code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowerCamelCase =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : _UpperCAmelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Model type selected in the list: """ + """, """.join(__SCREAMING_SNAKE_CASE)}) _UpperCAmelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""}) _UpperCAmelCase : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _UpperCAmelCase : int = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _UpperCAmelCase : int = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _UpperCAmelCase : int = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""}) _UpperCAmelCase : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""}) _UpperCAmelCase : int = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""}) _UpperCAmelCase : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _UpperCAmelCase : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""}) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Tuple = """train""" _UpperCAmelCase : Any = """dev""" class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : SquadDataTrainingArguments _UpperCAmelCase : List[SquadFeatures] _UpperCAmelCase : Split _UpperCAmelCase : bool def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = Split.train , __magic_name__ = False , __magic_name__ = None , __magic_name__ = "pt" , ): lowerCamelCase : Optional[int] = args lowerCamelCase : Tuple = is_language_sensitive lowerCamelCase : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__magic_name__ , __magic_name__ ): try: lowerCamelCase : Tuple = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) lowerCamelCase : Dict = mode # Load data features from cache or dataset file lowerCamelCase : Tuple = """v2""" if args.version_2_with_negative else """v1""" lowerCamelCase : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase : Any = cached_features_file + """.lock""" with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not args.overwrite_cache: lowerCamelCase : int = time.time() lowerCamelCase : List[str] = torch.load(__magic_name__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase : Dict = self.old_features["""features"""] lowerCamelCase : List[Any] = self.old_features.get("""dataset""" , __magic_name__ ) lowerCamelCase : List[Any] = self.old_features.get("""examples""" , __magic_name__ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' """ future run""" ) else: if mode == Split.dev: lowerCamelCase : int = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase : Optional[Any] = self.processor.get_train_examples(args.data_dir ) lowerCamelCase , lowerCamelCase : List[str] = squad_convert_examples_to_features( examples=self.examples , tokenizer=__magic_name__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__magic_name__ , ) lowerCamelCase : List[Any] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , __magic_name__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self , __magic_name__ ): # Convert to Tensors and build dataset lowerCamelCase : Tuple = self.features[i] lowerCamelCase : Union[str, Any] = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase : Tuple = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase : Dict = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase : int = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase : Any = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase : Optional[int] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase : Dict = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
287
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = """gpt_neo""" _UpperCAmelCase : Union[str, Any] = ["""past_key_values"""] _UpperCAmelCase : List[Any] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , __magic_name__=5_0_2_5_7 , __magic_name__=2_0_4_8 , __magic_name__=2_0_4_8 , __magic_name__=2_4 , __magic_name__=[[["global", "local"], 1_2]] , __magic_name__=1_6 , __magic_name__=None , __magic_name__=2_5_6 , __magic_name__="gelu_new" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__=1e-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=5_0_2_5_6 , __magic_name__=5_0_2_5_6 , **__magic_name__ , ): lowerCamelCase : List[Any] = vocab_size lowerCamelCase : str = max_position_embeddings lowerCamelCase : str = hidden_size lowerCamelCase : Optional[int] = num_layers lowerCamelCase : str = num_heads lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : List[Any] = window_size lowerCamelCase : int = activation_function lowerCamelCase : Union[str, Any] = resid_dropout lowerCamelCase : List[Any] = embed_dropout lowerCamelCase : List[str] = attention_dropout lowerCamelCase : Dict = classifier_dropout lowerCamelCase : Any = layer_norm_epsilon lowerCamelCase : Dict = initializer_range lowerCamelCase : Dict = use_cache lowerCamelCase : Optional[Any] = bos_token_id lowerCamelCase : int = eos_token_id lowerCamelCase : List[Any] = attention_types lowerCamelCase : Optional[Any] = self.expand_attention_types_params(__magic_name__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) @staticmethod def UpperCamelCase__ ( __magic_name__ ): lowerCamelCase : Optional[int] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): import torch lowerCamelCase : Any = input.size() lowerCamelCase : List[Any] = len(lowerCamelCase ) lowerCamelCase : Optional[Any] = shape[dimension] lowerCamelCase : Optional[int] = torch.arange(0, lowerCamelCase, lowerCamelCase ) lowerCamelCase : Dict = torch.div(sizedim - size, lowerCamelCase, rounding_mode="""floor""" ) + 1 lowerCamelCase : int = torch.arange(lowerCamelCase ) + low_indices[:min_length][:, None] lowerCamelCase : str = [slice(lowerCamelCase )] * rank lowerCamelCase : List[str] = indices lowerCamelCase : Dict = input[s] lowerCamelCase : Any = list(range(0, rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCamelCase ) def _a ( lowerCamelCase, lowerCamelCase ): import torch lowerCamelCase : List[Any] = torch.arange(1, lowerCamelCase ) lowerCamelCase : Optional[int] = torch.remainder(lowerCamelCase, lowerCamelCase ) lowerCamelCase : List[Any] = remainders == 0 lowerCamelCase : List[Any] = candidates[divisor_indices] lowerCamelCase : Optional[Any] = torch.max(lowerCamelCase ) return largest_divisor, torch.div(lowerCamelCase, lowerCamelCase, rounding_mode="""floor""" ) class A__ ( __SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): lowerCamelCase : str = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) lowerCamelCase : int = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase : Tuple = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase__ ( self ): return self._config.num_heads def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ): lowerCamelCase : Optional[int] = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() lowerCamelCase : int = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase , lowerCamelCase : Optional[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase : Optional[int] = seqlen + 2 lowerCamelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase : str = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] lowerCamelCase : Tuple = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase : str = ordered_inputs["""attention_mask"""].dtype lowerCamelCase : Any = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase__ ( self ): return 1_3
287
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowercase : str = logging.get_logger(__name__) set_seed(7_7_0) lowercase : Optional[int] = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowercase : Tuple = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowercase : Union[str, Any] = os.path.dirname(os.path.abspath(__file__)) lowercase : Optional[Any] = os.path.join(os.path.expanduser("""~"""), """.cache""") lowercase : Any = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def A_ ( A__ , A__=False ) -> Dict: a__ : Optional[int] = model_type if use_small: key += "_small" return os.path.join(A__ , REMOTE_MODEL_PATHS[key]['file_name'] ) def A_ ( A__ , A__ ) -> List[str]: os.makedirs(A__ , exist_ok=A__ ) hf_hub_download(repo_id=A__ , filename=A__ , local_dir=A__ ) def A_ ( A__ , A__ , A__=False , A__="text" ) -> Optional[int]: if model_type == "text": a__ : Union[str, Any] = BarkSemanticModel a__ : Tuple = BarkSemanticConfig a__ : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": a__ : Tuple = BarkCoarseModel a__ : int = BarkCoarseConfig a__ : Dict = BarkCoarseGenerationConfig elif model_type == "fine": a__ : Dict = BarkFineModel a__ : Dict = BarkFineConfig a__ : Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() a__ : int = F'{model_type}_small' if use_small else model_type a__ : List[str] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A__ ): logger.info(F'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['repo_id'] , model_info['file_name'] ) a__ : Dict = torch.load(A__ , map_location=A__ ) # this is a hack a__ : Optional[int] = checkpoint['model_args'] if "input_vocab_size" not in model_args: a__ : List[str] = model_args['vocab_size'] a__ : Optional[int] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments a__ : Tuple = model_args.pop('n_head' ) a__ : List[Any] = model_args.pop('n_embd' ) a__ : Union[str, Any] = model_args.pop('n_layer' ) a__ : Union[str, Any] = ConfigClass(**checkpoint['model_args'] ) a__ : List[str] = ModelClass(config=A__ ) a__ : int = GenerationConfigClass() a__ : Dict = model_generation_config a__ : Union[str, Any] = checkpoint['model'] # fixup checkpoint a__ : Tuple = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(A__ ): # replace part of the key with corresponding layer name in HF implementation a__ : Dict = k[len(A__ ) :] for old_layer_name in new_layer_name_dict: a__ : List[str] = new_k.replace(A__ , new_layer_name_dict[old_layer_name] ) a__ : Optional[int] = state_dict.pop(A__ ) a__ : int = set(state_dict.keys() ) - set(model.state_dict().keys() ) a__ : Optional[int] = {k for k in extra_keys if not k.endswith('.attn.bias' )} a__ : int = set(model.state_dict().keys() ) - set(state_dict.keys() ) a__ : Union[str, Any] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(A__ ) != 0: raise ValueError(F'extra keys found: {extra_keys}' ) if len(A__ ) != 0: raise ValueError(F'missing keys: {missing_keys}' ) model.load_state_dict(A__ , strict=A__ ) a__ : Union[str, Any] = model.num_parameters(exclude_embeddings=A__ ) a__ : Optional[int] = checkpoint['best_val_loss'].item() logger.info(F'model loaded: {round(n_params/1E6 , 1 )}M params, {round(A__ , 3 )} loss' ) model.eval() model.to(A__ ) del checkpoint, state_dict return model def A_ ( A__ , A__=False , A__="text" ) -> Tuple: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() a__ : Union[str, Any] = 'cpu' # do conversion on cpu a__ : List[str] = _get_ckpt_path(A__ , use_small=A__ ) a__ : Any = _load_model(A__ , A__ , model_type=A__ , use_small=A__ ) # load bark initial model a__ : Any = _bark_load_model(A__ , 'cpu' , model_type=A__ , use_small=A__ ) if model_type == "text": a__ : Optional[Any] = bark_model['model'] if model.num_parameters(exclude_embeddings=A__ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model a__ : Any = 5 a__ : str = 10 if model_type in ["text", "coarse"]: a__ : List[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) a__ : str = bark_model(A__ )[0] a__ : Any = model(A__ ) # take last logits a__ : Optional[Any] = output_new_model_total.logits[:, [-1], :] else: a__ : Optional[Any] = 3 a__ : List[str] = 8 a__ : Any = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) a__ : Optional[int] = model(A__ , A__ ) a__ : Union[str, Any] = bark_model(A__ , A__ ) a__ : Dict = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) def A_ ( A__ , A__ , A__ , A__ , A__ , A__ , ) -> int: a__ : Optional[Any] = os.path.join(A__ , A__ ) a__ : Optional[int] = BarkSemanticConfig.from_pretrained(os.path.join(A__ , 'config.json' ) ) a__ : List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(A__ , 'config.json' ) ) a__ : Optional[int] = BarkFineConfig.from_pretrained(os.path.join(A__ , 'config.json' ) ) a__ : Union[str, Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) a__ : List[str] = BarkSemanticModel.from_pretrained(A__ ) a__ : Dict = BarkCoarseModel.from_pretrained(A__ ) a__ : Optional[Any] = BarkFineModel.from_pretrained(A__ ) a__ : Dict = EncodecModel.from_pretrained('facebook/encodec_24khz' ) a__ : int = BarkConfig.from_sub_model_configs( A__ , A__ , A__ , A__ ) a__ : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) a__ : Optional[int] = BarkModel(A__ ) a__ : Dict = semantic a__ : List[Any] = coarseAcoustic a__ : Dict = fineAcoustic a__ : str = codec a__ : str = bark_generation_config Path(A__ ).mkdir(exist_ok=A__ ) bark.save_pretrained(A__ , repo_id=A__ , push_to_hub=A__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowercase : Dict = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
225
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase : Optional[int] = data_utils.TransfoXLCorpus lowercase : List[Any] = data_utils lowercase : Tuple = data_utils def A_ ( A__ , A__ , A__ , A__ ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: a__ : int = pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) a__ : List[Any] = corpus.vocab.__dict__ torch.save(A__ , A__ ) a__ : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) a__ : Optional[int] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ : Union[str, Any] = os.path.abspath(A__ ) a__ : Optional[Any] = os.path.abspath(A__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": a__ : Dict = TransfoXLConfig() else: a__ : Dict = TransfoXLConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) a__ : Optional[int] = TransfoXLLMHeadModel(A__ ) a__ : int = load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model a__ : Any = os.path.join(A__ , A__ ) a__ : Dict = os.path.join(A__ , A__ ) print(F'Save PyTorch model to {os.path.abspath(A__ )}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {os.path.abspath(A__ )}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowercase : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
225
1
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A : Optional[Any] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''CLIPFeatureExtractor'''] A : Any = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
276
1
from math import isclose, sqrt def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float ): """simple docstring""" __a =point_y / 4 / point_x __a =2 * normal_gradient / (1 + normal_gradient * normal_gradient) __a =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __a =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __a =outgoing_gradient**2 + 4 __a =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __a =(point_y - outgoing_gradient * point_x) ** 2 - 100 __a =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __a =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __a =x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus __a =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def UpperCamelCase_( _snake_case : float = 1.4 , _snake_case : float = -9.6 ): """simple docstring""" __a =0 __a =first_x_coord __a =first_y_coord __a =(10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __a =next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
218
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
0
lowerCamelCase_ : dict[tuple[int, int, int], int] = {} def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __a = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __a = _calculate(days - 1 , __lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __a = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __a = _calculate(days - 1 , __lowerCamelCase , 0 ) __a = state_late + state_absent + state_ontime __a = prizestrings return prizestrings def lowerCAmelCase( __lowerCamelCase = 30 ): return _calculate(__lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
197
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( __snake_case ): A__ : Any = 'Wav2Vec2FeatureExtractor' A__ : str = 'AutoTokenizer' def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: super().__init__(UpperCAmelCase , UpperCAmelCase ) __a = self.feature_extractor __a = False @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , **UpperCAmelCase ) -> Dict: try: return super().from_pretrained(UpperCAmelCase , **UpperCAmelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , UpperCAmelCase , ) __a = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __a = WavaVecaCTCTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) def __call__( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase , **UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __a = kwargs.pop('raw_speech' ) else: __a = kwargs.pop('audio' , UpperCAmelCase ) __a = kwargs.pop('sampling_rate' , UpperCAmelCase ) __a = kwargs.pop('text' , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __a = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) if text is not None: __a = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings['input_ids'] return inputs def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCAmelCase , **UpperCAmelCase ) __a = kwargs.pop('input_features' , UpperCAmelCase ) __a = kwargs.pop('labels' , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __a = args[0] __a = args[1:] if input_features is not None: __a = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) if labels is not None: __a = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: __a = labels['input_ids'] return input_features def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @contextmanager def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __a = True __a = self.tokenizer yield __a = self.feature_extractor __a = False
197
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"could not parse string as bool {string}" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) __A : Dict = parser.parse_args() __A : Any = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
138
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __A : Dict = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __A : Optional[int] = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __A : Dict = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[List[List[str]]] , UpperCAmelCase_ : List[List[str]] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCAmelCase_ , hypotheses=UpperCAmelCase_ , min_len=UpperCAmelCase_ , max_len=UpperCAmelCase_ ) }
138
1
__UpperCamelCase : Tuple = range(2, 20 + 1) __UpperCamelCase : Tuple = [10**k for k in range(ks[-1] + 1)] __UpperCamelCase : dict[int, dict[int, list[list[int]]]] = {} def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = sum(a_i[j] for j in range(__lowerCamelCase , len(__lowerCamelCase ) ) ) a = sum(a_i[j] * base[j] for j in range(min(len(__lowerCamelCase ) , __lowerCamelCase ) ) ) a , a = 0, 0 a = n - i a = memo.get(__lowerCamelCase ) if sub_memo is not None: a = sub_memo.get(__lowerCamelCase ) if jumps is not None and len(__lowerCamelCase ) > 0: # find and make the largest jump without going over a = -1 for _k in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: a = _k break if max_jump >= 0: a , a , a = jumps[max_jump] # since the difference between jumps is cached, add c a = diff + c for j in range(min(__lowerCamelCase , len(__lowerCamelCase ) ) ): a , a = divmod(__lowerCamelCase , 10 ) if new_c > 0: add(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: a = [] else: a = {c: []} a = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps a , a = next_term(__lowerCamelCase , k - 1 , i + dn , __lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead a , a = compute(__lowerCamelCase , __lowerCamelCase , i + dn , __lowerCamelCase ) diff += _diff dn += terms_jumped a = sub_memo[c] # keep jumps sorted by # of terms skipped a = 0 while j < len(__lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__lowerCamelCase , (diff, dn, k) ) return (diff, dn) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: if i >= n: return 0, i if k > len(__lowerCamelCase ): a_i.extend([0 for _ in range(k - len(__lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) a = i a , a , a = 0, 0, 0 for j in range(len(__lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 a = ds_c + ds_b diff += addend a = 0 for j in range(__lowerCamelCase ): a = a_i[j] + addend a , a = divmod(__lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return diff, i - start_i def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): a = digits[j] + addend if s >= 10: a , a = divmod(__lowerCamelCase , 10 ) a = addend // 10 + quotient else: a = s a = addend // 10 if addend == 0: break while addend > 0: a , a = divmod(__lowerCamelCase , 10 ) digits.append(__lowerCamelCase ) def __A ( __lowerCamelCase = 10**15 ) -> int: a = [1] a = 1 a = 0 while True: a , a = next_term(__lowerCamelCase , 20 , i + dn , __lowerCamelCase ) dn += terms_jumped if dn == n - i: break a = 0 for j in range(len(__lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'{solution() = }')
347
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) a = jnp.array([[0, 1, 2, 3, 4, 5]] ) a = model(__magic_name__ )[0] a = 5_0000 a = (1, 6, vocab_size) self.assertEqual(output.shape , __magic_name__ ) a = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
347
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings snake_case__ : List[str] = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(_lowerCamelCase ) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """rag""" lowerCAmelCase__ = True def __init__(self :List[Any] , _UpperCamelCase :str=None , _UpperCamelCase :Dict=True , _UpperCamelCase :str=None , _UpperCamelCase :Any=None , _UpperCamelCase :Any=None , _UpperCamelCase :Optional[Any]=None , _UpperCamelCase :int=None , _UpperCamelCase :Union[str, Any]=" / " , _UpperCamelCase :Any=" // " , _UpperCamelCase :Optional[Any]=5 , _UpperCamelCase :Any=300 , _UpperCamelCase :List[str]=768 , _UpperCamelCase :Optional[int]=8 , _UpperCamelCase :Union[str, Any]="wiki_dpr" , _UpperCamelCase :int="train" , _UpperCamelCase :Any="compressed" , _UpperCamelCase :int=None , _UpperCamelCase :Union[str, Any]=None , _UpperCamelCase :List[Any]=False , _UpperCamelCase :Any=False , _UpperCamelCase :List[str]=0.0 , _UpperCamelCase :Any=True , _UpperCamelCase :Tuple=False , _UpperCamelCase :Optional[int]=False , _UpperCamelCase :int=False , _UpperCamelCase :List[Any]=True , _UpperCamelCase :List[Any]=None , **_UpperCamelCase :List[str] , )-> List[Any]: super().__init__( bos_token_id=_UpperCamelCase , pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , forced_eos_token_id=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , prefix=_UpperCamelCase , vocab_size=_UpperCamelCase , **_UpperCamelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __A = kwargs.pop('''question_encoder''' ) __A = question_encoder_config.pop('''model_type''' ) __A = kwargs.pop('''generator''' ) __A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig __A = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase ) __A = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase ) __A = reduce_loss __A = label_smoothing __A = exclude_bos_score __A = do_marginalize __A = title_sep __A = doc_sep __A = n_docs __A = max_combined_length __A = dataset __A = dataset_split __A = index_name __A = retrieval_vector_size __A = retrieval_batch_size __A = passages_path __A = index_path __A = use_dummy_dataset __A = output_retrieved __A = do_deduplication __A = use_cache if self.forced_eos_token_id is None: __A = getattr(self.generator , '''forced_eos_token_id''' , _UpperCamelCase ) @classmethod def _lowerCAmelCase (cls :List[str] , _UpperCamelCase :PretrainedConfig , _UpperCamelCase :PretrainedConfig , **_UpperCamelCase :int )-> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_UpperCamelCase ) def _lowerCAmelCase (self :List[Any] )-> int: __A = copy.deepcopy(self.__dict__ ) __A = self.question_encoder.to_dict() __A = self.generator.to_dict() __A = self.__class__.model_type return output
