase ="""""".join(UpperCAmelCase_ ) lowerCamelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase =self.clean_up_tokenization(UpperCAmelCase_ ) return clean_text else: return text def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase =os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: lowerCamelCase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
262
0
'''simple docstring''' def __snake_case ( ): lowerCamelCase_ = [] lowerCamelCase_ = 1 while len(UpperCAmelCase_ ) < 1E6: constant.append(str(UpperCAmelCase_ ) ) i += 1 lowerCamelCase_ = "".join(UpperCAmelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
55
'''simple docstring''' from __future__ import annotations def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = 2 lowerCamelCase_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase_ ) if n > 1: factors.append(UpperCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
55
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : List[Any] = ParquetDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_parquet_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = tmp_path / """cache""" _UpperCAmelCase : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : List[str] = features.copy() if features else default_expected_features _UpperCAmelCase : Optional[int] = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Optional[Any] = ParquetDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_parquet_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = tmp_path / """cache""" _UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : List[Any] = ParquetDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , split=lowerCAmelCase_ ).read() _check_parquet_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Tuple = parquet_path elif issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Tuple = [parquet_path] _UpperCAmelCase : Tuple = tmp_path / """cache""" _UpperCAmelCase : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : Optional[Any] = ParquetDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_parquet_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=("train",) ): assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for split in splits: _UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : str = tmp_path / """cache""" _UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Optional[Any] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_parquet_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : int = tmp_path / """cache""" _UpperCAmelCase : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features _UpperCAmelCase : Optional[int] = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Union[str, Any] = ParquetDatasetReader({"""train""": parquet_path} , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_parquet_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if split: _UpperCAmelCase : Optional[int] = {split: parquet_path} else: _UpperCAmelCase : List[Any] = """train""" _UpperCAmelCase : Union[str, Any] = {"""train""": parquet_path, """test""": parquet_path} _UpperCAmelCase : Optional[int] = tmp_path / """cache""" _UpperCAmelCase : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : Optional[int] = ParquetDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_parquet_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = ParquetDatasetWriter(lowerCAmelCase_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _UpperCAmelCase : List[str] = pq.ParquetFile(tmp_path / """foo.parquet""" ) _UpperCAmelCase : Tuple = pf.read() assert dataset.data.table == output_table def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _UpperCAmelCase : Tuple = {"""image""": [image_path]} _UpperCAmelCase : List[Any] = Features({"""image""": Image()} ) _UpperCAmelCase : str = Dataset.from_dict(lowerCAmelCase_ , features=lowerCAmelCase_ ) _UpperCAmelCase : List[str] = ParquetDatasetWriter(lowerCAmelCase_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _UpperCAmelCase : Union[str, Any] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase : Union[str, Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=lowerCAmelCase_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): assert get_writer_batch_size(lowerCAmelCase_ ) == expected
170
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase_ : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : snake_case : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) snake_case : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) snake_case : int = field( default=1_0_2_4 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=__a , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) snake_case : bool = field( default=__a , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """A csv or a json file containing the training data."""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """A csv or a json file containing the validation data."""} ) snake_case : Optional[str] = field(default=__a , metadata={"""help""": """A csv or a json file containing the test data."""} ) def snake_case_ (self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: _UpperCAmelCase : List[str] = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _UpperCAmelCase : Union[str, Any] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCAmelCase : snake_case : str = field( default=__a , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) snake_case : bool = field( default=__a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case : bool = field( default=__a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) _UpperCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _UpperCAmelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _UpperCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _UpperCAmelCase : Dict = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _UpperCAmelCase : int = data_args.train_file.split(""".""" )[-1] _UpperCAmelCase : str = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _UpperCAmelCase : Optional[Any] = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files _UpperCAmelCase : List[str] = load_dataset("""csv""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _UpperCAmelCase : List[str] = load_dataset("""json""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _UpperCAmelCase : Optional[int] = raw_datasets["""train"""].features["""label"""].names _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _UpperCAmelCase : Optional[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase_ , ) _UpperCAmelCase : str = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase : int = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _UpperCAmelCase : Dict = {"""Refused""": 0, """Entailed""": 1} _UpperCAmelCase : List[Any] = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _UpperCAmelCase : str = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase_ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase_ ): _UpperCAmelCase : int = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] _UpperCAmelCase : Union[str, Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _UpperCAmelCase : Tuple = examples["""statement"""] _UpperCAmelCase : str = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) _UpperCAmelCase : Optional[int] = tokenizer(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) _UpperCAmelCase : int = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): _UpperCAmelCase : str = raw_datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _UpperCAmelCase : Dict = raw_datasets["""train"""] if data_args.max_train_samples is not None: _UpperCAmelCase : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _UpperCAmelCase : Optional[int] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _UpperCAmelCase : Dict = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) _UpperCAmelCase : Tuple = raw_datasets["""test"""] if data_args.max_predict_samples is not None: _UpperCAmelCase : Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase_ ) ) , 3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ ): _UpperCAmelCase : Dict = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase_ ) else p.predictions _UpperCAmelCase : int = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase : Dict = default_data_collator elif training_args.fpaa: _UpperCAmelCase : List[str] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) else: _UpperCAmelCase : Optional[Any] = None # Initialize our Trainer _UpperCAmelCase : Optional[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Optional[Any] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = train_result.metrics _UpperCAmelCase : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : Dict = trainer.evaluate(eval_dataset=lowerCAmelCase_ ) _UpperCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _UpperCAmelCase : str = predict_dataset.remove_columns("""label""" ) _UpperCAmelCase : List[Any] = trainer.predict(lowerCAmelCase_ , metric_key_prefix="""predict""" ).predictions _UpperCAmelCase : Dict = np.argmax(lowerCAmelCase_ , axis=1 ) _UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : List[str] = label_list[item] writer.write(f"{index}\t{item}\n" ) _UpperCAmelCase : Union[str, Any] = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def __A ( lowerCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
170
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } __A ={ '''yjernite/retribert-base-uncased''': 5_1_2, } __A ={ '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = RetriBertTokenizer lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> List[Any]: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(lowercase , normalizer_state.pop("type" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**lowercase ) lowerCamelCase_ = do_lower_case def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> int: lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCamelCase_ = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