117
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case__ : int = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _a ( lowerCamelCase: List[Any] ) -> List[Any]: '''simple docstring''' if isinstance(lowerCamelCase , torch.Tensor ): return image elif isinstance(lowerCamelCase , PIL.Image.Image ): __A = [image] __A = [trans(img.convert('''RGB''' ) ) for img in image] __A = torch.stack(lowerCamelCase ) return image class A_ ( _lowerCamelCase ): def __init__(self :List[str] , _UpperCamelCase :List[Any] , _UpperCamelCase :List[str] )-> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) def _lowerCAmelCase (self :int , _UpperCamelCase :Optional[Any] )-> Union[str, Any]: if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Dict , _UpperCamelCase :List[str] , _UpperCamelCase :List[str] )-> Union[str, Any]: # get the original timestep using init_timestep __A = min(int(num_inference_steps * strength ) , _UpperCamelCase ) __A = max(num_inference_steps - init_timestep , 0 ) __A = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCAmelCase (self :str , _UpperCamelCase :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :Dict=None )-> List[str]: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}""" ) __A = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __A = init_latents.shape __A = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents print('''add noise to latents at timestep''' , _UpperCamelCase ) __A = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __A = init_latents return latents @torch.no_grad() def __call__(self :List[str] , _UpperCamelCase :Union[torch.FloatTensor, PIL.Image.Image] = None , _UpperCamelCase :float = 0.8 , _UpperCamelCase :int = 1 , _UpperCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase :float = 0.0 , _UpperCamelCase :int = 50 , _UpperCamelCase :Optional[bool] = None , _UpperCamelCase :Optional[str] = "pil" , _UpperCamelCase :bool = True , )-> Union[ImagePipelineOutput, Tuple]: self.check_inputs(_UpperCamelCase ) # 2. Preprocess image __A = preprocess(_UpperCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(_UpperCamelCase , device=self.device ) __A , __A = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , self.device ) __A = timesteps[:1].repeat(_UpperCamelCase ) # 4. Prepare latent variables __A = self.prepare_latents(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.unet.dtype , self.device , _UpperCamelCase ) __A = latents # 5. Denoising loop for t in self.progress_bar(_UpperCamelCase ): # 1. predict noise model_output __A = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , eta=_UpperCamelCase , use_clipped_model_output=_UpperCamelCase , generator=_UpperCamelCase , ).prev_sample __A = (image / 2 + 0.5).clamp(0 , 1 ) __A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_UpperCamelCase )
117
1
"""simple docstring""" from math import pi def lowerCamelCase (a_ :int , a_ :int) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
172
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCAmelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } UpperCAmelCase = {'''facebook/blenderbot-3B''': 128} class __magic_name__ ( __UpperCAmelCase ): __A : Any = VOCAB_FILES_NAMES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = ["input_ids", "attention_mask"] __A : Optional[Any] = BlenderbotTokenizer def __init__( self : Optional[Any] , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : List[Any]=None , snake_case__ : Dict="replace" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Any="</s>" , snake_case__ : Any="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : str="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : int=False , snake_case__ : List[Any]=True , **snake_case__ : Any , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) lowercase :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: lowercase :int = getattr(snake_case__ , pre_tok_state.pop('''type''' ) ) lowercase :List[str] = add_prefix_space lowercase :Any = pre_tok_class(**snake_case__ ) lowercase :Tuple = add_prefix_space lowercase :List[Any] = '''post_processor''' lowercase :Optional[Any] = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: lowercase :int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase :List[Any] = tuple(state['''sep'''] ) if "cls" in state: lowercase :List[str] = tuple(state['''cls'''] ) lowercase :Dict = False if state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: lowercase :str = add_prefix_space lowercase :int = True if state.get('''trim_offsets''' , snake_case__ ) != trim_offsets: lowercase :List[str] = trim_offsets lowercase :Optional[Any] = True if changes_to_apply: lowercase :Optional[Any] = getattr(snake_case__ , state.pop('''type''' ) ) lowercase :List[Any] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __snake_case ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __snake_case ( self : Dict , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value lowercase :List[str] = value def __snake_case ( self : int , *snake_case__ : Optional[int] , **snake_case__ : Tuple ): '''simple docstring''' lowercase :int = kwargs.get('''is_split_into_words''' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def __snake_case ( self : List[Any] , *snake_case__ : Optional[Any] , **snake_case__ : str ): '''simple docstring''' lowercase :int = kwargs.get('''is_split_into_words''' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def __snake_case ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :Union[str, Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def __snake_case ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' lowercase :Optional[Any] = [self.sep_token_id] lowercase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def __snake_case ( self : List[str] , snake_case__ : "Conversation" ): '''simple docstring''' lowercase :str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case__ ) lowercase :Tuple = ''' '''.join(snake_case__ ) lowercase :Optional[int] = self.encode(snake_case__ ) if len(snake_case__ ) > self.model_max_length: lowercase :Optional[int] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
172
1
from __future__ import annotations from typing import Any def a_ ( _A ) -> None: """simple docstring""" create_state_space_tree(_A , [] , 0 ) def a_ ( _A , _A , _A ) -> None: """simple docstring""" if index == len(_A ): print(_A ) return create_state_space_tree(_A , _A , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_A , _A , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __UpperCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
307
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase : Tuple = Mapping[str, np.ndarray] lowercase : List[Any] = Mapping[str, Any] # Is a nested dict. lowercase : int = 0.01 @dataclasses.dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase_ : '''simple docstring''' A : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A : Optional[str] = None # Templates used to generate this protein (prediction-only) A : Optional[Sequence[str]] = None # Chain corresponding to each parent A : Optional[Sequence[int]] = None def lowerCAmelCase__ ( _a : str ): snake_case_ : List[str] = R"(\[[A-Z]+\]\n)" snake_case_ : List[str] = [tag.strip() for tag in re.split(_a , _a ) if len(_a ) > 0] snake_case_ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case_ : List[str] = ["N", "CA", "C"] snake_case_ : Union[str, Any] = None snake_case_ : str = None snake_case_ : List[str] = None for g in groups: if "[PRIMARY]" == g[0]: snake_case_ : Any = g[1][0].strip() for i in range(len(_a ) ): if seq[i] not in residue_constants.restypes: snake_case_ : Tuple = "X" # FIXME: strings are immutable snake_case_ : int = np.array( [residue_constants.restype_order.get(_a , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case_ : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_a , g[1][axis].split() ) ) ) snake_case_ : Union[str, Any] = np.array(_a ) snake_case_ : Union[str, Any] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_a ): snake_case_ : str = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case_ : Tuple = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case_ : int = np.zeros( ( len(_a ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_a ): snake_case_ : Dict = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_a , atom_mask=_a , aatype=_a , residue_index=np.arange(len(_a ) ) , b_factors=_a , ) def lowerCAmelCase__ ( _a : Protein , _a : int = 0 ): snake_case_ : List[str] = [] snake_case_ : Union[str, Any] = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) snake_case_ : Union[str, Any] = prot.parents snake_case_ : Union[str, Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case_ : List[Any] = [p for i, p in zip(_a , _a ) if i == chain_id] if parents is None or len(_a ) == 0: snake_case_ : List[Any] = ["N/A"] pdb_headers.append(F'''PARENT {' '.join(_a )}''' ) return pdb_headers def lowerCAmelCase__ ( _a : Protein , _a : str ): snake_case_ : List[str] = [] snake_case_ : Tuple = pdb_str.split("\n" ) snake_case_ : Dict = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) snake_case_ : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case_ : Any = [] if prot.parents_chain_index is not None: snake_case_ : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_a ) , [] ) parent_dict[str(_a )].append(_a ) snake_case_ : Tuple = max([int(_a ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case_ : str = parent_dict.get(str(_a ) , ["N/A"] ) parents_per_chain.append(_a ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case_ : Optional[Any] = [["N/A"]] def make_parent_line(_a : Sequence[str] ) -> str: return F'''PARENT {' '.join(_a )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case_ : List[str] = 0 for i, l in enumerate(_a ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_a ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_a ): snake_case_ : str = parents_per_chain[chain_counter] else: snake_case_ : Union[str, Any] = ["N/A"] out_pdb_lines.append(make_parent_line(_a ) ) return "\n".join(_a ) def lowerCAmelCase__ ( _a : Protein ): snake_case_ : str = residue_constants.restypes + ["X"] def res_atoa(_a : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case_ : Any = residue_constants.atom_types snake_case_ : List[str] = [] snake_case_ : Any = prot.atom_mask snake_case_ : Optional[int] = prot.aatype snake_case_ : Tuple = prot.atom_positions snake_case_ : Union[str, Any] = prot.residue_index.astype(np.intaa ) snake_case_ : Dict = prot.b_factors snake_case_ : List[str] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case_ : List[str] = get_pdb_headers(_a ) if len(_a ) > 0: pdb_lines.extend(_a ) snake_case_ : Optional[Any] = aatype.shape[0] snake_case_ : Union[str, Any] = 1 snake_case_ : Any = 0 snake_case_ : Any = string.ascii_uppercase snake_case_ : Any = None # Add all atom sites. for i in range(_a ): snake_case_ : Any = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_a , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case_ : Tuple = "ATOM" snake_case_ : List[str] = atom_name if len(_a ) == 4 else F''' {atom_name}''' snake_case_ : Union[str, Any] = "" snake_case_ : List[Any] = "" snake_case_ : Dict = 1.00 snake_case_ : Dict = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case_ : List[str] = "" snake_case_ : Tuple = "A" if chain_index is not None: snake_case_ : Optional[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case_ : Tuple = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(_a ) atom_index += 1 snake_case_ : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case_ : Union[str, Any] = True snake_case_ : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case_ : str = "TER" snake_case_ : str = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(_a ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_a , _a ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(_a ) def lowerCAmelCase__ ( _a : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCAmelCase__ ( _a : FeatureDict , _a : ModelOutput , _a : Optional[np.ndarray] = None , _a : Optional[np.ndarray] = None , _a : Optional[str] = None , _a : Optional[Sequence[str]] = None , _a : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=_a , remark=_a , parents=_a , parents_chain_index=_a , )
36
import argparse import copy def lowerCAmelCase__ ( _a : List[Any] ): snake_case_ : List[Any] = {} with open(_a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : Dict = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase__ ( _a : Optional[Any] , _a : Optional[int] ): with open(_a ) as f: snake_case_ : List[str] = f.read(1 ) snake_case_ : Optional[Any] = start_node snake_case_ : Optional[Any] = [] snake_case_ : Optional[int] = start_node snake_case_ : int = 0 while visiting not in first_solution: snake_case_ : List[str] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_a ) and k[0] not in first_solution: snake_case_ : List[str] = k[1] snake_case_ : Dict = k[0] first_solution.append(_a ) snake_case_ : Dict = distance_of_first_solution + int(_a ) snake_case_ : Optional[int] = best_node first_solution.append(_a ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def lowerCAmelCase__ ( _a : Optional[int] , _a : List[str] ): snake_case_ : Optional[Any] = [] for n in solution[1:-1]: snake_case_ : Any = solution.index(_a ) for kn in solution[1:-1]: snake_case_ : Any = solution.index(_a ) if n == kn: continue snake_case_ : Optional[int] = copy.deepcopy(_a ) snake_case_ : int = kn snake_case_ : Any = n snake_case_ : List[Any] = 0 for k in _tmp[:-1]: snake_case_ : str = _tmp[_tmp.index(_a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Any = distance + int(i[1] ) _tmp.append(_a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase__ ( _a : Dict , _a : Optional[int] , _a : Optional[Any] , _a : Union[str, Any] , _a : int ): snake_case_ : str = 1 snake_case_ : List[str] = first_solution snake_case_ : int = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : int = solution while count <= iters: snake_case_ : Optional[Any] = find_neighborhood(_a , _a ) snake_case_ : Union[str, Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Dict = len(_a ) - 1 snake_case_ : List[Any] = False while not found: snake_case_ : int = 0 while i < len(_a ): if best_solution[i] != solution[i]: snake_case_ : str = best_solution[i] snake_case_ : Any = solution[i] break snake_case_ : Dict = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Optional[Any] = True snake_case_ : Optional[int] = best_solution[:-1] snake_case_ : List[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Union[str, Any] = cost snake_case_ : Optional[int] = solution else: snake_case_ : Union[str, Any] = index_of_best_solution + 1 snake_case_ : int = neighborhood[index_of_best_solution] if len(_a ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def lowerCAmelCase__ ( _a : str=None ): snake_case_ : Optional[Any] = generate_neighbours(args.File ) snake_case_ , snake_case_ : List[Any] = generate_first_solution( args.File , _a ) snake_case_ , snake_case_ : int = tabu_search( _a , _a , _a , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
36
1
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_UpperCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def _snake_case ( self ): lowercase__: Tuple = None ops.enable_eager_execution_internal() lowercase__: List[str] = tf.config.list_physical_devices('''CPU''' ) if len(_UpperCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowercase__: Tuple = tf.config.list_logical_devices(device_type='''CPU''' ) lowercase__: str = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowercase__: Optional[int] = GradientAccumulator() lowercase__: Any = tf.Variable([4.0, 3.0] ) lowercase__, lowercase__: Optional[Any] = create_optimizer(5e-5 , 10 , 5 ) lowercase__: Optional[Any] = tf.Variable([0.0, 0.0] , trainable=_UpperCAmelCase ) def accumulate_on_replica(_UpperCAmelCase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_UpperCAmelCase , _UpperCAmelCase ): with strategy.scope(): lowercase__: List[str] = strategy.experimental_local_results(_UpperCAmelCase ) local_variables[0].assign(_UpperCAmelCase ) local_variables[1].assign(_UpperCAmelCase ) strategy.run(_UpperCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_UpperCAmelCase ) def _check_local_values(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[str] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _UpperCAmelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _UpperCAmelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
177
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): lowercase__: Optional[Any] = parent lowercase__: Union[str, Any] = batch_size lowercase__: int = image_size lowercase__: Optional[Any] = num_channels lowercase__: Optional[int] = embeddings_size lowercase__: Dict = hidden_sizes lowercase__: Union[str, Any] = depths lowercase__: str = is_training lowercase__: Optional[int] = use_labels lowercase__: List[str] = hidden_act lowercase__: Dict = num_labels lowercase__: Any = scope lowercase__: Optional[Any] = len(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: List[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase__: Optional[int] = self.get_config() return config, pixel_values, labels def _snake_case ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = TFResNetModel(config=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: int = TFResNetForImageClassification(_UpperCAmelCase ) lowercase__: Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__: Optional[Any] = config_and_inputs lowercase__: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase :List[str] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase :Any = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): lowercase__: Union[str, Any] = TFResNetModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def _snake_case ( self ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Optional[Any] = model_class(_UpperCAmelCase ) lowercase__: str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: int = [*signature.parameters.keys()] lowercase__: Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = model_class(_UpperCAmelCase ) lowercase__: List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__: Tuple = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__, lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__: Tuple = layer_type lowercase__: Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__: List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Dict = TFResNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self ): lowercase__: Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__: Any = self.default_image_processor lowercase__: List[Any] = prepare_img() lowercase__: List[Any] = image_processor(images=_UpperCAmelCase , return_tensors='''tf''' ) # forward pass lowercase__: Dict = model(**_UpperCAmelCase ) # verify the logits lowercase__: int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__: Dict = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1e-4 ) )
177
1
'''simple docstring''' def __a ( _UpperCamelCase: Any , _UpperCamelCase: Dict ) -> int: """simple docstring""" while b: _snake_case = b, a % b return a def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: List[Any] ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def __a ( ) -> Union[str, Any]: """simple docstring""" print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
362
'''simple docstring''' def __a ( _UpperCamelCase: int ) -> None: """simple docstring""" _snake_case = generate_pascal_triangle(_UpperCamelCase ) for row_idx in range(_UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [] for current_row_idx in range(_UpperCamelCase ): _snake_case = populate_current_row(_UpperCamelCase , _UpperCamelCase ) triangle.append(_UpperCamelCase ) return triangle def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: int ) -> list[int]: """simple docstring""" _snake_case = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _snake_case , _snake_case = 1, 1 for current_col_idx in range(1 , _UpperCamelCase ): calculate_current_element( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return current_row def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: list[int] , _UpperCamelCase: int , _UpperCamelCase: int , ) -> None: """simple docstring""" _snake_case = triangle[current_row_idx - 1][current_col_idx - 1] _snake_case = triangle[current_row_idx - 1][current_col_idx] _snake_case = above_to_left_elt + above_to_right_elt def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [[1]] for row_index in range(1 , _UpperCamelCase ): _snake_case = [0] + result[-1] + [0] _snake_case = row_index + 1 # Calculate the number of distinct elements in a row _snake_case = sum(divmod(_UpperCamelCase , 2 ) ) _snake_case = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _snake_case = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _snake_case = row_first_half + row_second_half result.append(_UpperCamelCase ) return result def __a ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase: Callable , _UpperCamelCase: int ) -> None: _snake_case = F"""{func.__name__}({value})""" _snake_case = timeit(F"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
142
0
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = "cpu" , _SCREAMING_SNAKE_CASE : Union[str, None] = None ): """simple docstring""" __a = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) for k, v in tqdm(state_dict.items() ): if not isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) __a = v.half() if save_path is None: # overwrite src_path __a = src_path torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": fire.Fire(convert)
302