19
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , *lowercase , lowercase=None , lowercase=None , **lowercase ) -> List[str]: super().__init__(*lowercase , **lowercase ) lowerCamelCase_ = eval_examples lowerCamelCase_ = post_process_function def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase=None , lowercase = None , lowercase = "eval" , **lowercase , ) -> Dict[str, float]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) lowerCamelCase_ = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) lowerCamelCase_ = gen_kwargs lowerCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase_ = self.get_eval_dataloader(lowercase ) lowerCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) else: lowerCamelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase ) return metrics def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase = "test" , **lowercase ) -> Union[str, Any]: lowerCamelCase_ = gen_kwargs.copy() lowerCamelCase_ = self.get_test_dataloader(lowercase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = time.time() lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase_ = eval_loop( lowercase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase , metric_key_prefix=lowercase , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase , lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase_ = self.post_process_function(lowercase , lowercase , lowercase , "predict" ) lowerCamelCase_ = self.compute_metrics(lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowerCamelCase_ = metrics.pop(lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase )
19
1
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _lowercase = 299792458 # Symbols _lowercase , _lowercase , _lowercase , _lowercase = symbols("""ct x y z""") def A (__lowerCamelCase :float ): if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def A (__lowerCamelCase :float ): return 1 / sqrt(1 - beta(__lowerCamelCase ) ** 2 ) def A (__lowerCamelCase :float ): return np.array( [ [gamma(__lowerCamelCase ), -gamma(__lowerCamelCase ) * beta(__lowerCamelCase ), 0, 0], [-gamma(__lowerCamelCase ) * beta(__lowerCamelCase ), gamma(__lowerCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def A (__lowerCamelCase :float , __lowerCamelCase :np.ndarray | None = None ): # Ensure event is not empty if event is None: _lowerCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__lowerCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _lowercase = transform(29979245) print("""Example of four vector: """) print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values _lowercase = {ct: c, x: 1, y: 1, z: 1} _lowercase = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _UpperCamelCase = sys.version_info >= (3, 10) def a_ ( _lowerCAmelCase=None ,_lowerCAmelCase=None ) -> Any: return field(default_factory=lambda: default ,metadata=snake_case__ ) @dataclass class lowerCamelCase_ : """simple docstring""" a_ =42 a_ =42 a_ =42 a_ =42 @dataclass class lowerCamelCase_ : """simple docstring""" a_ =42 a_ =field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class lowerCamelCase_ : """simple docstring""" a_ =False a_ =True a_ =None class lowerCamelCase_ ( UpperCamelCase_ ): """simple docstring""" a_ ="""titi""" a_ ="""toto""" class lowerCamelCase_ ( UpperCamelCase_ ): """simple docstring""" a_ ="""titi""" a_ ="""toto""" a_ =42 @dataclass class lowerCamelCase_ : """simple docstring""" a_ ="toto" def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase : Dict = BasicEnum(self.foo ) @dataclass class lowerCamelCase_ : """simple docstring""" a_ ="toto" def _lowercase ( self : str ) -> Tuple: __lowerCamelCase : Dict = MixedTypeEnum(self.foo ) @dataclass class lowerCamelCase_ : """simple docstring""" a_ =None a_ =field(default=UpperCamelCase_ , metadata={"""help""": """help message"""} ) a_ =None a_ =list_field(default=[] ) a_ =list_field(default=[] ) @dataclass class lowerCamelCase_ : """simple docstring""" a_ =list_field(default=[] ) a_ =list_field(default=[1, 2, 3] ) a_ =list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) a_ =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowerCamelCase_ : """simple docstring""" a_ =field() a_ =field() a_ =field() def _lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = BasicEnum(self.required_enum ) @dataclass class lowerCamelCase_ : """simple docstring""" a_ =42 a_ =field() a_ =None a_ =field(default="""toto""" , metadata={"""help""": """help message"""} ) a_ =list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class lowerCamelCase_ : """simple docstring""" a_ =False a_ =True a_ =None @dataclass class lowerCamelCase_ : """simple docstring""" a_ =None a_ =field(default=UpperCamelCase_ , metadata={"""help""": """help message"""} ) a_ =None a_ =list_field(default=[] ) a_ =list_field(default=[] ) class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] , _a : Union[str, Any] , _a : int ) -> int: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __lowerCamelCase : str = {k: v for k, v in vars(__SCREAMING_SNAKE_CASE ).items() if k != 'container'} __lowerCamelCase : Optional[Any] = {k: v for k, v in vars(__SCREAMING_SNAKE_CASE ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , __SCREAMING_SNAKE_CASE ) and yy.get('choices' , __SCREAMING_SNAKE_CASE ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](__SCREAMING_SNAKE_CASE ) , yy['type'](__SCREAMING_SNAKE_CASE ) ) del xx["type"], yy["type"] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : Any ) -> Tuple: __lowerCamelCase : Optional[Any] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument('--bar' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument('--baz' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument('--flag' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , const=__SCREAMING_SNAKE_CASE , nargs='?' ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((__lowerCamelCase ) , ) : Any = parser.parse_args_into_dataclasses(__SCREAMING_SNAKE_CASE , look_for_args_file=__SCREAMING_SNAKE_CASE ) self.assertFalse(example.flag ) def _lowercase ( self : Optional[int] ) -> Any: __lowerCamelCase : int = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=__SCREAMING_SNAKE_CASE ) expected.add_argument('--baz' , default='toto' , type=__SCREAMING_SNAKE_CASE , help='help message' ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : Any ) -> List[str]: __lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument('--foo' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , const=__SCREAMING_SNAKE_CASE , nargs='?' ) expected.add_argument('--baz' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , const=__SCREAMING_SNAKE_CASE , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=__SCREAMING_SNAKE_CASE , dest='baz' ) expected.add_argument('--opt' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__SCREAMING_SNAKE_CASE ) for dataclass_type in dataclass_types: __lowerCamelCase : int = HfArgumentParser(__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : int = parser.parse_args([] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) __lowerCamelCase : str = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) __lowerCamelCase : Union[str, Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) __lowerCamelCase : Tuple = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) __lowerCamelCase : Tuple = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self : str ) -> List[str]: __lowerCamelCase : Optional[int] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : str = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) __lowerCamelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __lowerCamelCase : Optional[int] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) __lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __lowerCamelCase : List[str] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) __lowerCamelCase : Dict = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowercase ( self : Union[str, Any] ) -> Dict: @dataclass class lowerCamelCase_ : """simple docstring""" a_ ="toto" __lowerCamelCase : int = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : str = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) __lowerCamelCase : Union[str, Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) __lowerCamelCase : Union[str, Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def _lowercase ( self : int ) -> List[Any]: __lowerCamelCase : Tuple = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : str = parser.parse_args([] ) self.assertEqual( __SCREAMING_SNAKE_CASE , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) __lowerCamelCase : List[str] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def _lowercase ( self : Dict ) -> Optional[int]: __lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument('--foo' , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) expected.add_argument('--bar' , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help='help message' ) expected.add_argument('--baz' , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) expected.add_argument('--ces' , nargs='+' , default=[] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument('--des' , nargs='+' , default=[] , type=__SCREAMING_SNAKE_CASE ) __lowerCamelCase : int = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__SCREAMING_SNAKE_CASE ) for dataclass_type in dataclass_types: __lowerCamelCase : Optional[int] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : Any = parser.parse_args([] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , bar=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , ces=[] , des=[] ) ) __lowerCamelCase : Tuple = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def _lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCamelCase : Optional[Any] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument('--required_str' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__SCREAMING_SNAKE_CASE , ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : str ) -> List[Any]: __lowerCamelCase : Optional[int] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__SCREAMING_SNAKE_CASE , ) expected.add_argument('--opt' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) expected.add_argument('--baz' , default='toto' , type=__SCREAMING_SNAKE_CASE , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } __lowerCamelCase : Tuple = parser.parse_dict(__SCREAMING_SNAKE_CASE )[0] __lowerCamelCase : int = BasicExample(**__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : str ) -> Dict: __lowerCamelCase : List[str] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(__SCREAMING_SNAKE_CASE , parser.parse_dict , __SCREAMING_SNAKE_CASE , allow_extra_keys=__SCREAMING_SNAKE_CASE ) def _lowercase ( self : Optional[Any] ) -> int: __lowerCamelCase : Optional[int] = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : int = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , 'temp_json' ) os.mkdir(__SCREAMING_SNAKE_CASE ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] __lowerCamelCase : List[str] = BasicExample(**__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase : int = HfArgumentParser(__SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , 'temp_yaml' ) os.mkdir(__SCREAMING_SNAKE_CASE ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCamelCase : str = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] __lowerCamelCase : Optional[Any] = BasicExample(**__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self : str ) -> Union[str, Any]: __lowerCamelCase : str = HfArgumentParser(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
208
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase__ : Any = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: lowerCAmelCase = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) lowercase__ : List[Any] = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]: lowerCAmelCase = list(s_dict.keys() ) for key in keys: lowerCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCAmelCase = new_key.replace(snake_case__ , snake_case__ ) print(f"{key} -> {new_key}" ) lowerCAmelCase = s_dict.pop(snake_case__ ) return s_dict def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = emb.weight.shape lowerCAmelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowerCAmelCase = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> bytes: os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase = os.path.basename(snake_case__ ) lowerCAmelCase = url.split('''/''' )[-2] lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) if os.path.exists(snake_case__ ) and not os.path.isfile(snake_case__ ): raise RuntimeError(f"{download_target} exists and is not a regular file" ) if os.path.isfile(snake_case__ ): lowerCAmelCase = open(snake_case__ , '''rb''' ).read() if hashlib.shaaaa(snake_case__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(snake_case__ ) as source, open(snake_case__ , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=snake_case__ , unit_divisor=1_0_2_4 ) as loop: while True: lowerCAmelCase = source.read(8_1_9_2 ) if not buffer: break output.write(snake_case__ ) loop.update(len(snake_case__ ) ) lowerCAmelCase = open(snake_case__ , '''rb''' ).read() if hashlib.shaaaa(snake_case__ ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str: if ".pt" not in checkpoint_path: lowerCAmelCase = _download(_MODELS[checkpoint_path] ) else: lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' ) lowerCAmelCase = original_checkpoint['''dims'''] lowerCAmelCase = original_checkpoint['''model_state_dict'''] lowerCAmelCase = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(snake_case__ ) rename_keys(snake_case__ ) lowerCAmelCase = True lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] lowerCAmelCase = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=snake_case__ , decoder_ffn_dim=snake_case__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) lowerCAmelCase = WhisperForConditionalGeneration(snake_case__ ) lowerCAmelCase , lowerCAmelCase = model.model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0 and not set(snake_case__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCAmelCase = proj_out_weights model.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase__ : int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
338
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase_ : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["pixel_values"] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , __A = True , **__A , ) -> None: super().__init__(**__A ) a =size if size is not None else {'''shortest_edge''': 224} a =get_size_dict(__A , default_to_square=__A ) a =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} a =get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) a =do_resize a =size a =resample a =do_center_crop a =crop_size a =do_rescale a =rescale_factor a =do_normalize a =image_mean if image_mean is not None else OPENAI_CLIP_MEAN a =image_std if image_std is not None else OPENAI_CLIP_STD a =do_convert_rgb def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) a =get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> Any: return rescale(__A , scale=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> PIL.Image.Image: a =do_resize if do_resize is not None else self.do_resize a =size if size is not None else self.size a =get_size_dict(__A , param_name='''size''' , default_to_square=__A ) a =resample if resample is not None else self.resample a =do_center_crop if do_center_crop is not None else self.do_center_crop a =crop_size if crop_size is not None else self.crop_size a =get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) a =do_rescale if do_rescale is not None else self.do_rescale a =rescale_factor if rescale_factor is not None else self.rescale_factor a =do_normalize if do_normalize is not None else self.do_normalize a =image_mean if image_mean is not None else self.image_mean a =image_std if image_std is not None else self.image_std a =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a =make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a =[convert_to_rgb(__A ) for image in images] # All transformations expect numpy arrays. a =[to_numpy_array(__A ) for image in images] if do_resize: a =[self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: a =[self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: a =[self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: a =[self.normalize(image=__A , mean=__A , std=__A ) for image in images] a =[to_channel_dimension_format(__A , __A ) for image in images] a ={'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
354
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "xlm-roberta" def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-1_2 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> str: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =hidden_act a =intermediate_size a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =type_vocab_size a =initializer_range a =layer_norm_eps a =position_embedding_type a =use_cache a =classifier_dropout class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
215
0
def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" if index == number_of_items: return 0 __magic_name__ : Union[str, Any] = 0 __magic_name__ : str = 0 __magic_name__ : Optional[int] = knapsack(_A, _A, _A, _A, index + 1 ) if weights[index] <= max_weight: __magic_name__ : Optional[Any] = values[index] + knapsack( _A, _A, _A, max_weight - weights[index], index + 1 ) return max(_A, _A ) if __name__ == "__main__": import doctest doctest.testmod()
342
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
1
import logging import os from .state import PartialState class UpperCAmelCase ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def lowerCAmelCase_ ( lowercase ): """simple docstring""" A_ : List[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowerCAmelCase_ ( self , lowercase , lowercase , *lowercase , **lowercase ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) A_ : Union[str, Any] = kwargs.pop('main_process_only' , lowercase ) A_ : List[str] = kwargs.pop('in_order' , lowercase ) if self.isEnabledFor(lowercase ): if self._should_log(lowercase ): A_ , A_ : str = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) elif in_order: A_ : List[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: A_ , A_ : Union[str, Any] = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) state.wait_for_everyone() def UpperCamelCase ( __lowercase : str ,__lowercase : str = None ): '''simple docstring''' if log_level is None: A_ : Any = os.environ.get('ACCELERATE_LOG_LEVEL' ,__lowercase ) A_ : Any = logging.getLogger(__lowercase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowercase ,{} )
192
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): """simple docstring""" super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) A_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): A_ : Dict = getattr(lowercase , normalizer_state.pop('type' ) ) A_ : Optional[int] = do_lower_case A_ : Optional[Any] = strip_accents A_ : str = tokenize_chinese_chars A_ : Any = normalizer_class(**lowercase ) A_ : Tuple = do_lower_case def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
192