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __a = 128 elif "12-12" in model_name: __a = 12 __a = 12 elif "14-14" in model_name: __a = 14 __a = 14 elif "16-16" in model_name: __a = 16 __a = 16 else: raise ValueError("""Model not supported""" ) __a = """huggingface/label-files""" if "speech-commands" in model_name: __a = 35 __a = """speech-commands-v2-id2label.json""" else: __a = 527 __a = """audioset-id2label.json""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "module.v" in name: __a = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __a = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __a = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __a = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[3] ) __a = config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE ) __a = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # remove some keys remove_keys(_SCREAMING_SNAKE_CASE ) # rename some keys __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load 🤗 model __a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 __a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 __a = 1024 if """speech-commands""" not in model_name else 128 __a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: __a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __a = dataset[0]["""audio"""]["""array"""] else: __a = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE ) __a = waveform.squeeze().numpy() __a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __a = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __a = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __a = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __a = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __a = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __a = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __a = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __a = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class SCREAMING_SNAKE_CASE ( __lowercase ): """simple docstring""" def __init__( self : Dict , **lowerCAmelCase : int ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type(lowerCAmelCase ) def __call__( self : List[str] , lowerCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , lowerCAmelCase : Union[str, List[str]] = None , **lowerCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase : str = kwargs.pop("""text_queries""" ) if isinstance(lowerCAmelCase , (str, Image.Image) ): __lowerCAmelCase : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCAmelCase : List[str] = image __lowerCAmelCase : Dict = super().__call__(lowerCAmelCase , **lowerCAmelCase ) return results def SCREAMING_SNAKE_CASE ( self : Any , **lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = {} if "threshold" in kwargs: __lowerCAmelCase : Optional[int] = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCAmelCase : Dict = kwargs["""top_k"""] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = load_image(inputs["""image"""] ) __lowerCAmelCase : Tuple = inputs["""candidate_labels"""] if isinstance(lowerCAmelCase , lowerCAmelCase ): __lowerCAmelCase : Union[str, Any] = candidate_labels.split(""",""" ) __lowerCAmelCase : Optional[int] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowerCAmelCase ): __lowerCAmelCase : int = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) __lowerCAmelCase : Union[str, Any] = self.image_processor(lowerCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(lowerCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = model_inputs.pop("""target_size""" ) __lowerCAmelCase : Dict = model_inputs.pop("""candidate_label""" ) __lowerCAmelCase : List[str] = model_inputs.pop("""is_last""" ) __lowerCAmelCase : str = self.model(**lowerCAmelCase ) __lowerCAmelCase : Dict = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Tuple=None ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = [] for model_output in model_outputs: __lowerCAmelCase : Dict = model_output["""candidate_label"""] __lowerCAmelCase : Union[str, Any] = BaseModelOutput(lowerCAmelCase ) __lowerCAmelCase : int = self.image_processor.post_process_object_detection( outputs=lowerCAmelCase , threshold=lowerCAmelCase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase : Tuple = outputs["""scores"""][index].item() __lowerCAmelCase : str = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCAmelCase : List[str] = {"""score""": score, """label""": label, """box""": box} results.append(lowerCAmelCase ) __lowerCAmelCase : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["score"] , reverse=lowerCAmelCase ) if top_k: __lowerCAmelCase : str = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCAmelCase : List[str] = box.int().tolist() __lowerCAmelCase : List[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
363
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Optional[int] , __A : Any ) -> Any: __lowerCAmelCase : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def snake_case_ (__A : List[str] , __A : str ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __lowerCAmelCase : Optional[Any] = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] __lowerCAmelCase : str = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __lowerCAmelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case_ (__A : Union[str, Any] , __A : str , __A : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase : Any = dct.pop(__A ) __lowerCAmelCase : str = val def snake_case_ (__A : int ) -> Tuple: if "handwritten" in checkpoint_url: __lowerCAmelCase : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Optional[Any] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" __lowerCAmelCase : Dict = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return im @torch.no_grad() def snake_case_ (__A : Any , __A : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase : List[Any] = ViTConfig(image_size=3_8_4 , qkv_bias=__A ) __lowerCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __lowerCAmelCase : Union[str, Any] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __lowerCAmelCase : Any = 1_0_2_4 __lowerCAmelCase : Any = 4_0_9_6 __lowerCAmelCase : Optional[int] = 2_4 __lowerCAmelCase : str = 1_6 __lowerCAmelCase : List[Any] = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = """relu""" __lowerCAmelCase : List[Any] = 1_0_2_4 __lowerCAmelCase : Any = True __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = False # load HuggingFace model __lowerCAmelCase : Dict = ViTModel(__A , add_pooling_layer=__A ) __lowerCAmelCase : Union[str, Any] = TrOCRForCausalLM(__A ) __lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() # load state_dict of original model, rename some keys __lowerCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" , check_hash=__A )["""model"""] __lowerCAmelCase : Any = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __lowerCAmelCase : Tuple = state_dict.pop(__A ) if key.startswith("""decoder""" ) and "output_projection" not in key: __lowerCAmelCase : str = val else: __lowerCAmelCase : Tuple = val # load state dict model.load_state_dict(__A ) # Check outputs on an image __lowerCAmelCase : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) __lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) __lowerCAmelCase : List[Any] = TrOCRProcessor(__A , __A ) __lowerCAmelCase : List[str] = processor(images=prepare_img(__A ) , return_tensors="""pt""" ).pixel_values # verify logits __lowerCAmelCase : List[str] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __lowerCAmelCase : List[str] = model(pixel_values=__A , decoder_input_ids=__A ) __lowerCAmelCase : Optional[Any] = outputs.logits __lowerCAmelCase : Union[str, Any] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __lowerCAmelCase : Dict = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __lowerCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __A , atol=1e-3 ), "First elements of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
139
0
from __future__ import annotations from collections import deque class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : list[str] ): __A = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(A ) self.set_fail_transitions() def UpperCamelCase_ ( self : Dict ,A : int ,A : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase_ ( self : str ,A : str ): __A = 0 for character in keyword: __A = self.find_next_state(A ,A ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __A = len(self.adlist ) - 1 else: __A = next_state self.adlist[current_state]["output"].append(A ) def UpperCamelCase_ ( self : str ): __A = deque() for node in self.adlist[0]["next_states"]: q.append(A ) __A = 0 while q: __A = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A ) __A = self.adlist[r]["fail_state"] while ( self.find_next_state(A ,self.adlist[child]["value"] ) is None and state != 0 ): __A = self.adlist[state]["fail_state"] __A = self.find_next_state( A ,self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: __A = 0 __A = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCamelCase_ ( self : Optional[int] ,A : str ): __A = {} # returns a dict with keywords and list of its occurrences __A = 0 for i in range(len(A ) ): while ( self.find_next_state(A ,string[i] ) is None and current_state != 0 ): __A = self.adlist[current_state]["fail_state"] __A = self.find_next_state(A ,string[i] ) if next_state is None: __A = 0 else: __A = next_state for key in self.adlist[current_state]["output"]: if key not in result: __A = [] result[key].append(i - len(A ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
15
import numpy as np def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) __A = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __A = False __A = 0 __A = 0 __A = 1E12 while not convergence: # Multiple matrix by the vector. __A = np.dot(a_ , a_ ) # Normalize the resulting output vector. __A = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __A = vector.conj().T if is_complex else vector.T __A = np.dot(a_ , np.dot(a_ , a_ ) ) # Check convergence. __A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __A = True __A = lambda_ if is_complex: __A = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ) -> None: """simple docstring""" __A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) __A = np.array([4_1, 4, 2_0] ) __A = real_input_matrix.astype(np.complexaaa ) __A = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __A = real_input_matrix __A = real_vector elif problem_type == "complex": __A = complex_input_matrix __A = complex_vector # Our implementation. __A , __A = power_iteration(a_ , a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __A , __A = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. __A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" UpperCamelCase_ = AlbertConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) UpperCamelCase_ = AlbertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_albert(_A , _A , _A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
355
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets SCREAMING_SNAKE_CASE :Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ SCREAMING_SNAKE_CASE :Optional[int] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ SCREAMING_SNAKE_CASE :Tuple = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def UpperCAmelCase_ ( self )-> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , )-> int: UpperCamelCase_ = len(references[0] ) if any(len(_lowercase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase_ = [[refs[i] for refs in references] for i in range(_lowercase )] UpperCamelCase_ = TER( normalized=_lowercase , no_punct=_lowercase , asian_support=_lowercase , case_sensitive=_lowercase , ) UpperCamelCase_ = sb_ter.corpus_score(_lowercase , _lowercase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
60
0
from __future__ import annotations from typing import Generic, TypeVar _lowerCamelCase : Optional[int] = TypeVar("""T""") class UpperCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict) ->Any: '''simple docstring''' A__ = data A__ = self A__ = 0 class UpperCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str]) ->List[Any]: '''simple docstring''' A__ = DisjointSetTreeNode(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[str]) ->Dict: '''simple docstring''' A__ = self.map[data] if elem_ref != elem_ref.parent: A__ = self.find_set(elem_ref.parent.data) return elem_ref.parent def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict) ->Optional[int]: '''simple docstring''' if nodea.rank > nodea.rank: A__ = nodea else: A__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any) ->Optional[int]: '''simple docstring''' self.link(self.find_set(_UpperCAmelCase) , self.find_set(_UpperCAmelCase)) class UpperCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Dict) ->str: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' if node not in self.connections: A__ = {} def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' self.add_node(_UpperCAmelCase) self.add_node(_UpperCAmelCase) A__ = weight A__ = weight def SCREAMING_SNAKE_CASE ( self : str) ->List[str]: '''simple docstring''' A__ = [] A__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start)) edges.append((start, end, self.connections[start][end])) edges.sort(key=lambda UpperCAmelCase__: x[2]) # creating the disjoint set A__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_UpperCAmelCase) # MST generation A__ = 0 A__ = 0 A__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections) - 1: A__ = edges[index] index += 1 A__ = disjoint_set.find_set(_UpperCAmelCase) A__ = disjoint_set.find_set(_UpperCAmelCase) if parent_u != parent_v: num_edges += 1 graph.add_edge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) disjoint_set.union(_UpperCAmelCase , _UpperCAmelCase) return graph
14
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A = None A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 A = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = TaTokenizer __lowerCAmelCase = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=100 , _UpperCAmelCase=None , **_UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __a : Dict = [f"""<extra_id_{i}>""" for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __a : Union[str, Any] = len(set(filter(lambda _UpperCAmelCase : bool('''extra_id_''' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __a : Union[str, Any] = vocab_file __a : int = False if not self.vocab_file else True __a : List[str] = extra_ids @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __a : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCAmelCase , ) return max_model_length def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __a : List[str] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self ): return list( set(filter(lambda _UpperCAmelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self ): return [self.convert_tokens_to_ids(_UpperCAmelCase ) for token in self.get_sentinel_tokens()]
160
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : int = ['''image_processor''', '''tokenizer'''] snake_case__ : Optional[int] = '''AutoImageProcessor''' snake_case__ : int = '''AutoTokenizer''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: a_ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE__ , ) a_ : Dict = kwargs.pop('feature_extractor' ) a_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.image_processor a_ : Union[str, Any] = False def __call__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Dict = kwargs.pop('images' , SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = kwargs.pop('text' , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: a_ : Optional[Any] = args[0] a_ : int = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: a_ : List[str] = self.image_processor(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None: a_ : Dict = self.tokenizer(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is None: return inputs elif images is None: return encodings else: a_ : Optional[int] = encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE ( self : List[Any] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @contextmanager def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) a_ : Any = True a_ : Optional[int] = self.tokenizer yield a_ : List[Any] = self.image_processor a_ : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> int: if added_vocab is None: a_ : Optional[Any] = self.tokenizer.get_added_vocab() a_ : List[Any] = {} while tokens: a_ : int = re.search(r'<s_(.*?)>' , SCREAMING_SNAKE_CASE__ , re.IGNORECASE ) if start_token is None: break a_ : Dict = start_token.group(1 ) a_ : Union[str, Any] = re.search(rF"""</s_{key}>""" , SCREAMING_SNAKE_CASE__ , re.IGNORECASE ) a_ : Any = start_token.group() if end_token is None: a_ : str = tokens.replace(SCREAMING_SNAKE_CASE__ , '' ) else: a_ : Any = end_token.group() a_ : Tuple = re.escape(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = re.escape(SCREAMING_SNAKE_CASE__ ) a_ : int = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , SCREAMING_SNAKE_CASE__ , re.IGNORECASE ) if content is not None: a_ : int = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node a_ : Optional[int] = self.tokenajson(SCREAMING_SNAKE_CASE__ , is_inner_value=SCREAMING_SNAKE_CASE__ , added_vocab=SCREAMING_SNAKE_CASE__ ) if value: if len(SCREAMING_SNAKE_CASE__ ) == 1: a_ : Optional[Any] = value[0] a_ : int = value else: # leaf nodes a_ : Tuple = [] for leaf in content.split(r'<sep/>' ): a_ : Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": a_ : Union[str, Any] = leaf[1:-2] # for categorical special tokens output[key].append(SCREAMING_SNAKE_CASE__ ) if len(output[key] ) == 1: a_ : Dict = output[key][0] a_ : Dict = tokens[tokens.find(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=SCREAMING_SNAKE_CASE__ , added_vocab=SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
363
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: """simple docstring""" a_ : int = len(__A ) for _ in range(__A ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: a_ , a_ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ : int = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
120
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( snake_case , snake_case ) -> str: assert isinstance(a_ , a_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def snake_case_ ( snake_case , snake_case , snake_case ) -> Optional[Any]: lowercase__: Optional[int] = tmp_path / '''cache''' lowercase__: List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__: List[Any] = JsonDatasetReader(a_ , cache_dir=a_ , keep_in_memory=a_ ).read() _check_json_dataset(a_ , a_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: lowercase__: Dict = tmp_path / '''cache''' lowercase__: int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__: Optional[Any] = features.copy() if features else default_expected_features lowercase__: Union[str, Any] = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__: Optional[int] = JsonDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() _check_json_dataset(a_ , a_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: lowercase__: int = tmp_path / '''cache''' lowercase__: Union[str, Any] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowercase__: Tuple = features.copy() if features else default_expected_features lowercase__: Dict = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__: Tuple = JsonDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() assert isinstance(a_ , a_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( snake_case , snake_case ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowercase__: List[Any] = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowercase__: Any = features.copy() lowercase__: Optional[Any] = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__: Dict = tmp_path / '''cache''' lowercase__: Union[str, Any] = JsonDatasetReader(a_ , features=a_ , cache_dir=a_ ).read() assert isinstance(a_ , a_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def snake_case_ ( snake_case , snake_case , snake_case ) -> List[Any]: lowercase__: int = tmp_path / '''cache''' lowercase__: Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__: Dict = JsonDatasetReader(a_ , cache_dir=a_ , split=a_ ).read() _check_json_dataset(a_ , a_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def snake_case_ ( snake_case , snake_case , snake_case ) -> Dict: if issubclass(a_ , a_ ): lowercase__: Any = jsonl_path elif issubclass(a_ , a_ ): lowercase__: Dict = [jsonl_path] lowercase__: List[str] = tmp_path / '''cache''' lowercase__: int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__: str = JsonDatasetReader(a_ , cache_dir=a_ ).read() _check_json_dataset(a_ , a_ ) def snake_case_ ( snake_case , snake_case , snake_case=("train",) ) -> str: assert isinstance(a_ , a_ ) for split in splits: lowercase__: Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def snake_case_ ( snake_case , snake_case , snake_case ) -> Optional[Any]: lowercase__: Union[str, Any] = tmp_path / '''cache''' lowercase__: Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__: Any = JsonDatasetReader({'train': jsonl_path} , cache_dir=a_ , keep_in_memory=a_ ).read() _check_json_datasetdict(a_ , a_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def snake_case_ ( snake_case , snake_case , snake_case ) -> Optional[Any]: lowercase__: List[Any] = tmp_path / '''cache''' lowercase__: Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__: Dict = features.copy() if features else default_expected_features lowercase__: Tuple = ( Features({feature: Value(a_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__: List[Any] = JsonDatasetReader({'train': jsonl_path} , features=a_ , cache_dir=a_ ).read() _check_json_datasetdict(a_ , a_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: if split: lowercase__: Any = {split: jsonl_path} else: lowercase__: Tuple = '''train''' lowercase__: Union[str, Any] = {'''train''': jsonl_path, '''test''': jsonl_path} lowercase__: str = tmp_path / '''cache''' lowercase__: Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__: Dict = JsonDatasetReader(a_ , cache_dir=a_ ).read() _check_json_datasetdict(a_ , a_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( snake_case ) -> Tuple: return json.load(a_ ) def snake_case_ ( snake_case ) -> Optional[int]: return [json.loads(a_ ) for line in buffer] class __a : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) lowercase__: Union[str, Any] = load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) lowercase__: Union[str, Any] = load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) lowercase__: Union[str, Any] = load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) lowercase__: Optional[int] = load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE__ ): with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Optional[Any] = tmp_path_factory.mktemp('data' ) / F'test.json.{extension}' lowercase__: int = str(shared_datadir / F'test_file.json.{extension}' ) JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: lowercase__: List[Any] = f.read() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: lowercase__: Union[str, Any] = f.read() assert exported_content == original_content
196
"""simple docstring""" from manim import * class _SCREAMING_SNAKE_CASE( A ): def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) __SCREAMING_SNAKE_CASE :List[str] = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Any = VGroup(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Tuple = Text('''CPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :Optional[Any] = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = [mem.copy() for i in range(1 )] __SCREAMING_SNAKE_CASE :str = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = Text('''GPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.align_to(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :List[Any] = Text('''Model''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,) __SCREAMING_SNAKE_CASE :List[str] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __SCREAMING_SNAKE_CASE :List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE :Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ ,run_time=2.5 ) ,Write(SCREAMING_SNAKE_CASE__ ) ,Write(SCREAMING_SNAKE_CASE__ ) ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [] __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ ,opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE__ ) cpu_target.generate_target() __SCREAMING_SNAKE_CASE :Union[str, Any] = 0.4_6 / 4 __SCREAMING_SNAKE_CASE :Tuple = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=SCREAMING_SNAKE_CASE__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE__ ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ ,run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(*SCREAMING_SNAKE_CASE__ ) self.wait()
191
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[int] = "▁" __A : List[Any] = {"vocab_file": "spiece.model"} __A : Union[str, Any] = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } __A : Tuple = { "google/reformer-crime-and-punishment": 524288, } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : str="<unk>" , __UpperCamelCase : Optional[int]=[] , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Tuple , )->None: _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def lowercase__ ( self : Optional[int] )->Any: return self.sp_model.get_piece_size() def lowercase__ ( self : Union[str, Any] )->Dict[str, int]: _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict )->Union[str, Any]: _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : str , __UpperCamelCase : Optional[int] )->int: _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str )->List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] )->List[Any]: return self.sp_model.piece_to_id(__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] )->Dict: if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(__UpperCamelCase ) return token def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] )->Tuple: _UpperCAmelCase = [] _UpperCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase__ : Dict = sys.version_info >= (3, 10) def lowerCAmelCase_ ( _lowerCamelCase: List[str]=None , _lowerCamelCase: Union[str, Any]=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : int _A : float _A : str _A : bool @dataclass class _UpperCamelCase : '''simple docstring''' _A : int = 42 _A : str = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : bool = False _A : bool = True _A : Optional[bool] = None class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _A : Dict = "titi" _A : Optional[Any] = "toto" class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _A : Tuple = "titi" _A : List[str] = "toto" _A : List[str] = 42 @dataclass class _UpperCamelCase : '''simple docstring''' _A : BasicEnum = "toto" def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = BasicEnum(self.foo ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : MixedTypeEnum = "toto" def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = MixedTypeEnum(self.foo ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : Optional[int] = None _A : Optional[float] = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''help message'''} ) _A : Optional[str] = None _A : Optional[List[str]] = list_field(default=[] ) _A : Optional[List[int]] = list_field(default=[] ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : List[int] = list_field(default=[] ) _A : List[int] = list_field(default=[1, 2, 3] ) _A : List[str] = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) _A : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : List[int] = field() _A : str = field() _A : BasicEnum = field() def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BasicEnum(self.required_enum ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : int _A : "BasicEnum" = field() _A : "Optional[bool]" = None _A : "str" = field(default='''toto''' , metadata={'''help''': '''help message'''} ) _A : "List[str]" = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class _UpperCamelCase : '''simple docstring''' _A : bool = False _A : bool = True _A : bool | None = None @dataclass class _UpperCamelCase : '''simple docstring''' _A : int | None = None _A : float | None = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''help message'''} ) _A : str | None = None _A : list[str] | None = list_field(default=[] ) _A : list[int] | None = list_field(default=[] ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __SCREAMING_SNAKE_CASE : Dict = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""} __SCREAMING_SNAKE_CASE : Any = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , __UpperCAmelCase ) and yy.get("""choices""" , __UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__UpperCAmelCase ) , yy["""type"""](__UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--bar""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--baz""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--flag""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (__SCREAMING_SNAKE_CASE ) : Optional[Any] = parser.parse_args_into_dataclasses(__UpperCAmelCase , look_for_args_file=__UpperCAmelCase ) self.assertFalse(example.flag ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=4_2 , type=__UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=__UpperCAmelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: __SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 4_2] , type=make_choice_type_function(["""titi""", """toto""", 4_2] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 4_2 ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCamelCase__ ( self : int ): """simple docstring""" @dataclass class _UpperCamelCase : '''simple docstring''' _A : Literal["titi", "toto", 42] = "toto" __SCREAMING_SNAKE_CASE : Dict = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 4_2) , type=make_choice_type_function(["""titi""", """toto""", 4_2] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __SCREAMING_SNAKE_CASE : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 4_2 ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__UpperCAmelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args([] ) self.assertEqual( __UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) __SCREAMING_SNAKE_CASE : int = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument("""--bar""" , default=__UpperCAmelCase , type=__UpperCAmelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: __SCREAMING_SNAKE_CASE : str = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , bar=__UpperCAmelCase , baz=__UpperCAmelCase , ces=[] , des=[] ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo=1_2 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--required_str""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , ) expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } __SCREAMING_SNAKE_CASE : Tuple = parser.parse_dict(__UpperCAmelCase )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Dict = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 4_2, } self.assertRaises(__UpperCAmelCase , parser.parse_dict , __UpperCAmelCase , allow_extra_keys=__UpperCAmelCase ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : str = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(__UpperCAmelCase , """temp_json""" ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] __SCREAMING_SNAKE_CASE : int = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = HfArgumentParser(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : int = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(__UpperCAmelCase , """temp_yaml""" ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] __SCREAMING_SNAKE_CASE : Optional[int] = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = HfArgumentParser(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
112
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.model'''} __lowerCAmelCase = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } __lowerCAmelCase = { '''google/rembert''': 2_56, } class __a ( __UpperCamelCase ): __lowercase : Any = VOCAB_FILES_NAMES __lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: Tuple = do_lower_case lowercase__: List[str] = remove_space lowercase__: Optional[int] = keep_accents lowercase__: Optional[int] = vocab_file lowercase__: Any = spm.SentencePieceProcessor() self.sp_model.Load(lowerCAmelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: '''simple docstring''' lowercase__: Tuple = self.__dict__.copy() lowercase__: Any = None return state def __setstate__( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: Optional[int] = d lowercase__: str = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = self.sp_model.EncodeAsPieces(lowerCAmelCase__ ) return pieces def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' return self.sp_model.PieceToId(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.sp_model.IdToPiece(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: Any = self.sp_model.decode_pieces(lowerCAmelCase__ ) return out_string def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Any = [self.sep_token_id] lowercase__: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: List[Any] = [self.sep_token_id] lowercase__: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return lowercase__: str = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
288
from collections import deque from math import floor from random import random from time import time class __a : def __init__( self ) -> Dict: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__: int = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): lowercase__: Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] lowercase__: Tuple = [] lowercase__: Tuple = [] if s == -2: lowercase__: Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[int] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if c == -1: lowercase__: int = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Dict: '''simple docstring''' lowercase__: int = deque() lowercase__: Dict = [] if s == -2: lowercase__: Optional[int] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = [] lowercase__: str = [] if s == -2: lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: List[Any] = s lowercase__: Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: lowercase__: int = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = [] lowercase__: int = [] lowercase__: List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Union[str, Any] = [] lowercase__: List[str] = s lowercase__: Dict = False lowercase__: Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Any = True if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Union[str, Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: int = s lowercase__: str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = [] lowercase__: int = [] lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Optional[int] = -2 lowercase__: List[Any] = [] lowercase__: List[str] = s lowercase__: List[Any] = False lowercase__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Optional[Any] = True if len(lowerCAmelCase__ ) != 0: lowercase__: Any = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Dict = s lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[str]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin class __a : def __init__( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> List[Any]: '''simple docstring''' # check if the u exists if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__: str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__: Union[str, Any] = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] lowercase__: str = [] lowercase__: int = [] if s == -2: lowercase__: Tuple = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: lowercase__: Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = deque() lowercase__: List[Any] = [] if s == -2: lowercase__: str = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = [] lowercase__: Dict = [] lowercase__: Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Dict = [] lowercase__: List[Any] = s lowercase__: Union[str, Any] = False lowercase__: List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: str = True if len(lowerCAmelCase__ ) != 0: lowercase__: Dict = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: int = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Tuple = s lowercase__: List[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = [] lowercase__: Optional[int] = [] lowercase__: Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Tuple = -2 lowercase__: Any = [] lowercase__: int = s lowercase__: Optional[int] = False lowercase__: List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: List[str] = True if len(lowerCAmelCase__ ) != 0: lowercase__: List[str] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Optional[Any] = s lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin
288
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : jnp.ndarray @flax_register_to_config class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ): """simple docstring""" _snake_case : int = 3_2 _snake_case : int = 4 _snake_case : int = 4 _snake_case : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _snake_case : Union[bool, Tuple[bool]] = False _snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _snake_case : int = 2 _snake_case : Union[int, Tuple[int]] = 8 _snake_case : Optional[Union[int, Tuple[int]]] = None _snake_case : int = 1_2_8_0 _snake_case : float = 0.0 _snake_case : bool = False _snake_case : jnp.dtype = jnp.floataa _snake_case : bool = True _snake_case : int = 0 _snake_case : bool = False def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' _UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa ) _UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ ) _UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"] def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.block_out_channels _UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype ) _UpperCamelCase = self.only_cross_attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase = [] _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = down_blocks # mid _UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _UpperCamelCase = [] _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = output_channel _UpperCamelCase = up_blocks # out _UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , jnp.ndarray ): _UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 ) _UpperCamelCase = self.time_proj(lowerCAmelCase__ ) _UpperCamelCase = self.time_embedding(lowerCAmelCase__ ) # 2. pre-process _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) _UpperCamelCase = self.conv_in(lowerCAmelCase__ ) # 3. down _UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( lowerCAmelCase__ , lowerCAmelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase = new_down_block_res_samples # 4. mid _UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = up_block( lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , ) else: _UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train ) # 6. post-process _UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ ) _UpperCamelCase = nn.silu(lowerCAmelCase__ ) _UpperCamelCase = self.conv_out(lowerCAmelCase__ ) _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
324
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[int] = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'audio-spectrogram-transformer' def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = patch_size _UpperCamelCase = qkv_bias _UpperCamelCase = frequency_stride _UpperCamelCase = time_stride _UpperCamelCase = max_length _UpperCamelCase = num_mel_bins
324
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = IFInpaintingPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def A__ ( self ) -> List[str]: '''simple docstring''' return self._get_dummy_components() def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> int: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowercase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def A__ ( self ) -> str: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def A__ ( self ) -> Dict: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def A__ ( self ) -> Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def A__ ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_local() def A__ ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
'''simple docstring''' from math import pow def UpperCamelCase_( snake_case : int , snake_case : int , snake_case : int , snake_case : int , snake_case : int , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count snake_case_ = int(pow(snake_case , snake_case ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n snake_case_ , snake_case_ = backtrack( snake_case , snake_case , current_number + 1 , snake_case , snake_case ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. snake_case_ , snake_case_ = backtrack( snake_case , snake_case , current_number + 1 , snake_case , snake_case ) return current_sum, solutions_count def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(snake_case , snake_case , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'spiece.model'} _lowerCamelCase : Optional[int] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _lowerCamelCase : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = 2 _lowerCamelCase : Dict = 3 _lowerCamelCase : Union[str, Any] = 4 class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = """left""" def __init__( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : List[Any]="<sep>" , _lowerCamelCase : str="<pad>" , _lowerCamelCase : Dict="<cls>" , _lowerCamelCase : str="<mask>" , _lowerCamelCase : Optional[int]=["<eop>", "<eod>"] , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : str = 3 A_ : Union[str, Any] = do_lower_case A_ : Tuple = remove_space A_ : int = keep_accents A_ : Optional[Any] = vocab_file A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def a_ ( self : int ): """simple docstring""" return len(self.sp_model ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" A_ : str = self.__dict__.copy() A_ : Tuple = None return state def __setstate__( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : List[Any] = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" if self.remove_space: A_ : str = ''' '''.join(inputs.strip().split() ) else: A_ : Any = inputs A_ : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A_ : Any = unicodedata.normalize('''NFKD''' , _lowerCamelCase ) A_ : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: A_ : str = outputs.lower() return outputs def a_ ( self : List[str] , _lowerCamelCase : str ): """simple docstring""" A_ : str = self.preprocess_text(_lowerCamelCase ) A_ : int = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) A_ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Tuple = cur_pieces[1:] else: A_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def a_ ( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Any = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : int , ): """simple docstring""" A_ : int = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) A_ : List[str] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : Any = [] A_ : List[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) A_ : int = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ : Optional[int] = ''''''.join(_lowerCamelCase ) A_ : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Dict = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a_ ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def a_ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a_ ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
167
0
"""simple docstring""" from __future__ import annotations class A_ : def __init__( self: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Any = text, pattern _lowerCamelCase, _lowerCamelCase : Tuple = len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ): '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def _lowercase ( self: str ,__lowerCAmelCase: int ): '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCamelCase : str = self.mismatch_in_text(__SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE ) else: _lowerCamelCase : List[str] = self.match_in_pattern(self.text[mismatch_index] ) _lowerCamelCase : Tuple = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCAmelCase : int = 'ABAABA' _lowerCAmelCase : Optional[Any] = 'AB' _lowerCAmelCase : Any = BoyerMooreSearch(text, pattern) _lowerCAmelCase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Any = '▁' UpperCAmelCase__ : Optional[int] = {'vocab_file': 'prophetnet.tokenizer'} UpperCAmelCase__ : List[Any] = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } UpperCAmelCase__ : Optional[Any] = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } UpperCAmelCase__ : List[str] = { 'microsoft/xprophetnet-large-wiki100-cased': 5_1_2, } def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = collections.OrderedDict() with open(__a ,"""r""" ,encoding="""utf-8""" ) as reader: SCREAMING_SNAKE_CASE__ : int = reader.readlines() for index, token in enumerate(__a ): SCREAMING_SNAKE_CASE__ : Optional[int] = token.rstrip("""\n""" ) SCREAMING_SNAKE_CASE__ : List[Any] = index return vocab class lowerCAmelCase_ (snake_case_ ): """simple docstring""" __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ["input_ids", "attention_mask"] def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[UNK]" , SCREAMING_SNAKE_CASE__="[PAD]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , sep_token=_A , unk_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise SCREAMING_SNAKE_CASE__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE__ : Optional[Any] = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): SCREAMING_SNAKE_CASE__ : Optional[int] = F'''[unused{i}]''' SCREAMING_SNAKE_CASE__ : str = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ : Union[str, Any] = 12 SCREAMING_SNAKE_CASE__ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_A ) def __getstate__(self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Union[str, Any] = None return state def __setstate__(self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = {} SCREAMING_SNAKE_CASE__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return ([0] * len(_A )) + [1] return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __magic_name__ (self ) -> int: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ : Optional[int] = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ''.join(_A ).replace(_A , """ """ ).strip() return out_string def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : Dict = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
25