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _A ( *UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' if not isinstance(UpperCamelCase_, UpperCamelCase_): __lowercase = list(UpperCamelCase_) for i in range(len(UpperCamelCase_)): __lowercase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _A ( UpperCamelCase_ : Exception) -> bool: '''simple docstring''' __lowercase = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(UpperCamelCase_, UpperCamelCase_) and len(exception.args) == 1: return any(err in exception.args[0] for err in _statements) return False def _A ( UpperCamelCase_ : callable = None, UpperCamelCase_ : int = 128) -> int: '''simple docstring''' if function is None: return functools.partial(UpperCamelCase_, starting_batch_size=UpperCamelCase_) __lowercase = starting_batch_size def decorator(*UpperCamelCase_ : List[str], **UpperCamelCase_ : Optional[Any]): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase = list(inspect.signature(UpperCamelCase_).parameters.keys()) # Guard against user error if len(UpperCamelCase_) < (len(UpperCamelCase_) + 1): __lowercase = ", ".join([F"""{arg}={value}""" for arg, value in zip(params[1:], args[1:])]) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""") while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero.") try: return function(UpperCamelCase_, *UpperCamelCase_, **UpperCamelCase_) except Exception as e: if should_reduce_batch_size(UpperCamelCase_): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
17
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = '''beit''' def __init__( self ,SCREAMING_SNAKE_CASE__=81_92 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=[3, 5, 7, 11] ,SCREAMING_SNAKE_CASE__=[1, 2, 3, 6] ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0.4 ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=2_55 ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = vocab_size __SCREAMING_SNAKE_CASE :Dict = hidden_size __SCREAMING_SNAKE_CASE :Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[str] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE :str = layer_norm_eps __SCREAMING_SNAKE_CASE :int = image_size __SCREAMING_SNAKE_CASE :Tuple = patch_size __SCREAMING_SNAKE_CASE :Any = num_channels __SCREAMING_SNAKE_CASE :Any = use_mask_token __SCREAMING_SNAKE_CASE :Union[str, Any] = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE :Union[str, Any] = use_relative_position_bias __SCREAMING_SNAKE_CASE :Union[str, Any] = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE :List[str] = layer_scale_init_value __SCREAMING_SNAKE_CASE :Optional[Any] = drop_path_rate __SCREAMING_SNAKE_CASE :str = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE :Dict = out_indices __SCREAMING_SNAKE_CASE :Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE :Optional[int] = use_auxiliary_head __SCREAMING_SNAKE_CASE :Union[str, Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE :Dict = auxiliary_channels __SCREAMING_SNAKE_CASE :Optional[int] = auxiliary_num_convs __SCREAMING_SNAKE_CASE :List[str] = auxiliary_concat_input __SCREAMING_SNAKE_CASE :List[Any] = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = version.parse('''1.11''' ) @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self ) -> float: """simple docstring""" return 1E-4
191
0
"""simple docstring""" from math import factorial, radians def UpperCamelCase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians lowerCAmelCase_ : List[str] = radians(_UpperCamelCase ) lowerCAmelCase_ : List[Any] = angle_in_radians lowerCAmelCase_ : Optional[int] = 3 lowerCAmelCase_ : Dict = -1 for _ in range(_UpperCamelCase ): result += (b * (angle_in_radians**a)) / factorial(_UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": __import__("""doctest""").testmod()
368
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> bool: """simple docstring""" lowerCAmelCase_ : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> tuple[int, int]: """simple docstring""" lowerCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase_ : int = x_den * y_den * z_den lowerCAmelCase_ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_ ( lowerCAmelCase__ : int = 35 ) -> int: """simple docstring""" lowerCAmelCase_ : set = set() lowerCAmelCase_ : int lowerCAmelCase_ : Fraction = Fraction(0 ) lowerCAmelCase_ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCAmelCase_ : str = x_num * y_den + x_den * y_num lowerCAmelCase_ : int = x_den * y_den lowerCAmelCase_ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : List[str] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 lowerCAmelCase_ : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase_ : Dict = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : List[str] = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : Union[str, Any] = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Union[str, Any] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=-1 lowerCAmelCase_ : Dict = x_num * y_num lowerCAmelCase_ : Optional[int] = x_den * y_num + x_num * y_den lowerCAmelCase_ : Any = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Tuple = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 lowerCAmelCase_ : List[str] = x_num * x_num * y_num * y_num lowerCAmelCase_ : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : Optional[Any] = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : Optional[int] = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Any = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) for num, den in unique_s: total += Fraction(lowerCAmelCase__ , lowerCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'{solution() = }')
289
0
"""simple docstring""" def snake_case_ ( A_ : int ): '''simple docstring''' if num < 0: return False _lowerCamelCase : int = num _lowerCamelCase : int = 0 while num > 0: _lowerCamelCase : Optional[Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
72
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = '▁' lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Tuple =BigBirdTokenizer UpperCamelCase__ : Union[str, Any] =BigBirdTokenizerFast UpperCamelCase__ : Any =True UpperCamelCase__ : Optional[Any] =True def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().setUp() _lowerCamelCase : List[Any] =self.tokenizer_class(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _lowerCamelCase : List[Any] ='<s>' _lowerCamelCase : Optional[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(lowercase_ ) , 1004 ) def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Union[str, Any] =self.get_tokenizer() _lowerCamelCase : int =self.get_rust_tokenizer() _lowerCamelCase : int ='I was born in 92000, and this is falsé.' _lowerCamelCase : int =tokenizer.tokenize(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Any =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : str =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : str =self.get_rust_tokenizer() _lowerCamelCase : Union[str, Any] =tokenizer.encode(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : str =BigBirdTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : int =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [285, 46, 10, 170, 382] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Any =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCamelCase : Optional[int] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] ='Hello World!' _lowerCamelCase : Tuple =[65, 1_8536, 2260, 101, 66] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : int =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off _lowerCamelCase : Tuple =[65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCamelCase : Union[str, Any] =list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCamelCase : List[Any] =' '.join(lowercase_ ) _lowerCamelCase : List[str] =self.big_tokenizer.encode_plus(lowercase_ , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : Optional[int] =self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : List[str] =BigBirdConfig(attention_type='original_full' ) _lowerCamelCase : Optional[Any] =BigBirdModel(lowercase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Dict =BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) _lowerCamelCase : int =tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] ={'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
199
0
"""simple docstring""" def __lowerCamelCase ( a_ : int ) -> list[int]: if num <= 0: raise ValueError('''Input must be a positive integer''' ) __SCREAMING_SNAKE_CASE :Dict = [True] * (num + 1) __SCREAMING_SNAKE_CASE :Optional[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): __SCREAMING_SNAKE_CASE :Optional[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
239
"""simple docstring""" def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( a_ : Optional[int] , a_ : Any=0 ) -> Optional[Any]: return sorted(a_ , key=lambda a_ : x[column] ) def __lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : str=float('''inf''' ) ) -> str: for i in range(points_counts - 1 ): for j in range(i + 1 , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :Optional[Any] = current_dis return min_dis def __lowerCamelCase ( a_ : List[Any] , a_ : Any , a_ : Optional[int]=float('''inf''' ) ) -> Optional[Any]: for i in range(min(6 , points_counts - 1 ) , a_ ): for j in range(max(0 , i - 6 ) , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :int = current_dis return min_dis def __lowerCamelCase ( a_ : str , a_ : List[Any] , a_ : int ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(a_ , a_ ) # recursion __SCREAMING_SNAKE_CASE :int = points_counts // 2 __SCREAMING_SNAKE_CASE :Dict = closest_pair_of_points_sqr( a_ , points_sorted_on_y[:mid] , a_ ) __SCREAMING_SNAKE_CASE :Any = closest_pair_of_points_sqr( a_ , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE :Union[str, Any] = min(a_ , a_ ) __SCREAMING_SNAKE_CASE :str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a_ ) __SCREAMING_SNAKE_CASE :Dict = dis_between_closest_in_strip( a_ , len(a_ ) , a_ ) return min(a_ , a_ ) def __lowerCamelCase ( a_ : int , a_ : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = column_based_sort(a_ , column=0 ) __SCREAMING_SNAKE_CASE :int = column_based_sort(a_ , column=1 ) return ( closest_pair_of_points_sqr( a_ , a_ , a_ ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