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( __lowerCAmelCase ): a__ = 42 a__ = 42 def __init__( self , lowercase , lowercase) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase) @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = 20_00 , lowercase = None , lowercase = "pil" , lowercase = True , **lowercase , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' a__: List[Any] = self.unet.config.sample_size a__: List[Any] = (batch_size, 3, img_size, img_size) a__: List[str] = self.unet a__: int = randn_tensor(lowercase , generator=lowercase) * self.scheduler.init_noise_sigma a__: Tuple = sample.to(self.device) self.scheduler.set_timesteps(lowercase) self.scheduler.set_sigmas(lowercase) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): a__: int = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): a__: Union[str, Any] = self.unet(lowercase , lowercase).sample a__: List[str] = self.scheduler.step_correct(lowercase , lowercase , generator=lowercase).prev_sample # prediction step a__: List[str] = model(lowercase , lowercase).sample a__: List[Any] = self.scheduler.step_pred(lowercase , lowercase , lowercase , generator=lowercase) a__ , a__: str = output.prev_sample, output.prev_sample_mean a__: List[Any] = sample_mean.clamp(0 , 1) a__: List[Any] = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a__: Dict = self.numpy_to_pil(lowercase) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase)
203
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[10, 20, 30, 40] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , ) -> Any: '''simple docstring''' a__: Union[str, Any] = parent a__: int = batch_size a__: List[Any] = image_size a__: Any = num_channels a__: Dict = embeddings_size a__: str = hidden_sizes a__: List[Any] = depths a__: Optional[int] = is_training a__: Optional[int] = use_labels a__: Tuple = hidden_act a__: Any = num_labels a__: Union[str, Any] = scope a__: Tuple = len(lowercase) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__: str = None if self.use_labels: a__: Dict = ids_tensor([self.batch_size] , self.num_labels) a__: int = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__: Dict = RegNetModel(config=lowercase) model.to(lowercase) model.eval() a__: List[str] = model(lowercase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: Tuple = self.num_labels a__: Tuple = RegNetForImageClassification(lowercase) model.to(lowercase) model.eval() a__: Any = model(lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: int = self.prepare_config_and_inputs() a__ , a__ , a__: List[Any] = config_and_inputs a__: Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () a__ = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Dict = RegNetModelTester(self) a__: Dict = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds') def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings') def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: int = model_class(lowercase) a__: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: int = [*signature.parameters.keys()] a__: List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__ , a__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: int = model_class(config=lowercase) for name, module in model.named_modules(): if isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__: int = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: int = model(**self._prepare_for_class(lowercase , lowercase)) a__: Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__: List[str] = self.model_tester.num_stages self.assertEqual(len(lowercase) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a__ , a__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__: Dict = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: a__: Dict = layer_type a__: Dict = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__: str = True check_hidden_states_output(lowercase , lowercase , lowercase) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Tuple = RegNetModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def __a ( ) ->Dict: a__: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self) -> Any: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Tuple = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowercase) a__: Tuple = self.default_image_processor a__: str = prepare_img() a__: Optional[int] = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__: List[Any] = model(**lowercase) # verify the logits a__: Tuple = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , lowercase) a__: Optional[Any] = torch.tensor([-0.4180, -1.5051, -3.4836]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4))
203
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "bert-generation" def __init__( self , a=5_0_3_5_8 , a=1_0_2_4 , a=2_4 , a=1_6 , a=4_0_9_6 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=0.02 , a=1e-12 , a=0 , a=2 , a=1 , a="absolute" , a=True , **a , ) -> Optional[int]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : List[Any] = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : List[str] = hidden_act lowercase__ : str = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : Optional[Any] = initializer_range lowercase__ : str = layer_norm_eps lowercase__ : Tuple = position_embedding_type lowercase__ : Tuple = use_cache
77
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase_: '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: return None class lowerCAmelCase_: '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: return None class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase_ ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Any: from transformers import BertModel lowerCAmelCase__ : Optional[int] = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__UpperCAmelCase ) ) vocab_file.flush() lowerCAmelCase__ : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCAmelCase__ : Tuple = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) ) model.save_pretrained(__UpperCAmelCase ) self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,__UpperCAmelCase ) @require_tf @slow def UpperCAmelCase_ ( self ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase__ : Dict = self._test_export(__UpperCAmelCase ,"""tf""" ,12 ,**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = quantize(Path(__UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def UpperCAmelCase_ ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase__ : Any = self._test_export(__UpperCAmelCase ,"""pt""" ,12 ,**__UpperCAmelCase ) lowerCAmelCase__ : Dict = quantize(__UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: lowerCAmelCase__ : Optional[int] = Path(__UpperCAmelCase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) return path except Exception as e: self.fail(__UpperCAmelCase ) @require_torch @require_tokenizers @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: from transformers import BertModel lowerCAmelCase__ : List[Any] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase__ : Union[str, Any] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""pt""" ) @require_tf @require_tokenizers @slow def UpperCAmelCase_ ( self ) -> Optional[int]: from transformers import TFBertModel lowerCAmelCase__ : int = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase__ : Optional[int] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__UpperCAmelCase ,__UpperCAmelCase ,"""tf""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = FeatureExtractionPipeline(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : List[str] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = infer_shapes(__UpperCAmelCase ,__UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(__UpperCAmelCase ) ,len(__UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] ,{0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] ,{0: """batch"""} ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : List[str] = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCAmelCase__ : Union[str, Any] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = ensure_valid_input(FuncContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCAmelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCAmelCase ) ,set(__UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCAmelCase ,(tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCAmelCase__ , lowerCAmelCase__ : int = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCAmelCase ,__UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCAmelCase ) ,1 ) self.assertEqual(len(__UpperCAmelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] ,"""input_ids""" ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Dict = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) ,"""-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" ,generated.as_posix() )
37
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pixel_values" SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = TimmBackboneConfig def __init__( self, lowerCAmelCase__, **lowerCAmelCase__) -> Tuple: requires_backends(self, 'timm') super().__init__(lowerCAmelCase__) snake_case_ = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.') if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.') if hasattr(lowerCAmelCase__, 'out_features') and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.') snake_case_ = getattr(lowerCAmelCase__, 'use_pretrained_backbone', lowerCAmelCase__) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.') # We just take the final layer by default. This matches the default for the transformers models. snake_case_ = config.out_indices if getattr(lowerCAmelCase__, 'out_indices', lowerCAmelCase__) is not None else (-1,) snake_case_ = timm.create_model( config.backbone, pretrained=lowerCAmelCase__, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCAmelCase__, **lowerCAmelCase__, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case_ = self._backbone.return_layers snake_case_ = {layer['module']: str(lowerCAmelCase__) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__) -> Optional[Any]: requires_backends(cls, ['vision', 'timm']) from ...models.timm_backbone import TimmBackboneConfig snake_case_ = kwargs.pop('config', TimmBackboneConfig()) snake_case_ = kwargs.pop('use_timm_backbone', lowerCAmelCase__) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones') snake_case_ = kwargs.pop('num_channels', config.num_channels) snake_case_ = kwargs.pop('features_only', config.features_only) snake_case_ = kwargs.pop('use_pretrained_backbone', config.use_pretrained_backbone) snake_case_ = kwargs.pop('out_indices', config.out_indices) snake_case_ = TimmBackboneConfig( backbone=lowerCAmelCase__, num_channels=lowerCAmelCase__, features_only=lowerCAmelCase__, use_pretrained_backbone=lowerCAmelCase__, out_indices=lowerCAmelCase__, ) return super()._from_config(lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Tuple: pass def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Union[BackboneOutput, Tuple[Tensor, ...]]: snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment') if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case_ = self._all_layers snake_case_ = self._backbone(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self._return_layers snake_case_ = tuple(hidden_states[i] for i in self.out_indices) else: snake_case_ = self._backbone(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = None snake_case_ = tuple(lowerCAmelCase__) snake_case_ = tuple(lowerCAmelCase__) if hidden_states is not None else None if not return_dict: snake_case_ = (feature_maps,) if output_hidden_states: snake_case_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase__, hidden_states=lowerCAmelCase__, attentions=lowerCAmelCase__)
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class snake_case : """simple docstring""" def _lowerCamelCase ( self : Any , __A : Optional[Any] , __A : Any , __A : Union[str, Any] ): return None class snake_case : """simple docstring""" def _lowerCamelCase ( self : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Optional[int] ): return None class snake_case ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =[ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _lowerCamelCase ( self : Optional[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , 'tf' , 1_2 , **__A ) @require_torch @slow def _lowerCamelCase ( self : Optional[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , 'pt' , 1_2 , **__A ) @require_torch @slow def _lowerCamelCase ( self : Any ): from transformers import BertModel __UpperCamelCase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__A ) ) vocab_file.flush() __UpperCamelCase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __UpperCamelCase = BertModel(BertConfig(vocab_size=len(__A ) ) ) model.save_pretrained(__A ) self._test_export(__A , 'pt' , 1_2 , __A ) @require_tf @slow def _lowerCamelCase ( self : List[str] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __UpperCamelCase = self._test_export(__A , 'tf' , 1_2 , **__A ) __UpperCamelCase = quantize(Path(__A ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _lowerCamelCase ( self : int ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __UpperCamelCase = self._test_export(__A , 'pt' , 1_2 , **__A ) __UpperCamelCase = quantize(__A ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _lowerCamelCase ( self : List[str] , __A : Union[str, Any] , __A : Any , __A : str , __A : Tuple=None , **__A : Tuple ): try: # Compute path with TemporaryDirectory() as tempdir: __UpperCamelCase = Path(__A ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__A , __A , __A , __A , __A , **__A ) return path except Exception as e: self.fail(__A ) @require_torch @require_tokenizers @slow def _lowerCamelCase ( self : Optional[Any] ): from transformers import BertModel __UpperCamelCase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __UpperCamelCase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__A , __A , 'pt' ) @require_tf @require_tokenizers @slow def _lowerCamelCase ( self : Optional[Any] ): from transformers import TFBertModel __UpperCamelCase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __UpperCamelCase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__A , __A , 'tf' ) def _lowerCamelCase ( self : Tuple , __A : int , __A : Optional[int] , __A : int ): __UpperCamelCase = FeatureExtractionPipeline(__A , __A ) __UpperCamelCase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = infer_shapes(__A , __A ) # Assert all variables are present self.assertEqual(len(__A ) , len(__A ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __A ) self.assertSequenceEqual(variable_names[3:] , __A ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = ['input_ids', 'attention_mask', 'token_type_ids'] __UpperCamelCase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __UpperCamelCase , __UpperCamelCase = ensure_valid_input(FuncContiguousArgs() , __A , __A ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__A ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__A ) , set(__A ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__A , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __UpperCamelCase , __UpperCamelCase = ensure_valid_input(FuncNonContiguousArgs() , __A , __A ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__A ) , 1 ) self.assertEqual(len(__A ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
53
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : List[str] = '''▁''' UpperCAmelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[int] = BertGenerationTokenizer UpperCamelCase : str = False UpperCamelCase : Tuple = True def UpperCAmelCase_ ( self ): super().setUp() __A : Tuple = BertGenerationTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : str = '<s>' __A : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCAmelCase_ ( self ): __A : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(_A ) , 1002 ) def UpperCAmelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase_ ( self ): __A : str = BertGenerationTokenizer(_A , keep_accents=_A ) __A : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) __A : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __A : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __A : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase_ ( self ): return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def UpperCAmelCase_ ( self ): __A : List[Any] = 'Hello World!' __A : Optional[Any] = [18536, 2260, 101] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCAmelCase_ ( self ): __A : Dict = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) __A : int = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCAmelCase_ ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __A : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] __A : List[Any] = ' '.join(_A ) __A : Union[str, Any] = self.big_tokenizer.encode_plus(_A , return_tensors='pt' , return_token_type_ids=_A ) __A : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_A ) __A : int = BertGenerationConfig() __A : List[str] = BertGenerationEncoder(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCAmelCase_ ( self ): # fmt: off __A : str = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
280
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCamelCase__ (): print(sum_of_series(1 , 1 , 10)) if __name__ == "__main__": import doctest doctest.testmod()
365
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]: if rouge_types is None: SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a) if use_aggregator: SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE = [] for ref, pred in zip(a , a): SCREAMING_SNAKE_CASE = scorer.score(a , a) if use_aggregator: aggregator.add_scores(a) else: scores.append(a) if use_aggregator: SCREAMING_SNAKE_CASE = aggregator.aggregate() else: SCREAMING_SNAKE_CASE = {} for key in scores[0]: SCREAMING_SNAKE_CASE = [score[key] for score in scores] return result
327
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCamelCase = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class __lowercase : _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None @dataclass(frozen=UpperCAmelCase__ ) class __lowercase : _UpperCamelCase = 42 _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class __lowercase (UpperCAmelCase__ ): _UpperCamelCase = 42 def __init__( self , A_ , A_ , A_ , A_ = None , A_=False , A_ = False , ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = hans_processors[task]() __lowerCAmelCase : Tuple = os.path.join( _UpperCAmelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) __lowerCAmelCase : Dict = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase, __lowerCAmelCase : str = label_list[2], label_list[1] __lowerCAmelCase : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase : Optional[int] = cached_features_file + '''.lock''' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __lowerCAmelCase : Optional[int] = torch.load(_UpperCAmelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __lowerCAmelCase : Optional[Any] = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info('''Training examples: %s''' , len(_UpperCAmelCase ) ) __lowerCAmelCase : List[Any] = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info('''Saving features into cached file %s''' , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ) ->int: '''simple docstring''' return len(self.features ) def __getitem__( self , A_ ) ->InputFeatures: '''simple docstring''' return self.features[i] def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class __lowercase : _UpperCamelCase = 42 def __init__( self , A_ , A_ , A_ , A_ = 128 , A_=False , A_ = False , ) ->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = hans_processors[task]() __lowerCAmelCase : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCAmelCase, __lowerCAmelCase : str = label_list[2], label_list[1] __lowerCAmelCase : int = label_list __lowerCAmelCase : Optional[Any] = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) __lowerCAmelCase : Dict = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __lowerCAmelCase : Optional[int] = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return self.dataset def __len__( self ) ->Dict: '''simple docstring''' return len(self.features ) def __getitem__( self , A_ ) ->InputFeatures: '''simple docstring''' return self.features[i] def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' return self.label_list class __lowercase (UpperCAmelCase__ ): def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' return ["contradiction", "entailment", "neutral"] def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue __lowerCAmelCase : Union[str, Any] = '''%s-%s''' % (set_type, line[0]) __lowerCAmelCase : Any = line[5] __lowerCAmelCase : Dict = line[6] __lowerCAmelCase : List[str] = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __lowerCAmelCase : Dict = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __lowerCAmelCase : int = {label: i for i, label in enumerate(lowercase__ )} __lowerCAmelCase : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(lowercase__ ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) __lowerCAmelCase : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowercase__ , max_length=lowercase__ , padding='''max_length''' , truncation=lowercase__ , return_overflowing_tokens=lowercase__ , ) __lowerCAmelCase : Tuple = label_map[example.label] if example.label in label_map else 0 __lowerCAmelCase : List[str] = int(example.pairID ) features.append(InputFeatures(**lowercase__ , label=lowercase__ , pairID=lowercase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features _UpperCamelCase = { 'hans': 3, } _UpperCamelCase = { 'hans': HansProcessor, }
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
'''simple docstring''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = arr.split(""",""" ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [int(self.array[0] )] * len(self.array ) _lowerCAmelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _lowerCAmelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _lowerCAmelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _lowercase = input("""please input some numbers:""") _lowercase = SubArray(whole_array) _lowercase = array.solve_sub_array() print(("""the results is:""", re))
355
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self , _lowercase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def _lowercase ( self , _lowercase ): """simple docstring""" self.neighbors.append(_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = weight def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict , __lowerCamelCase :Optional[int] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __lowerCamelCase ) def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(__lowerCamelCase ) q.remove(__lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(__lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(__lowerCamelCase ) hq.heapify(__lowerCamelCase ) while h: _lowerCAmelCase = hq.heappop(__lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A (): pass if __name__ == "__main__": import doctest doctest.testmod()
229
0
def A ( _lowerCamelCase ): '''simple docstring''' if n == 1 or not isinstance(_lowerCamelCase , _lowerCamelCase ): return 0 elif n == 2: return 1 else: _lowerCAmelCase : Dict = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : List[str] = 2 while digits < n: index += 1 _lowerCAmelCase : int = len(str(fibonacci(_lowerCamelCase ) ) ) return index def A ( _lowerCamelCase = 1_000 ): '''simple docstring''' return fibonacci_digits_index(_lowerCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
36
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'swin' lowerCamelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=[2, 2, 6, 2], __a=[3, 6, 12, 24], __a=7, __a=4.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Optional[Any] = len(__a) _lowerCAmelCase : int = num_heads _lowerCAmelCase : int = window_size _lowerCAmelCase : int = mlp_ratio _lowerCAmelCase : List[Any] = qkv_bias _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : List[str] = int(embed_dim * 2 ** (len(__a) - 1)) _lowerCAmelCase : List[Any] = ["stem"] + [f"stage{idx}" for idx in range(1, len(__a) + 1)] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names) class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
36
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> str: '''simple docstring''' __snake_case : Union[str, Any] = torch.load(lowercase_ , map_location='cpu' ) __snake_case : Optional[int] = chkpt['model'] # We have the base model one level deeper than the original XLM repository __snake_case : List[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: __snake_case : List[str] = v else: __snake_case : int = v __snake_case : List[str] = chkpt['params'] __snake_case : Tuple = {n: v for n, v in config.items() if not isinstance(lowercase_ , (torch.FloatTensor, numpy.ndarray) )} __snake_case : str = chkpt['dico_word2id'] __snake_case : Optional[Any] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __snake_case : Any = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __snake_case : Tuple = pytorch_dump_folder_path + '/' + CONFIG_NAME __snake_case : Optional[int] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(lowercase_ , lowercase_ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase_ , indent=2 ) + '\n' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase_ , indent=2 ) + '\n' ) if __name__ == "__main__": _a : str= argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a : str= parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
362
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Any= [num for num in range(3, 100_001, 2) if not is_prime(num)] def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case : int = [] for num in range(len(UpperCAmelCase_ ) ): __snake_case : List[str] = 0 while 2 * i * i <= odd_composites[num]: __snake_case : List[Any] = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase_ ) == n: return list_nums return [] def __UpperCAmelCase ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
95
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging A_ :List[Any] = logging.get_logger(__name__) def A ( a_ ,a_ ) -> List[Any]: __UpperCamelCase : int =nn.functional.normalize(a_ ) __UpperCamelCase : List[Any] =nn.functional.normalize(a_ ) return torch.mm(a_ ,normalized_text_embeds.t() ) class __A ( a ): """simple docstring""" UpperCamelCase__ : Dict =CLIPConfig UpperCamelCase__ : Union[str, Any] =["""CLIPEncoderLayer"""] def __init__( self , lowerCamelCase__ ): """simple docstring""" super().__init__(lowerCamelCase__ ) __UpperCamelCase : List[Any] =CLIPVisionModel(config.vision_config ) __UpperCamelCase : str =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCamelCase__ ) __UpperCamelCase : Dict =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCamelCase__ ) __UpperCamelCase : Dict =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCamelCase__ ) __UpperCamelCase : Dict =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCamelCase__ ) @torch.no_grad() def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =self.vision_model(lowerCamelCase__ )[1] # pooled_output __UpperCamelCase : Any =self.visual_projection(lowerCamelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCamelCase : Optional[int] =cosine_distance(lowerCamelCase__ , self.special_care_embeds ).cpu().float().numpy() __UpperCamelCase : Union[str, Any] =cosine_distance(lowerCamelCase__ , self.concept_embeds ).cpu().float().numpy() __UpperCamelCase : Optional[Any] =[] __UpperCamelCase : Tuple =image_embeds.shape[0] for i in range(lowerCamelCase__ ): __UpperCamelCase : Dict ={'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __UpperCamelCase : int =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __UpperCamelCase : Tuple =special_cos_dist[i][concept_idx] __UpperCamelCase : Optional[Any] =self.special_care_embeds_weights[concept_idx].item() __UpperCamelCase : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) __UpperCamelCase : Optional[int] =0.01 for concept_idx in range(len(cos_dist[0] ) ): __UpperCamelCase : Optional[int] =cos_dist[i][concept_idx] __UpperCamelCase : str =self.concept_embeds_weights[concept_idx].item() __UpperCamelCase : Any =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCamelCase__ ) result.append(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =[len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =self.vision_model(lowerCamelCase__ )[1] # pooled_output __UpperCamelCase : List[str] =self.visual_projection(lowerCamelCase__ ) __UpperCamelCase : List[Any] =cosine_distance(lowerCamelCase__ , self.special_care_embeds ) __UpperCamelCase : List[Any] =cosine_distance(lowerCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __UpperCamelCase : List[Any] =0.0 __UpperCamelCase : Union[str, Any] =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __UpperCamelCase : Dict =torch.any(special_scores > 0 , dim=1 ) __UpperCamelCase : Optional[int] =special_care * 0.01 __UpperCamelCase : Dict =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __UpperCamelCase : Optional[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __UpperCamelCase : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
71
import os from datetime import datetime as dt from github import Github A_ :str = [ '''good first issue''', '''feature request''', '''wip''', ] def A ( ) -> Any: __UpperCamelCase : Any =Github(os.environ['GITHUB_TOKEN'] ) __UpperCamelCase : Union[str, Any] =g.get_repo('huggingface/accelerate' ) __UpperCamelCase : Tuple =repo.get_issues(state='open' ) for issue in open_issues: __UpperCamelCase : List[Any] =sorted([comment for comment in issue.get_comments()] ,key=lambda a_ : i.created_at ,reverse=a_ ) __UpperCamelCase : str =comments[0] if len(a_ ) > 0 else None __UpperCamelCase : Any =dt.utcnow() __UpperCamelCase : List[str] =(current_time - issue.updated_at).days __UpperCamelCase : Union[str, Any] =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
71
1
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def a__ ( __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Any = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[str] = flatten_dict(__SCREAMING_SNAKE_CASE ) return flax_params def a__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: __lowerCAmelCase: Union[str, Any] = {} __lowerCAmelCase: Optional[Any] = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } __lowerCAmelCase: Optional[Any] = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __lowerCAmelCase: str = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __lowerCAmelCase: int = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __lowerCAmelCase: Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __lowerCAmelCase: Union[str, Any] = re.sub(R"layers_(\d+)" , R"layer.\1" , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __lowerCAmelCase: Tuple = re.sub(R"layers_(\d+)" , R"layer.\1" , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = flax_dict[key] __lowerCAmelCase: Dict = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __lowerCAmelCase: Optional[Any] = torch.from_numpy(converted_dict[key].T ) else: __lowerCAmelCase: str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False ) -> Dict: __lowerCAmelCase: str = get_flax_param(__SCREAMING_SNAKE_CASE ) if not use_large: __lowerCAmelCase: List[Any] = PixaStructVisionConfig() __lowerCAmelCase: Union[str, Any] = PixaStructTextConfig() else: __lowerCAmelCase: str = PixaStructVisionConfig( hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_attention_heads=2_4 , num_hidden_layers=1_8 ) __lowerCAmelCase: Union[str, Any] = PixaStructTextConfig(hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_heads=2_4 , num_layers=1_8 ) __lowerCAmelCase: List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) __lowerCAmelCase: Any = PixaStructImageProcessor() __lowerCAmelCase: Union[str, Any] = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) if use_large: __lowerCAmelCase: Union[str, Any] = 4_0_9_6 __lowerCAmelCase: Union[str, Any] = True # mkdir if needed os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) print("Model saved in {}".format(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") __A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
108
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: int = args.log_outputs __lowerCAmelCase: Tuple = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric __lowerCAmelCase: str = load_metric("wer" ) __lowerCAmelCase: int = load_metric("cer" ) # compute metrics __lowerCAmelCase: Optional[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) __lowerCAmelCase: Dict = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results __lowerCAmelCase: Optional[int] = F"WER: {wer_result}\nCER: {cer_result}" print(__SCREAMING_SNAKE_CASE ) with open(F"{dataset_id}_eval_results.txt" , "w" ) as f: f.write(__SCREAMING_SNAKE_CASE ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __lowerCAmelCase: int = F"log_{dataset_id}_predictions.txt" __lowerCAmelCase: Tuple = F"log_{dataset_id}_targets.txt" with open(__SCREAMING_SNAKE_CASE , "w" ) as p, open(__SCREAMING_SNAKE_CASE , "w" ) as t: # mapping function to write output def write_to_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): p.write(F"{i}" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F"{i}" + "\n" ) t.write(batch["target"] + "\n" ) result.map(__SCREAMING_SNAKE_CASE , with_indices=__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Any = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __lowerCAmelCase: List[Any] = re.sub(__SCREAMING_SNAKE_CASE , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __lowerCAmelCase: Optional[int] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: __lowerCAmelCase: str = " ".join(text.split(__SCREAMING_SNAKE_CASE ) ) return text def a__ ( __SCREAMING_SNAKE_CASE ) -> Dict: # load dataset __lowerCAmelCase: List[str] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__SCREAMING_SNAKE_CASE ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __lowerCAmelCase: Dict = AutoFeatureExtractor.from_pretrained(args.model_id ) __lowerCAmelCase: str = feature_extractor.sampling_rate # resample audio __lowerCAmelCase: Tuple = dataset.cast_column("audio" , Audio(sampling_rate=__SCREAMING_SNAKE_CASE ) ) # load eval pipeline if args.device is None: __lowerCAmelCase: List[Any] = 0 if torch.cuda.is_available() else -1 __lowerCAmelCase: Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __lowerCAmelCase: Any = prediction["text"] __lowerCAmelCase: List[str] = normalize_text(batch["sentence"] ) return batch # run inference on all examples __lowerCAmelCase: str = dataset.map(__SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) __A = parser.parse_args() main(args)
108
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar A_ = TypeVar("T") class _snake_case ( Generic[T] ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : T ): SCREAMING_SNAKE_CASE:str = data SCREAMING_SNAKE_CASE:Node[T] | None = None def __str__( self : Optional[Any] ): return F'''{self.data}''' class _snake_case ( Generic[T] ): def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE:Node[T] | None = None def __iter__( self : str ): SCREAMING_SNAKE_CASE:Any = self.top while node: yield node.data SCREAMING_SNAKE_CASE:str = node.next def __str__( self : str ): return "->".join([str(SCREAMING_SNAKE_CASE__ ) for item in self] ) def __len__( self : List[str] ): return len(tuple(iter(self ) ) ) def __UpperCamelCase ( self : str ): return self.top is None def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : T ): SCREAMING_SNAKE_CASE:List[Any] = Node(SCREAMING_SNAKE_CASE__ ) if not self.is_empty(): SCREAMING_SNAKE_CASE:Union[str, Any] = self.top SCREAMING_SNAKE_CASE:Any = node def __UpperCamelCase ( self : Tuple ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = self.top SCREAMING_SNAKE_CASE:Optional[Any] = self.top.next return pop_node.data def __UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Any = None if __name__ == "__main__": from doctest import testmod testmod()
139
'''simple docstring''' from __future__ import annotations def A_ ( snake_case , snake_case , snake_case , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
139
1
'''simple docstring''' import random class lowercase : """simple docstring""" @staticmethod def _snake_case ( a_ ) -> Dict: _UpperCAmelCase : int = [ord(a_ ) for i in text] _UpperCAmelCase : int = [] _UpperCAmelCase : str = [] for i in plain: _UpperCAmelCase : Tuple = random.randint(1 ,300 ) _UpperCAmelCase : List[Any] = (i + k) * k cipher.append(a_ ) key.append(a_ ) return cipher, key @staticmethod def _snake_case ( a_ ,a_ ) -> int: _UpperCAmelCase : Optional[int] = [] for i in range(len(a_ ) ): _UpperCAmelCase : List[str] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(a_ ) ) return "".join(a_ ) if __name__ == "__main__": A_ : Optional[int] = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE : Dict = getLogger(__name__) SCREAMING_SNAKE_CASE : int = "cuda" if torch.cuda.is_available() else "cpu" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 8 , lowerCamelCase_ = DEFAULT_DEVICE , lowerCamelCase_=False , lowerCamelCase_="summarization" , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Dict: _lowercase : Any = Path(UpperCamelCase_ ).open('w' , encoding='utf-8' ) _lowercase : Tuple = str(UpperCamelCase_ ) _lowercase : Dict = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) if fpaa: _lowercase : List[str] = model.half() _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. _lowercase : Tuple = time.time() # update config with task specific params use_task_specific_params(UpperCamelCase_ , UpperCamelCase_ ) if prefix is None: _lowercase : List[Any] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(UpperCamelCase_ , UpperCamelCase_ ) ) ): _lowercase : List[Any] = [prefix + text for text in examples_chunk] _lowercase : str = tokenizer(UpperCamelCase_ , return_tensors='pt' , truncation=UpperCamelCase_ , padding='longest' ).to(UpperCamelCase_ ) _lowercase : Optional[int] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **UpperCamelCase_ , ) _lowercase : str = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _lowercase : Union[str, Any] = int(time.time() - start_time ) # seconds _lowercase : Union[str, Any] = len(UpperCamelCase_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def UpperCamelCase_( ) -> List[Any]: return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def UpperCamelCase_( lowerCamelCase_=True ) -> Any: _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('model_name' , type=UpperCamelCase_ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=UpperCamelCase_ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=UpperCamelCase_ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=UpperCamelCase_ , required=UpperCamelCase_ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=UpperCamelCase_ , required=UpperCamelCase_ , default=UpperCamelCase_ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=UpperCamelCase_ , required=UpperCamelCase_ , default=UpperCamelCase_ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=UpperCamelCase_ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=UpperCamelCase_ , default=8 , required=UpperCamelCase_ , help='batch size' ) parser.add_argument( '--n_obs' , type=UpperCamelCase_ , default=-1 , required=UpperCamelCase_ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=UpperCamelCase_ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowercase , _lowercase : str = parser.parse_known_args() _lowercase : List[Any] = parse_numeric_n_bool_cl_kwargs(UpperCamelCase_ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) _lowercase : Tuple = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowercase : List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=UpperCamelCase_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _lowercase : List[str] = generate_summaries_or_translations( UpperCamelCase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **UpperCamelCase_ , ) if args.reference_path is None: return {} # Compute scores _lowercase : Optional[Any] = calculate_bleu if 'translation' in args.task else calculate_rouge _lowercase : List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _lowercase : str = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(UpperCamelCase_ )] _lowercase : Dict = score_fn(UpperCamelCase_ , UpperCamelCase_ ) scores.update(UpperCamelCase_ ) if args.dump_args: scores.update(UpperCamelCase_ ) if args.info: _lowercase : List[str] = args.info if verbose: print(UpperCamelCase_ ) if args.score_path is not None: json.dump(UpperCamelCase_ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
21
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCamelCase_ ( A__ : str , A__ : Union[str, Any] , A__ : Union[str, Any] , A__ : Any=5 ): '''simple docstring''' assert masked_input.count("""<mask>""" ) == 1 lowerCAmelCase_ : Tuple = torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase_ : str = model(A__ )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase_ : int = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase_ : Optional[Any] = logits[0, masked_index, :] lowerCAmelCase_ : List[Any] = logits.softmax(dim=0 ) lowerCAmelCase_, lowerCAmelCase_ : List[str] = prob.topk(k=A__ , dim=0 ) lowerCAmelCase_ : Union[str, Any] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] ) lowerCAmelCase_ : Tuple = tokenizer.mask_token lowerCAmelCase_ : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): lowerCAmelCase_ : Optional[int] = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(A__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(A__ ) , A__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A__ , A__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __A : Union[str, Any] = CamembertTokenizer.from_pretrained("camembert-base") __A : List[str] = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __A : Dict = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
89
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[Any] , A__ : str=False ): '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowerCAmelCase_ : str = """segformer.encoder.""" + key if key.startswith("""backbone""" ): lowerCAmelCase_ : str = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ : List[str] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase_ : List[Any] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(A__ )-1}' ) if "norm" in key: lowerCAmelCase_ : Any = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ : Tuple = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowerCAmelCase_ : int = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(A__ )-1}' ) if "layer_norm1" in key: lowerCAmelCase_ : str = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase_ : Union[str, Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ : Any = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase_ : str = key.replace(f'block{idx}' , f'block.{int(A__ )-1}' ) if "attn.q" in key: lowerCAmelCase_ : List[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase_ : Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase_ : str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase_ : List[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase_ : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase_ : Dict = key.replace(f'linear_c{idx}' , f'linear_c.{int(A__ )-1}' ) if key.startswith("""head""" ): lowerCAmelCase_ : int = key.replace("""head""" , """classifier""" ) lowerCAmelCase_ : int = value return new_state_dict def UpperCamelCase_ ( A__ : int , A__ : Union[str, Any] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ : int = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase_ : Optional[int] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ : Optional[Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ : str = kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : str = SegformerConfig() lowerCAmelCase_ : Optional[Any] = False # set attributes based on model_name lowerCAmelCase_ : int = """huggingface/label-files""" if "segformer" in model_name: lowerCAmelCase_ : Optional[int] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowerCAmelCase_ : List[Any] = 1_50 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Tuple = (1, 1_50, 1_28, 1_28) elif "city" in model_name: lowerCAmelCase_ : List[str] = 19 lowerCAmelCase_ : Dict = """cityscapes-id2label.json""" lowerCAmelCase_ : List[str] = (1, 19, 1_28, 1_28) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = model_name[4:6] lowerCAmelCase_ : Union[str, Any] = 10_00 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Optional[Any] = (1, 10_00) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes lowerCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : int = 2_56 elif size == "b2": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : List[str] = 7_68 lowerCAmelCase_ : Any = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ : List[str] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Union[str, Any] = 7_68 lowerCAmelCase_ : Union[str, Any] = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Tuple = 7_68 lowerCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : str = 7_68 lowerCAmelCase_ : Any = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) lowerCAmelCase_ : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A__ , align=A__ , do_random_crop=A__ ) # prepare image lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=A__ , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: lowerCAmelCase_ : str = torch.load(A__ , map_location=torch.device("""cpu""" ) ) else: lowerCAmelCase_ : List[str] = torch.load(A__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys lowerCAmelCase_ : Dict = rename_keys(A__ , encoder_only=A__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = SegformerForImageClassification(A__ ) else: lowerCAmelCase_ : str = SegformerForSemanticSegmentation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass lowerCAmelCase_ : Tuple = model(A__ ) lowerCAmelCase_ : Union[str, Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ : Tuple = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ : str = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ : int = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowerCAmelCase_ : Optional[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : Tuple = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
89
1
a : Union[str, Any] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
114