239
1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: while b: lowercase : Optional[Any] = b, a % b return a def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: return a if b == 0 else euclidean_gcd_recursive(snake_case__ , a % b ) def _snake_case( ) -> str: print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
20
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "codegen" UpperCAmelCase__ : str = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=5_0400, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=28, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : Tuple = vocab_size UpperCamelCase : Optional[int] = n_ctx UpperCamelCase : Optional[int] = n_positions UpperCamelCase : List[str] = n_embd UpperCamelCase : Dict = n_layer UpperCamelCase : int = n_head UpperCamelCase : Union[str, Any] = n_inner UpperCamelCase : int = rotary_dim UpperCamelCase : Optional[Any] = activation_function UpperCamelCase : Optional[int] = resid_pdrop UpperCamelCase : Union[str, Any] = embd_pdrop UpperCamelCase : Optional[Any] = attn_pdrop UpperCamelCase : List[str] = layer_norm_epsilon UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : str = use_cache UpperCamelCase : Dict = bos_token_id UpperCamelCase : Union[str, Any] = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, tie_word_embeddings=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : str = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs' ) UpperCamelCase : List[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Tuple = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : List[str] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : List[Any] = seqlen + 2 UpperCamelCase : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase : str = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : List[Any] = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : Optional[Any] = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __magic_name__ ( lowerCAmelCase ): def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : str =tempfile.mkdtemp() _UpperCAmelCase : Optional[int] =5 # Realm tok _UpperCAmelCase : Optional[Any] =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _UpperCAmelCase : int =os.path.join(self.tmpdirname , 'realm_tokenizer') os.makedirs(snake_case , exist_ok=snake_case) _UpperCAmelCase : List[str] =os.path.join(snake_case , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) _UpperCAmelCase : int =os.path.join(self.tmpdirname , 'realm_block_records') os.makedirs(snake_case , exist_ok=snake_case) def lowerCAmelCase ( self) -> RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer')) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =RealmConfig(num_block_records=self.num_block_records) return config def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : str =Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], }) return dataset def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=snake_case , ) return block_records def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] =self.get_config() _UpperCAmelCase : Optional[Any] =self.get_dummy_retriever() _UpperCAmelCase : str =retriever.tokenizer _UpperCAmelCase : Any =np.array([0, 3] , dtype='long') _UpperCAmelCase : Any =tokenizer(['Test question']).input_ids _UpperCAmelCase : str =tokenizer( ['the fourth'] , add_special_tokens=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , ).input_ids _UpperCAmelCase : Dict =config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] =retriever( snake_case , snake_case , answer_ids=snake_case , max_length=snake_case , return_tensors='np') self.assertEqual(len(snake_case) , 2) self.assertEqual(len(snake_case) , 2) self.assertEqual(len(snake_case) , 2) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0)) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0)) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0)) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Any =self.get_config() _UpperCAmelCase : Optional[int] =self.get_dummy_retriever() _UpperCAmelCase : List[str] =retriever.tokenizer _UpperCAmelCase : List[Any] =np.array([0, 3, 5] , dtype='long') _UpperCAmelCase : Tuple =tokenizer(['Test question']).input_ids _UpperCAmelCase : Union[str, Any] =tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , ).input_ids _UpperCAmelCase : Union[str, Any] =config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =retriever( snake_case , snake_case , answer_ids=snake_case , max_length=snake_case , return_tensors='np') self.assertEqual([False, True, True] , snake_case) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , snake_case) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , snake_case) def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : Dict =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) # Test local path _UpperCAmelCase : Tuple =retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) self.assertEqual(retriever.block_records[0] , B'This is the first record') # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download') as mock_hf_hub_download: _UpperCAmelCase : Dict =os.path.join( os.path.join(self.tmpdirname , 'realm_block_records') , _REALM_BLOCK_RECORDS_FILENAME) _UpperCAmelCase : List[str] =RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa') self.assertEqual(retriever.block_records[0] , B'This is the first record')
242
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase ={ 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase =[ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase =[ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowercase =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
242
1
import math def UpperCAmelCase__ (): """simple docstring""" snake_case = input('''Enter message: ''' ) snake_case = int(input(F'''Enter key [2-{len(UpperCamelCase_ ) - 1}]: ''' ) ) snake_case = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): snake_case = encrypt_message(UpperCamelCase_ ,UpperCamelCase_ ) elif mode.lower().startswith('''d''' ): snake_case = decrypt_message(UpperCamelCase_ ,UpperCamelCase_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [''''''] * key for col in range(UpperCamelCase_ ): snake_case = col while pointer < len(UpperCamelCase_ ): cipher_text[col] += message[pointer] pointer += key return "".join(UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = math.ceil(len(UpperCamelCase_ ) / key ) snake_case = key snake_case = (num_cols * num_rows) - len(UpperCamelCase_ ) snake_case = [''''''] * num_cols snake_case = 0 snake_case = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): snake_case = 0 row += 1 return "".join(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
127
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _SCREAMING_SNAKE_CASE : List[str] = "hf-internal-testing/tiny-random-bert" _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") _SCREAMING_SNAKE_CASE : Optional[int] = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = cached_file(__snake_case , __snake_case ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__snake_case ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__snake_case , __snake_case ) ) ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) self.assertTrue(os.path.isfile(__snake_case ) ) # File is cached at the same place the second time. snake_case = cached_file(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) # Using a specific revision to test the full commit hash. snake_case = cached_file(__snake_case , __snake_case , revision='''9b8c223''' ) self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): snake_case = cached_file('''tiny-random-bert''' , __snake_case ) with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): snake_case = cached_file(__snake_case , __snake_case , revision='''aaaa''' ) with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertTrue(os.path.isfile(os.path.join(__snake_case , '''.no_exist''' , __snake_case , '''conf''' ) ) ) snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = cached_file(__snake_case , '''conf''' , local_files_only=__snake_case , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = mock.Mock() snake_case = 5_0_0 snake_case = {} snake_case = HTTPError snake_case = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__snake_case ) as mock_head: snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_connection_errors=__snake_case ) self.assertIsNone(__snake_case ) # This check we did call the fake head request mock_head.assert_called() def a_ ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) def a_ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __snake_case ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __snake_case , revision='''ahaha''' ) snake_case = get_file_from_repo('''bert-base-cased''' , __snake_case ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case = json.loads(open(__snake_case , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def a_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case = Path(__snake_case ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__snake_case , '''a.txt''' ) , str(__snake_case ) ) self.assertIsNone(get_file_from_repo(__snake_case , '''b.txt''' ) )
127