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : List[Any] = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class a ( lowercase__ ): """simple docstring""" a : List[Any] = 'xglm' a : str = ['past_key_values'] a : Any = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , __lowercase : int=256008 , __lowercase : Tuple=2048 , __lowercase : List[Any]=1024 , __lowercase : str=4096 , __lowercase : Optional[Any]=24 , __lowercase : Optional[int]=16 , __lowercase : List[Any]="gelu" , __lowercase : str=0.1 , __lowercase : Dict=0.1 , __lowercase : Tuple=0.0 , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.02 , __lowercase : Optional[int]=True , __lowercase : Any=True , __lowercase : Dict=2 , __lowercase : Optional[Any]=1 , __lowercase : List[Any]=0 , __lowercase : Optional[Any]=2 , **__lowercase : List[str] , ) -> Optional[int]: __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : str = ffn_dim __UpperCAmelCase : List[str] = num_layers __UpperCAmelCase : Dict = attention_heads __UpperCAmelCase : str = activation_function __UpperCAmelCase : Optional[Any] = dropout __UpperCAmelCase : Any = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Tuple = layerdrop __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = use_cache super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
114
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Optional[int] =logging.get_logger(__name__) lowerCamelCase : Union[str, Any] ={'''vocab_file''': '''spiece.model'''} lowerCamelCase : str ={ '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } lowerCamelCase : int ={ '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class __a ( A__ ): _lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' UpperCamelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase__ : Tuple = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) UpperCamelCase__ : str = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCamelCase__ : Any = "<|endoftext|>" if eos_token is None else eos_token UpperCamelCase__ : int = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCamelCase__ : Optional[int] = unk_token if pad_token is None else pad_token UpperCamelCase__ : Any = eos_token if bos_token is None else bos_token else: UpperCamelCase__ : List[Any] = "<pad>" if pad_token is None else pad_token UpperCamelCase__ : Any = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : int = do_lower_case UpperCamelCase__ : Any = remove_space UpperCamelCase__ : Any = keep_accents UpperCamelCase__ : List[Any] = vocab_file UpperCamelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off UpperCamelCase__ : Dict = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCamelCase__ : Any = re.compile( F'[{"".join(map(SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]' ) def __getstate__( self : int ): '''simple docstring''' UpperCamelCase__ : str = self.__dict__.copy() UpperCamelCase__ : Optional[int] = None return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase__ : List[str] = {} UpperCamelCase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowercase ( self : str ): '''simple docstring''' return len(self.sp_model ) def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.non_printing_characters_re.sub("" , SCREAMING_SNAKE_CASE ) # Normalize whitespaces UpperCamelCase__ : Union[str, Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization UpperCamelCase__ : Any = unicodedata.normalize("NFC" , SCREAMING_SNAKE_CASE ) return text def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' UpperCamelCase__ : Any = self.preprocess_text(SCREAMING_SNAKE_CASE ) return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) @staticmethod def __lowercase ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return out_string def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : List[str] = [] UpperCamelCase__ : List[Any] = "" UpperCamelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token UpperCamelCase__ : List[str] = True UpperCamelCase__ : List[str] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : int = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ : List[str] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, List[str]] , SCREAMING_SNAKE_CASE : Union[str, bool] = False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : int = self.preprocess_text(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : List[str] = [self.preprocess_text(SCREAMING_SNAKE_CASE ) for t in text] UpperCamelCase__ : Tuple = self.sp_model.encode(SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": UpperCamelCase__ : Any = torch.tensor(SCREAMING_SNAKE_CASE ) return token_ids def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : "Conversation" ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] UpperCamelCase__ : List[str] = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(SCREAMING_SNAKE_CASE ) + F'{self.bos_token}Bot:' ) return self.encode(text=SCREAMING_SNAKE_CASE )
360
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : List[Any] =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class __a ( A__ , A__ ): _lowerCAmelCase : Union[str, Any] = '''bit''' _lowerCAmelCase : List[str] = ['''preactivation''', '''bottleneck'''] _lowerCAmelCase : Any = ['''SAME''', '''VALID'''] def __init__( self : str , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : str=64 , SCREAMING_SNAKE_CASE : List[Any]=[2_56, 5_12, 10_24, 20_48] , SCREAMING_SNAKE_CASE : Union[str, Any]=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE : str="preactivation" , SCREAMING_SNAKE_CASE : Any="relu" , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[Any]=32 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: UpperCamelCase__ : Any = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Dict = embedding_size UpperCamelCase__ : Tuple = hidden_sizes UpperCamelCase__ : Any = depths UpperCamelCase__ : Optional[int] = layer_type UpperCamelCase__ : int = hidden_act UpperCamelCase__ : str = global_padding UpperCamelCase__ : Any = num_groups UpperCamelCase__ : str = drop_path_rate UpperCamelCase__ : Optional[Any] = embedding_dynamic_padding UpperCamelCase__ : Tuple = output_stride UpperCamelCase__ : List[str] = width_factor UpperCamelCase__ : Any = ["stem"] + [F'stage{idx}' for idx in range(1 , len(SCREAMING_SNAKE_CASE ) + 1 )] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE , out_indices=SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
196
0
'''simple docstring''' import operator as op lowerCamelCase_ = '''scaler.pt''' lowerCamelCase_ = '''pytorch_model''' lowerCamelCase_ = '''random_states''' lowerCamelCase_ = '''optimizer''' lowerCamelCase_ = '''scheduler''' lowerCamelCase_ = '''pytorch_model.bin''' lowerCamelCase_ = '''pytorch_model.bin.index.json''' lowerCamelCase_ = '''model.safetensors''' lowerCamelCase_ = '''model.safetensors.index.json''' lowerCamelCase_ = '''1.10.2''' lowerCamelCase_ = '''py38''' lowerCamelCase_ = '''4.17.0''' lowerCamelCase_ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] lowerCamelCase_ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] lowerCamelCase_ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] lowerCamelCase_ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] lowerCamelCase_ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] lowerCamelCase_ = '''2.0.1''' lowerCamelCase_ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] lowerCamelCase_ = ['''default''', '''reduce-overhead''', '''max-autotune'''] lowerCamelCase_ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCamelCase_ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] lowerCamelCase_ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] lowerCamelCase_ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
79
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
0
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(lowerCAmelCase__ , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase__ , repeat=lowerCAmelCase__ ): lowerCamelCase_ =sum(lowerCAmelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(lowerCAmelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(lowerCAmelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = filter(lambda UpperCamelCase__ : p.requires_grad , model.parameters() ) _a : Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if metric == "rouge2": _a : Tuple = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _a : List[str] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _a : str = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" """ function.""" ) _a : List[str] = ModelCheckpoint( dirpath=UpperCamelCase__ , filename=UpperCamelCase__ , monitor=F"""val_{metric}""" , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""" , mode="""min""" if """loss""" in metric else """max""" , patience=UpperCamelCase__ , verbose=UpperCamelCase__ , ) class UpperCamelCase ( pl.Callback ): def _lowercase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict ) -> List[Any]: _a : Union[str, Any] = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : pl.Trainer , UpperCAmelCase__ : pl.LightningModule , UpperCAmelCase__ : str , UpperCAmelCase__ : Any=True ) -> List[str]: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _a : Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _a : Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _a : List[str] = od / '''test_results.txt''' _a : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a : Any = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _a : Dict = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , """a+""" ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue _a : Optional[int] = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): _a : List[str] = val.item() _a : List[Any] = f"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: _a : Optional[int] = '''\n'''.join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(lowerCAmelCase_ ) @rank_zero_only def _lowercase ( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: try: _a : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _a : Any = pl_module.model.num_parameters() _a : Optional[int] = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def _lowercase ( self : List[str] , UpperCAmelCase__ : pl.Trainer , UpperCAmelCase__ : pl.LightningModule ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , """test""" ) @rank_zero_only def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : pl.Trainer , UpperCAmelCase__ : Optional[Any] ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
294
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = '''informer''' __UpperCamelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = None , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str = "prob" , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : str , ): """simple docstring""" # time series specific configuration _A: Optional[Any] = prediction_length _A: Optional[Any] = context_length or prediction_length _A: Dict = distribution_output _A: List[str] = loss _A: int = input_size _A: List[str] = num_time_features _A: Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A: str = scaling _A: Optional[Any] = num_dynamic_real_features _A: List[Any] = num_static_real_features _A: Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _A: str = cardinality else: _A: Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _A: List[str] = embedding_dimension else: _A: Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _A: int = num_parallel_samples # Transformer architecture configuration _A: Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _A: Union[str, Any] = d_model _A: Optional[Any] = encoder_attention_heads _A: Optional[Any] = decoder_attention_heads _A: Optional[Any] = encoder_ffn_dim _A: Union[str, Any] = decoder_ffn_dim _A: Any = encoder_layers _A: str = decoder_layers _A: List[str] = dropout _A: Any = attention_dropout _A: Optional[int] = activation_dropout _A: List[Any] = encoder_layerdrop _A: str = decoder_layerdrop _A: int = activation_function _A: Tuple = init_std _A: Union[str, Any] = use_cache # Informer _A: Union[str, Any] = attention_type _A: str = sampling_factor _A: List[str] = distil super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : List[str] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
121
0
'''simple docstring''' UpperCamelCase : Any = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCamelCase : Tuple = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase : Optional[int] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
367
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class UpperCamelCase : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase_ : Tuple): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a : Dict = deepcopy(UpperCAmelCase_) elif os.path.exists(UpperCAmelCase_): with io.open(UpperCAmelCase_ , 'r' , encoding='utf-8') as f: a : Union[str, Any] = json.load(UpperCAmelCase_) else: try: a : Union[str, Any] = baseaa.urlsafe_baadecode(UpperCAmelCase_).decode('utf-8') a : List[str] = json.loads(UpperCAmelCase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""") a : Optional[int] = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : str = self.get_value('zero_optimization.stage' , -1) # offload a : Any = False if self.is_zeroa() or self.is_zeroa(): a : Tuple = set(['cpu', 'nvme']) a : int = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: a : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" a : List[str] = self.config # find the config node of interest if it exists a : int = ds_key_long.split('.') a : Union[str, Any] = nodes.pop() for node in nodes: a : Union[str, Any] = config.get(UpperCAmelCase_) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=None): """simple docstring""" a , a : int = self.find_config_node(UpperCAmelCase_) if config is None: return default return config.get(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=False): """simple docstring""" a : Any = self.config # find the config node of interest if it exists a : Optional[Any] = ds_key_long.split('.') for node in nodes: a : List[str] = config a : int = config.get(UpperCAmelCase_) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""") else: return # if found remove it if parent_config is not None: parent_config.pop(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str): """simple docstring""" a : List[str] = self.get_value(UpperCAmelCase_) return False if value is None else bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : List[Any] = self.get_value(UpperCAmelCase_) return False if value is None else not bool(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" return self._offload class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : int): """simple docstring""" a : Union[str, Any] = engine def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): """simple docstring""" self.engine.backward(UpperCAmelCase_ , **UpperCAmelCase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): """simple docstring""" super().__init__(UpperCAmelCase_ , device_placement=UpperCAmelCase_ , scaler=UpperCAmelCase_) a : List[str] = hasattr(self.optimizer , 'overflow') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict=None): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : int = params a : str = lr a : Tuple = weight_decay a : Dict = kwargs class UpperCamelCase : """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = optimizer a : Tuple = total_num_steps a : Optional[Any] = warmup_num_steps a : List[str] = kwargs
345
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
114
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :AutoencoderKL , lowerCamelCase :CLIPTextModel , lowerCamelCase :CLIPTokenizer , lowerCamelCase :UNetaDConditionModel , lowerCamelCase :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase :StableDiffusionSafetyChecker , lowerCamelCase :CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self :int , lowerCamelCase :Union[str, List[str]] , lowerCamelCase :int = 512 , lowerCamelCase :int = 512 , lowerCamelCase :int = 50 , lowerCamelCase :float = 7.5 , lowerCamelCase :Optional[Union[str, List[str]]] = None , lowerCamelCase :Optional[int] = 1 , lowerCamelCase :float = 0.0 , lowerCamelCase :Optional[torch.Generator] = None , lowerCamelCase :Optional[torch.FloatTensor] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , lowerCamelCase :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase :int = 1 , lowerCamelCase :Optional[torch.FloatTensor] = None , **lowerCamelCase :List[str] , ) -> str: if isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCamelCase )}.''' ) # get prompt text embeddings UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_embeddings.shape UpperCAmelCase__ = text_embeddings.repeat(1 , lowerCamelCase , 1 ) UpperCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ = 42 if negative_prompt is None: UpperCAmelCase__ = [""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=''' f''' {type(lowerCamelCase )}.''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCAmelCase__ = negative_prompt UpperCAmelCase__ = text_input_ids.shape[-1] UpperCAmelCase__ = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="pt" , ) UpperCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ = uncond_embeddings.shape[1] UpperCAmelCase__ = uncond_embeddings.repeat(lowerCamelCase , lowerCamelCase , 1 ) UpperCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to(self.device ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: UpperCAmelCase__ = torch.randn( lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) UpperCAmelCase__ = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase__ = latents_reference.to(self.device ) UpperCAmelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase__ = 0 if dx < 0 else dx UpperCAmelCase__ = 0 if dy < 0 else dy UpperCAmelCase__ = max(-dx , 0 ) UpperCAmelCase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ = {} if accepts_eta: UpperCAmelCase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 1 / 0.1_82_15 * latents UpperCAmelCase__ = self.vae.decode(lowerCamelCase ).sample UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase__ = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) , return_tensors="pt" ).to( self.device ) UpperCAmelCase__ , UpperCAmelCase__ = self.safety_checker( images=lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase__ = None if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
169
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[float] ) -> float: '''simple docstring''' lowerCAmelCase_ : Tuple = 0.00 lowerCAmelCase_ : List[Any] = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase_ : str = f'Resistor at index {index} has a negative or zero value!' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def __UpperCamelCase ( lowercase__ : list[float] ) -> float: '''simple docstring''' lowerCAmelCase_ : int = 0.00 lowerCAmelCase_ : Dict = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase_ : Tuple = f'Resistor at index {index} has a negative value!' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __A = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) snake_case_ = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) snake_case_ = field( default=10_24 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=__a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) snake_case_ = field( default=__a , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) snake_case_ = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) snake_case_ = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) snake_case_ = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) snake_case_ = field( default=__a , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) snake_case_ = field( default=__a , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) snake_case_ = field(default=__a , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def lowercase_ ( self ) -> Dict: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __lowerCamelCase = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __lowerCamelCase = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field( default=__a , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case_ = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case_ = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case_ = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) snake_case_ = field( default=__a , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) snake_case_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case_ = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def lowerCamelCase_ ( ) -> Dict: """simple docstring""" __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCamelCase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __lowerCamelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __lowerCamelCase = data_args.train_file.split('.' )[-1] __lowerCamelCase = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __lowerCamelCase = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __lowerCamelCase = load_dataset('csv' , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __lowerCamelCase = load_dataset('json' , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __lowerCamelCase = raw_datasets["""train"""].features["""label"""].names __lowerCamelCase = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __lowerCamelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase_ , ) __lowerCamelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __lowerCamelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCamelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. __lowerCamelCase = {"""Refused""": 0, """Entailed""": 1} __lowerCamelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __lowerCamelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(UpperCamelCase__ : int ): # Tokenize the texts def _convert_table_text_to_pandas(UpperCamelCase__ : List[Any] ): __lowerCamelCase = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __lowerCamelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __lowerCamelCase = examples["""statement"""] __lowerCamelCase = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __lowerCamelCase = tokenizer(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) __lowerCamelCase = examples["""label"""] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __lowerCamelCase = raw_datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __lowerCamelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: __lowerCamelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __lowerCamelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __lowerCamelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __lowerCamelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __lowerCamelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase_ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase__ : EvalPrediction ): __lowerCamelCase = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase_ ) else p.predictions __lowerCamelCase = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCamelCase = default_data_collator elif training_args.fpaa: __lowerCamelCase = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) else: __lowerCamelCase = None # Initialize our Trainer __lowerCamelCase = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __lowerCamelCase = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase = last_checkpoint __lowerCamelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) __lowerCamelCase = train_result.metrics __lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCamelCase = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase_ ) trainer.save_metrics('train' , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCamelCase = trainer.evaluate(eval_dataset=lowerCAmelCase_ ) __lowerCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) __lowerCamelCase = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics('eval' , lowerCAmelCase_ ) trainer.save_metrics('eval' , lowerCAmelCase_ ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __lowerCamelCase = predict_dataset.remove_columns('label' ) __lowerCamelCase = trainer.predict(lowerCAmelCase_ , metric_key_prefix='predict' ).predictions __lowerCamelCase = np.argmax(lowerCAmelCase_ , axis=1 ) __lowerCamelCase = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase_ ): __lowerCamelCase = label_list[item] writer.write(F"""{index}\t{item}\n""" ) __lowerCamelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