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 42 lowercase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
353
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A : Tuple = "sshleifer/mar_enro_6_3_student" class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : List[Any] ) -> Optional[Any]: super().setUp() lowerCAmelCase_ : Any = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = F'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def __lowercase ( self : str ) -> str: MarianMTModel.from_pretrained(lowerCamelCase ) @slow @require_torch_gpu def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : str = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script lowerCAmelCase_ : Dict = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() lowerCAmelCase_ : Optional[int] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : Optional[int] = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) lowerCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase_ : Tuple = F'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase_ : Tuple = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() lowerCAmelCase_ : Any = pl.Trainer.add_argparse_args(lowerCamelCase ) lowerCAmelCase_ : List[str] = SummarizationModule.add_model_specific_args(lowerCamelCase , os.getcwd() ) lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Dict = main(lowerCamelCase ) # Check metrics lowerCAmelCase_ : int = load_json(model.metrics_save_path ) lowerCAmelCase_ : Optional[Any] = metrics["""val"""][0] lowerCAmelCase_ : Tuple = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : Union[str, Any] = os.listdir(lowerCamelCase ) lowerCAmelCase_ : Any = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : Union[str, Any] = os.path.join(args.output_dir , lowerCamelCase ) lowerCAmelCase_ : int = torch.load(lowerCamelCase , map_location="""cpu""" ) lowerCAmelCase_ : List[str] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : List[str] = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def __lowercase ( self : Optional[Any] ) -> Dict: lowerCAmelCase_ : List[str] = F'{self.test_file_dir_str}/test_data/wmt_en_ro' lowerCAmelCase_ : Dict = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 1_28, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script lowerCAmelCase_ : int = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) lowerCAmelCase_ : str = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowerCAmelCase_ : Tuple = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : Optional[int] = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = bash_script.replace("""--fp16""" , """""" ) lowerCAmelCase_ : Dict = 6 lowerCAmelCase_ : List[Any] = ( ["""distillation.py"""] + bash_script.split() + [ F'--output_dir={output_dir}', """--gpus=1""", """--learning_rate=1e-3""", F'--num_train_epochs={epochs}', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): lowerCAmelCase_ : Dict = argparse.ArgumentParser() lowerCAmelCase_ : int = pl.Trainer.add_argparse_args(lowerCamelCase ) lowerCAmelCase_ : List[str] = SummarizationDistiller.add_model_specific_args(lowerCamelCase , os.getcwd() ) lowerCAmelCase_ : List[Any] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase_ : str = distill_main(lowerCamelCase ) # Check metrics lowerCAmelCase_ : Union[str, Any] = load_json(model.metrics_save_path ) lowerCAmelCase_ : Union[str, Any] = metrics["""val"""][0] lowerCAmelCase_ : Union[str, Any] = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : Union[str, Any] = os.listdir(lowerCamelCase ) lowerCAmelCase_ : Dict = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : Optional[int] = os.path.join(args.output_dir , lowerCamelCase ) lowerCAmelCase_ : int = torch.load(lowerCamelCase , map_location="""cpu""" ) lowerCAmelCase_ : Tuple = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : Union[str, Any] = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
89
0
'''simple docstring''' def lowercase__ ( __lowercase : list[int] ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(__lowercase , (list, tuple) ) or not all( isinstance(__lowercase , __lowercase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) __UpperCamelCase = __UpperCamelCase = __UpperCamelCase = numbers[0] for i in range(1 , len(__lowercase ) ): # update the maximum and minimum subarray products __UpperCamelCase = numbers[i] if number < 0: __UpperCamelCase , __UpperCamelCase = min_till_now, max_till_now __UpperCamelCase = max(__lowercase , max_till_now * number ) __UpperCamelCase = min(__lowercase , min_till_now * number ) # update the maximum product found till now __UpperCamelCase = max(__lowercase , __lowercase ) return max_prod
53
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase__ ( __lowercase : Features ) -> Optional[int]: """simple docstring""" __UpperCamelCase = np.inf def set_batch_size(__lowercase : FeatureType ) -> None: nonlocal batch_size if isinstance(__lowercase , __lowercase ): __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__lowercase , __lowercase ): __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__lowercase , __lowercase ) and feature.dtype == "binary": __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__lowercase , __lowercase ) return None if batch_size is np.inf else batch_size class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[str] , __A : NestedDataStructureLike[PathLike] , __A : Optional[NamedSplit] = None , __A : Optional[Features] = None , __A : str = None , __A : bool = False , __A : bool = False , __A : Optional[int] = None , **__A : Dict , ): super().__init__( __A , split=__A , features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) __UpperCamelCase = path_or_paths if isinstance(__A , __A ) else {self.split: path_or_paths} __UpperCamelCase = _PACKAGED_DATASETS_MODULES['parquet'][1] __UpperCamelCase = Parquet( cache_dir=__A , data_files=__A , features=__A , hash=__A , **__A , ) def _lowerCamelCase ( self : Optional[int] ): # Build iterable dataset if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset class snake_case : """simple docstring""" def __init__( self : List[str] , __A : Dataset , __A : Union[PathLike, BinaryIO] , __A : Optional[int] = None , **__A : Dict , ): __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size or get_writer_batch_size(dataset.features ) __UpperCamelCase = parquet_writer_kwargs def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __UpperCamelCase = self._write(file_obj=__A , batch_size=__A , **self.parquet_writer_kwargs ) else: __UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=__A , **self.parquet_writer_kwargs ) return written def _lowerCamelCase ( self : List[str] , __A : BinaryIO , __A : int , **__A : List[str] ): __UpperCamelCase = 0 __UpperCamelCase = parquet_writer_kwargs.pop('path_or_buf' , __A ) __UpperCamelCase = self.dataset.features.arrow_schema __UpperCamelCase = pq.ParquetWriter(__A , schema=__A , **__A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __A ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __UpperCamelCase = query_table( table=self.dataset._data , key=slice(__A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__A ) written += batch.nbytes writer.close() return written
53
1
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Union[str, Any] = """▁""" lowercase__ : str = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} lowercase__ : str = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } lowercase__ : int = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } lowercase__ : Union[str, Any] = { """ernie-m-base""": 5_1_4, """ernie-m-large""": 5_1_4, } lowercase__ : Optional[int] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""input_ids"""] _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = RESOURCE_FILES_NAMES def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : List[str]="utf8" , SCREAMING_SNAKE_CASE_ : Optional[int]="[UNK]" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="[SEP]" , SCREAMING_SNAKE_CASE_ : int="[PAD]" , SCREAMING_SNAKE_CASE_ : List[Any]="[CLS]" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="[MASK]" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ): lowerCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , vocab_file=lowercase_ , encoding=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowerCAmelCase_ : Any = do_lower_case lowerCAmelCase_ : Union[str, Any] = sentencepiece_model_ckpt lowerCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase_ : Union[str, Any] = self.load_vocab(filepath=lowercase_ ) else: lowerCAmelCase_ : Any = {self.sp_model.id_to_piece(lowercase_ ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Dict ): if text is None: return None lowerCAmelCase_ : str = self.tokenize(lowercase_ ) lowerCAmelCase_ ,lowerCAmelCase_ : Dict = '', [] for i, ch in enumerate(lowercase_ ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase_ : Union[str, Any] = self.SP_CHAR_MAPPING.get(lowercase_ ) else: lowerCAmelCase_ : int = unicodedata.normalize('NFKC' , lowercase_ ) if self.is_whitespace(lowercase_ ): continue normalized_text += ch char_mapping.extend([i] * len(lowercase_ ) ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase_ : List[Any] = token[1:] lowerCAmelCase_ : Tuple = text[offset:].index(lowercase_ ) + offset lowerCAmelCase_ : Dict = start + len(lowercase_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase_ : int = end return token_mapping @property def SCREAMING_SNAKE_CASE__ ( self : str ): return len(self.vocab ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Dict ): lowerCAmelCase_ : Tuple = self.__dict__.copy() lowerCAmelCase_ : Union[str, Any] = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ): return "".join((self.SP_CHAR_MAPPING.get(lowercase_ , lowercase_ ) for c in text) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : List[Any]=6_4 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 ): if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase_ : Union[str, Any] = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase_ : List[str] = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase_ : Optional[int] = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(lowercase_ ) else: lowerCAmelCase_ : Optional[Any] = self.sp_model.SampleEncodeAsPieces(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase_ : Optional[Any] = [] for pi, piece in enumerate(lowercase_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowercase_ ) and pi != 0: new_pieces.append(lowercase_ ) continue else: continue lowerCAmelCase_ : str = 0 for i, chunk in enumerate(lowercase_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowercase_ ) or self.is_punct(lowercase_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowercase_ ) lowerCAmelCase_ : Any = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase_ : Optional[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase_ : List[str] = i if len(lowercase_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Dict = ''.join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : int = self.convert_ids_to_tokens(lowercase_ ) lowerCAmelCase_ : Any = ''.join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ): return self.vocab.get(lowercase_ , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): return self.reverse_vocab.get(lowercase_ , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : int = [self.cls_token_id] lowerCAmelCase_ : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: # [CLS] X [SEP] return (len(lowercase_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowercase_ ) + 1) + [1] * (len(lowercase_ ) + 3) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ): if "\u4e00" <= char <= "\u9fff": return True return False def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowercase_ ) == 1: lowerCAmelCase_ : Any = unicodedata.category(lowercase_ ) if cat == "Zs": return True return False def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Optional[int] = {} with io.open(lowercase_ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(lowercase_ ): lowerCAmelCase_ : str = line.rstrip('\n' ) lowerCAmelCase_ : str = int(lowercase_ ) return token_to_idx def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): lowerCAmelCase_ : Any = 0 if os.path.isdir(lowercase_ ): lowerCAmelCase_ : Union[str, Any] = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase_ : List[str] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase_ : Optional[int] = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase_ : Union[str, Any] = os.path.join(lowercase_ , 'sentencepiece.bpe.model' ) with open(lowercase_ , 'wb' ) as fi: lowerCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (vocab_file,)
369
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict=1_3 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=9_9 , SCREAMING_SNAKE_CASE_ : int=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=3_6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Tuple=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : str = use_input_mask lowerCAmelCase_ : Union[str, Any] = use_token_type_ids lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Any = embedding_size lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_hidden_groups lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Tuple = num_labels lowerCAmelCase_ : Dict = num_choices lowerCAmelCase_ : Tuple = scope def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : Union[str, Any] = AlbertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : Optional[Any] = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , sentence_order_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : str = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : List[str] = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : Union[str, Any] = self.num_labels lowerCAmelCase_ : Union[str, Any] = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : List[Any] = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : Optional[Any] = self.num_choices lowerCAmelCase_ : int = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase_ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=False ): lowerCAmelCase_ : List[str] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = AlbertModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : int = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Any = AlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : str = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
289
0
'''simple docstring''' import math class __a : def UpperCAmelCase__ ( self : List[str] , __magic_name__ : list[list[float]] , __magic_name__ : list[int] ) -> int: """simple docstring""" UpperCAmelCase_ : str = 0.0 UpperCAmelCase_ : Union[str, Any] = 0.0 for i in range(len(__magic_name__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list[list[int | float]] , __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : float ) -> list[list[int | float]]: """simple docstring""" for i in range(len(__magic_name__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase_ ( ) -> None: # Training Examples ( m, n ) UpperCAmelCase_ : int = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCAmelCase_ : Optional[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCAmelCase_ : List[Any] = SelfOrganizingMap() UpperCAmelCase_ : Optional[int] = 3 UpperCAmelCase_ : Optional[Any] = 0.5 for _ in range(SCREAMING_SNAKE_CASE__ ): for j in range(len(SCREAMING_SNAKE_CASE__ ) ): # training sample UpperCAmelCase_ : List[str] = training_samples[j] # Compute the winning vector UpperCAmelCase_ : Any = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Update the winning vector UpperCAmelCase_ : int = self_organizing_map.update(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # classify test sample UpperCAmelCase_ : List[str] = [0, 0, 0, 1] UpperCAmelCase_ : Tuple = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
125
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class __a : def __init__( self : int , __magic_name__ : int , __magic_name__ : MutableSequence[float] ) -> None: """simple docstring""" if len(__magic_name__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase_ : list[float] = list(__magic_name__ ) UpperCAmelCase_ : List[str] = degree def __add__( self : List[str] , __magic_name__ : Polynomial ) -> Polynomial: """simple docstring""" if self.degree > polynomial_a.degree: UpperCAmelCase_ : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __magic_name__ ) else: UpperCAmelCase_ : List[str] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __magic_name__ ) def __sub__( self : Dict , __magic_name__ : Polynomial ) -> Polynomial: """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[Any] ) -> Polynomial: """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : str , __magic_name__ : Polynomial ) -> Polynomial: """simple docstring""" UpperCAmelCase_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : int | float ) -> int | float: """simple docstring""" UpperCAmelCase_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__magic_name__ ) return polynomial def __repr__( self : List[Any] ) -> str: """simple docstring""" return self.__str__() def UpperCAmelCase__ ( self : List[str] ) -> Polynomial: """simple docstring""" UpperCAmelCase_ : list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ : List[str] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : int | float = 0 ) -> Polynomial: """simple docstring""" UpperCAmelCase_ : list[float] = [0] * (self.degree + 2) UpperCAmelCase_ : Union[str, Any] = constant for i in range(self.degree + 1 ): UpperCAmelCase_ : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __magic_name__ ) def __eq__( self : Any , __magic_name__ : object ) -> bool: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[Any] , __magic_name__ : object ) -> bool: """simple docstring""" return not self.__eq__(__magic_name__ )
125
1
"""simple docstring""" __A = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ __A = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __A = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
254
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
254
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase__ = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } UpperCAmelCase__ = "▁" class __lowerCAmelCase ( lowerCAmelCase_ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , A : List[Any] , A : str="</s>" , A : List[Any]="<unk>" , A : Union[str, Any]="<pad>" , A : List[Any]=1_00 , A : str=None , A : Optional[Dict[str, Any]] = None , A : Optional[Any]=True , **A : List[str] , ) -> None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [F"<extra_id_{i}>" for i in range(_snake_case)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda A: bool('extra_id' in str(_snake_case)) , _snake_case))) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens') if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565') _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , extra_ids=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy=_snake_case , **_snake_case , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_snake_case) @staticmethod def _lowerCamelCase ( A : Optional[int] , A : Optional[int] , A : List[Any]) -> Tuple: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _snake_case , ) return max_model_length @property def _lowerCamelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _lowerCamelCase ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None , A : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_snake_case)) + [1] return ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) + [1] def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" return list( set(filter(lambda A: bool(re.search(R'<extra_id_\d+>' , _snake_case)) is not None , self.additional_special_tokens))) def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return [self._convert_token_to_id(_snake_case) for token in self.get_sentinel_tokens()] def _lowerCamelCase ( self : Dict , A : List[int]) -> List[int]: """simple docstring""" if len(_snake_case) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.') return token_ids else: return token_ids + [self.eos_token_id] def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def _lowerCamelCase ( self : int , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = self._add_eos_if_not_present(_snake_case) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_snake_case) return token_ids_a + token_ids_a def __getstate__( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Optional[int] , A : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Tuple , A : "TextInput" , **A : Union[str, Any]) -> List[str]: """simple docstring""" if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_snake_case , ' ') return super().tokenize(_snake_case , **_snake_case) def _lowerCamelCase ( self : int , A : Optional[Any] , **A : Optional[Any]) -> int: """simple docstring""" if not self.legacy: _UpperCAmelCase = text.startswith(_snake_case) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_snake_case , out_type=_snake_case) if not self.legacy and not is_first and not text.startswith(' ') and tokens[0].startswith(_snake_case): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] return tokens def _lowerCamelCase ( self : Union[str, Any] , A : List[Any]) -> int: """simple docstring""" if token.startswith('<extra_id_'): _UpperCAmelCase = re.match(R'<extra_id_(\d+)>' , _snake_case) _UpperCAmelCase = int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_snake_case) def _lowerCamelCase ( self : int , A : int) -> int: """simple docstring""" if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_snake_case) else: _UpperCAmelCase = F"<extra_id_{self.vocab_size - 1 - index}>" return token def _lowerCamelCase ( self : Optional[Any] , A : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = '' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_snake_case) _UpperCAmelCase = False out_string += self.sp_model.decode(_snake_case) return out_string.strip() def _lowerCamelCase ( self : int , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _snake_case) elif not os.path.isfile(self.vocab_file): with open(_snake_case , 'wb') as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (out_vocab_file,)
339
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a_ :Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a_ :List[str] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a_ :List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : str ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def lowercase_ ( self : str, _snake_case : List[List[List[str]]], _snake_case : List[List[str]], _snake_case : int = 1, _snake_case : int = 4, ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case, hypotheses=_snake_case, min_len=_snake_case, max_len=_snake_case ) }
277
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCamelCase_ = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off UpperCamelCase_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ["""input_ids""", """attention_mask"""] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase , ) ->Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it a_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else mask_token a_ = legacy_behaviour super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , ) a_ = vocab_file a_ = False if not self.vocab_file else True a_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) a_ = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } a_ = src_lang if src_lang is not None else "eng_Latn" a_ = self.convert_tokens_to_ids(self._src_lang) a_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def UpperCAmelCase__ ( self) ->str: return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: a_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") a_ = src_lang a_ = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase) a_ = self.convert_tokens_to_ids(__UpperCAmelCase) a_ = tgt_lang_id return inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = "eng_Latn" , __UpperCAmelCase = None , __UpperCAmelCase = "fra_Latn" , **__UpperCAmelCase , ) ->BatchEncoding: a_ = src_lang a_ = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Any: return self.set_src_lang_special_tokens(self.src_lang) def UpperCAmelCase__ ( self) ->Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: a_ = self.convert_tokens_to_ids(__UpperCAmelCase) if self.legacy_behaviour: a_ = [] a_ = [self.eos_token_id, self.cur_lang_code] else: a_ = [self.cur_lang_code] a_ = [self.eos_token_id] a_ = self.convert_ids_to_tokens(self.prefix_tokens) a_ = self.convert_ids_to_tokens(self.suffix_tokens) a_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: a_ = self.convert_tokens_to_ids(__UpperCAmelCase) if self.legacy_behaviour: a_ = [] a_ = [self.eos_token_id, self.cur_lang_code] else: a_ = [self.cur_lang_code] a_ = [self.eos_token_id] a_ = self.convert_ids_to_tokens(self.prefix_tokens) a_ = self.convert_ids_to_tokens(self.suffix_tokens) a_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__UpperCAmelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''') return a_ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase): copyfile(self.vocab_file , __UpperCAmelCase) return (out_vocab_file,)
352
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
0
class lowercase__ : def __init__( self : List[str] , UpperCAmelCase_ : List[str] ): # we need a list not a string, so do something to change the type SCREAMING_SNAKE_CASE__ = arr.split(',' ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = [int(self.array[0] )] * len(self.array ) SCREAMING_SNAKE_CASE__ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): SCREAMING_SNAKE_CASE__ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) SCREAMING_SNAKE_CASE__ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __snake_case = input("""please input some numbers:""") __snake_case = SubArray(whole_array) __snake_case = array.solve_sub_array() print(("""the results is:""", re))
176
import os def _lowercase ( ) -> List[str]: '''simple docstring''' with open(os.path.dirname(UpperCamelCase_ ) + '/p022_names.txt' ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace('"' , '' ).split(',' ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase_ ): for letter in name: name_score += ord(UpperCamelCase_ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
176
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = "huggingface/label-files" a = "ade20k-id2label.json" a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) a = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a( A : List[str] , A : List[str] , A : Dict ) -> Any: """simple docstring""" a = dct.pop(A ) a = val def a( A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def a( A : Optional[int] ) -> Optional[Any]: """simple docstring""" a , a = x.shape a = x.reshape(A , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A ) return x def a( A : int ) -> Dict: """simple docstring""" a , a = x.shape a = x.reshape(A , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A ) return x def a( A : List[Any] ) -> Dict: """simple docstring""" a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A ) return x def a( A : Optional[Any] ) -> List[str]: """simple docstring""" a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A ) return x def a( A : Any , A : int , A : Dict ) -> Union[str, Any]: """simple docstring""" a = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[ "state_dict" ] for name, param in state_dict.items(): print(A , param.shape ) a = get_upernet_config(A ) a = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(A ) if "bn" in key: a = key.replace("bn" , "batch_norm" ) a = val # rename keys a = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(A ) if "norm" in key: a = reverse_correct_unfold_norm_order(A ) model.load_state_dict(A ) # verify on image a = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) a = SegformerImageProcessor() a = processor(A , return_tensors="pt" ).pixel_values with torch.no_grad(): a = model(A ) a = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
361
# using dfs for finding eulerian path traversal def a( A : int , A : Optional[Any] , A : Any , A : Optional[int]=None ) -> List[str]: """simple docstring""" a = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: a , a = True, True a = dfs(A , A , A , A ) return path def a( A : List[str] , A : Optional[int] ) -> List[str]: """simple docstring""" a = 0 a = -1 for i in range(A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 a = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a( A : str , A : str ) -> List[Any]: """simple docstring""" a = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] a , a = check_circuit_or_path(A , A ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return a = 1 if check == 2: a = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) a = dfs(A , A , A ) print(A ) def a( ) -> int: """simple docstring""" a = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} a = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} a = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} a = {1: [2, 3], 2: [1, 3], 3: [1, 2]} a = { 1: [], 2: [] # all degree is zero } a = 10 check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) if __name__ == "__main__": main()
71
0