90
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , ): if attention_mask is None: __lowercase : Tuple = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowercase : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowercase : Any = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCAmelCase_ ) if decoder_head_mask is None: __lowercase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) if cross_attn_head_mask is None: __lowercase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : str , __a : Tuple=13 , __a : List[Any]=7 , __a : Any=True , __a : List[str]=False , __a : Optional[Any]=99 , __a : Tuple=16 , __a : int=2 , __a : Optional[Any]=4 , __a : int=4 , __a : Any="relu" , __a : Optional[int]=0.1 , __a : List[str]=0.1 , __a : Dict=0.0 , __a : List[str]=0.0 , __a : Union[str, Any]=20 , __a : str=2 , __a : str=1 , __a : Optional[int]=0 , ) -> Optional[int]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = batch_size __lowercase : Any = seq_length __lowercase : Tuple = is_training __lowercase : Optional[Any] = use_labels __lowercase : Dict = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Tuple = encoder_layerdrop __lowercase : List[str] = decoder_layerdrop __lowercase : Any = max_position_embeddings __lowercase : Any = eos_token_id __lowercase : Dict = pad_token_id __lowercase : List[str] = bos_token_id def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = self.eos_token_id # Eos Token __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowercase : Tuple = input_ids.clamp(self.pad_token_id + 1 ) __lowercase : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowercase : List[str] = self.get_config() __lowercase : str = prepare_mam_aaa_inputs_dict(__a , __a , __a ) return config, inputs_dict def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase , __lowercase : int = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : int , __a : str , __a : str ) -> int: """simple docstring""" __lowercase : Optional[Any] = MaMaaaModel(config=__a ).get_decoder().to(__a ).eval() __lowercase : List[str] = inputs_dict["""input_ids"""] __lowercase : Dict = inputs_dict["""attention_mask"""] __lowercase : List[Any] = inputs_dict["""head_mask"""] # first forward pass __lowercase : List[str] = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __lowercase , __lowercase : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __lowercase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __lowercase : Optional[int] = model(__a , attention_mask=__a )["""last_hidden_state"""] __lowercase : Union[str, Any] = model(__a , attention_mask=__a , past_key_values=__a )[ """last_hidden_state""" ] # select random slice __lowercase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : int = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-2 ) ) def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : List[str] ) -> str: """simple docstring""" __lowercase : Dict = MaMaaaModel(config=__a ).to(__a ).eval() __lowercase : Any = model(**__a ) __lowercase : str = outputs.encoder_last_hidden_state __lowercase : Optional[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : str = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[Any] = MaMaaaEncoder.from_pretrained(__a ).to(__a ) __lowercase : Tuple = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Tuple = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = MaMaaaDecoder.from_pretrained(__a ).to(__a ) __lowercase : Tuple = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=__a , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _A : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _A : Union[str, Any] = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _A : Optional[int] = True _A : Union[str, Any] = True _A : Any = False _A : int = False def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : int = MaMaaaModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase , __lowercase : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : str = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __lowercase : Union[str, Any] = model_class(__a ) model.to(__a ) model.eval() __lowercase : Any = copy.deepcopy(self._prepare_for_class(__a , __a ) ) if not self.is_encoder_decoder: __lowercase : int = inputs["""input_ids"""] del inputs["input_ids"] else: __lowercase : Optional[int] = inputs["""input_ids"""] __lowercase : Optional[Any] = inputs.get("""decoder_input_ids""" , __a ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , __a ) __lowercase : Union[str, Any] = model.get_input_embeddings() if not self.is_encoder_decoder: __lowercase : Dict = wte(__a ) else: __lowercase : str = wte(__a ) __lowercase : Union[str, Any] = wte(__a ) with torch.no_grad(): model(**__a )[0] def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs() __lowercase : List[str] = input_dict["""input_ids"""] __lowercase : Optional[int] = input_ids.ne(1 ).to(__a ) __lowercase : List[Any] = MaMaaaForConditionalGeneration(__a ).eval().to(__a ) if torch_device == "cuda": model.half() model.generate(__a , attention_mask=__a ) model.generate(num_beams=4 , do_sample=__a , early_stopping=__a , num_return_sequences=3 ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): return torch.tensor(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_ ) lowerCamelCase : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : List[str] = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) __lowercase : Union[str, Any] = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __lowercase : int = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __lowercase : int = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): __lowercase : int = model(**__a )[0] __lowercase : int = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __a ) # change to expected output here __lowercase : Dict = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) # change to intended input __lowercase : Any = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __lowercase : Union[str, Any] = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __lowercase : Tuple = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): __lowercase : Optional[Any] = model(**__a )[0] __lowercase : Tuple = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __a ) # change to expected output here __lowercase : Union[str, Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : List[str] = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) __lowercase : Tuple = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) __lowercase : Dict = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams __lowercase : Union[str, Any] = tokenizer(__a , padding=__a , return_tensors="""pt""" ) __lowercase : Dict = model.generate( input_ids=dct["""input_ids"""].to(__a ) , attention_mask=dct["""attention_mask"""].to(__a ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) __lowercase : Any = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] __lowercase : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__a , skip_special_tokens=__a ) assert generated == expected_en
233
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A : str = 25_00_04 _A : str = 25_00_20 @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ,unittest.TestCase ): snake_case : List[str] = MBartTokenizer snake_case : List[Any] = MBartTokenizerFast snake_case : Any = True snake_case : Optional[Any] = True def __lowerCamelCase ( self : Dict ) ->List[str]: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Optional[Any] = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self : List[Any] ) ->Union[str, Any]: lowerCamelCase__ : Dict = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowerCamelCase__ : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCamelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase__ : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __lowerCamelCase ( self : Optional[int] ) ->int: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase__ : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase__ : Any = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase__ : List[str] = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase__ : str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCamelCase__ : int = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True lowerCamelCase__ : Optional[int] = tempfile.mkdtemp() lowerCamelCase__ : Dict = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) lowerCamelCase__ : str = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCamelCase__ : List[Any] = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False lowerCamelCase__ : str = tempfile.mkdtemp() lowerCamelCase__ : str = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) lowerCamelCase__ : int = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase__ : Optional[Any] = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : str = 'facebook/mbart-large-en-ro' snake_case : int = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] snake_case : Tuple = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __lowerCamelCase ( cls : List[Any] ) ->Union[str, Any]: lowerCamelCase__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCamelCase__ : List[str] = 1 return cls def __lowerCamelCase ( self : str ) ->str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) def __lowerCamelCase ( self : Any ) ->Tuple: lowerCamelCase__ : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def __lowerCamelCase ( self : Dict ) ->Any: self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) lowerCamelCase__ : Optional[Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCamelCase__ : Tuple = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowerCamelCase__ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def __lowerCamelCase ( self : Optional[int] ) ->Optional[Any]: lowerCamelCase__ : str = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , _UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = 1_0 lowerCamelCase__ : Union[str, Any] = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def __lowerCamelCase ( self : List[str] ) ->Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __lowerCamelCase ( self : Dict ) ->List[Any]: lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() lowerCamelCase__ : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = MBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def __lowerCamelCase ( self : List[str] ) ->List[Any]: lowerCamelCase__ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors='''pt''' ) lowerCamelCase__ : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __lowerCamelCase ( self : Dict ) ->Optional[int]: lowerCamelCase__ : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCamelCase__ : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCamelCase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: lowerCamelCase__ : Tuple = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors='''pt''' ) lowerCamelCase__ : str = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=1_0 , return_tensors='''pt''' ) lowerCamelCase__ : Any = targets['input_ids'] lowerCamelCase__ : List[Any] = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __lowerCamelCase ( self : Optional[int] ) ->Union[str, Any]: lowerCamelCase__ : str = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
369
def _a ( UpperCAmelCase ) -> bool: """simple docstring""" return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def _a ( UpperCAmelCase ) -> int: """simple docstring""" return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def _a ( UpperCAmelCase = 10000 ) -> int: """simple docstring""" lowerCamelCase__ : Tuple = [] for num in range(1 , UpperCAmelCase ): lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Union[str, Any] = num while iterations < 50: lowerCamelCase__ : Dict = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
265
0
UpperCAmelCase : List[str] ={ """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) UpperCAmelCase : Any ={ """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = from_type.lower().strip("s") UpperCamelCase_ = to_type.lower().strip("s") UpperCamelCase_ = UNIT_SYMBOL.get(_lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = UNIT_SYMBOL.get(_lowerCAmelCase , _lowerCAmelCase) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase_ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(_lowerCAmelCase)}""" ) raise ValueError(_lowerCAmelCase) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase_ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(_lowerCAmelCase)}""" ) raise ValueError(_lowerCAmelCase) UpperCamelCase_ = METRIC_CONVERSION[from_sanitized] UpperCamelCase_ = METRIC_CONVERSION[to_sanitized] UpperCamelCase_ = 1 if from_exponent > to_exponent: UpperCamelCase_ = from_exponent - to_exponent else: UpperCamelCase_ = -(to_exponent - from_exponent) return value * pow(10 , _lowerCAmelCase) if __name__ == "__main__": from doctest import testmod testmod()
128
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase : Dict =TypeVar("""T""") class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = data UpperCamelCase_ = None def __str__( self ): '''simple docstring''' return F"""{self.data}""" class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' UpperCamelCase_ = None def __iter__( self ): '''simple docstring''' UpperCamelCase_ = self.top while node: yield node.data UpperCamelCase_ = node.next def __str__( self ): '''simple docstring''' return "->".join([str(snake_case__ ) for item in self] ) def __len__( self ): '''simple docstring''' return len(tuple(iter(self ) ) ) def _lowerCamelCase ( self ): '''simple docstring''' return self.top is None def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = Node(snake_case__ ) if not self.is_empty(): UpperCamelCase_ = self.top UpperCamelCase_ = node def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , snake_case__ ) UpperCamelCase_ = self.top UpperCamelCase_ = self.top.next return pop_node.data def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = None if __name__ == "__main__": from doctest import testmod testmod()
128
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
359
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } _lowerCamelCase : List[str] = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def a_ ( __lowercase : int ) -> Optional[int]: _snake_case = EfficientNetConfig() _snake_case = CONFIG_MAP[model_name]['hidden_dim'] _snake_case = CONFIG_MAP[model_name]['width_coef'] _snake_case = CONFIG_MAP[model_name]['depth_coef'] _snake_case = CONFIG_MAP[model_name]['image_size'] _snake_case = CONFIG_MAP[model_name]['dropout_rate'] _snake_case = CONFIG_MAP[model_name]['dw_padding'] _snake_case = 'huggingface/label-files' _snake_case = 'imagenet-1k-id2label.json' _snake_case = 1_000 _snake_case = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( ) -> Any: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def a_ ( __lowercase : Union[str, Any] ) -> Tuple: _snake_case = CONFIG_MAP[model_name]['image_size'] _snake_case = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def a_ ( __lowercase : str ) -> List[Any]: _snake_case = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] _snake_case = sorted(set(__lowercase ) ) _snake_case = len(__lowercase ) _snake_case = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} _snake_case = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: _snake_case = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) _snake_case = {} for item in rename_keys: if item[0] in original_param_names: _snake_case = 'efficientnet.' + item[1] _snake_case = 'classifier.weight' _snake_case = 'classifier.bias' return key_mapping def a_ ( __lowercase : Any , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue _snake_case = key_mapping[key] if "_conv" in key and "kernel" in key: _snake_case = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _snake_case = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _snake_case = torch.from_numpy(np.transpose(__lowercase ) ) else: _snake_case = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def a_ ( __lowercase : List[Any] , __lowercase : Any , __lowercase : int , __lowercase : str ) -> Dict: _snake_case = model_classes[model_name]( include_top=__lowercase , weights='imagenet' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_000 , classifier_activation='softmax' , ) _snake_case = original_model.trainable_variables _snake_case = original_model.non_trainable_variables _snake_case = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _snake_case = param.numpy() _snake_case = list(tf_params.keys() ) # Load HuggingFace model _snake_case = get_efficientnet_config(__lowercase ) _snake_case = EfficientNetForImageClassification(__lowercase ).eval() _snake_case = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) _snake_case = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image _snake_case = convert_image_processor(__lowercase ) _snake_case = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): _snake_case = hf_model(**__lowercase ) _snake_case = outputs.logits.detach().numpy() # Original model inference _snake_case = False _snake_case = CONFIG_MAP[model_name]['image_size'] _snake_case = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _snake_case = image.img_to_array(__lowercase ) _snake_case = np.expand_dims(__lowercase , axis=0 ) _snake_case = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) _snake_case = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') _lowerCamelCase : List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
130
0
"""simple docstring""" class _lowerCAmelCase : def __init__( self ) -> None: '''simple docstring''' snake_case : dict[str, TrieNode] = {} # Mapping from char to TrieNode snake_case : Tuple = False def lowerCamelCase ( self , UpperCamelCase__ ) -> None: '''simple docstring''' for word in words: self.insert(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> None: '''simple docstring''' snake_case : str = self for char in word: if char not in curr.nodes: snake_case : Tuple = TrieNode() snake_case : Tuple = curr.nodes[char] snake_case : Union[str, Any] = True def lowerCamelCase ( self , UpperCamelCase__ ) -> bool: '''simple docstring''' snake_case : str = self for char in word: if char not in curr.nodes: return False snake_case : Dict = curr.nodes[char] return curr.is_leaf def lowerCamelCase ( self , UpperCamelCase__ ) -> None: '''simple docstring''' def _delete(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: if index == len(UpperCamelCase__ ): # If word does not exist if not curr.is_leaf: return False snake_case : int = False return len(curr.nodes ) == 0 snake_case : Union[str, Any] = word[index] snake_case : List[str] = curr.nodes.get(UpperCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case : Union[str, Any] = _delete(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase__ , 0 ) def __lowerCAmelCase ( lowercase : TrieNode , lowercase : str ) -> None: """simple docstring""" if node.is_leaf: print(lowercase , end=" " ) for key, value in node.nodes.items(): print_words(lowercase , word + key ) def __lowerCAmelCase ( ) -> bool: """simple docstring""" snake_case : Any = "banana bananas bandana band apple all beast".split() snake_case : Any = TrieNode() root.insert_many(lowercase ) # print_words(root, "") assert all(root.find(lowercase ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __lowerCAmelCase ( lowercase : str , lowercase : bool ) -> None: """simple docstring""" print(str(lowercase ) , "works!" if passes else "doesn't work :(" ) def __lowerCAmelCase ( ) -> None: """simple docstring""" assert test_trie() def __lowerCAmelCase ( ) -> None: """simple docstring""" print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
203
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = """hf-internal-testing/tiny-random-bert""" __snake_case = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __snake_case = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : int = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Dict = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. snake_case : List[str] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. snake_case : Any = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="9b8c223" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): snake_case : Optional[Any] = cached_file("tiny-random-bert" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): snake_case : Optional[Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="aaaa" ) with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : List[Any] = cached_file(UpperCamelCase__ , "conf" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , ".no_exist" , UpperCamelCase__ , "conf" ) ) ) snake_case : Optional[Any] = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = cached_file(UpperCamelCase__ , "conf" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = mock.Mock() snake_case : List[Any] = 500 snake_case : int = {} snake_case : Optional[int] = HTTPError snake_case : Tuple = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self ) -> Any: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> str: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCamelCase__ , revision="ahaha" ) snake_case : int = get_file_from_repo("bert-base-cased" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : str = json.loads(open(UpperCamelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = Path(UpperCamelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , "a.txt" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , "b.txt" ) )
203
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)] ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Dict ) -> str: '''simple docstring''' A: Dict = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) A: List[Any] = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: Optional[Any] = AutoConfig.from_pretrained('''gpt2''' ) A: Optional[Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) A: Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _snake_case ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A: Tuple = GenerationConfig() A: Any = { '''max_new_tokens''': 10_24, '''foo''': '''bar''', } A: List[str] = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) A: List[Any] = generation_config.update(**SCREAMING_SNAKE_CASE_ ) # update_kwargs was not modified (no side effects) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''foo''': '''bar'''} ) def _snake_case ( self : int ) -> Any: '''simple docstring''' A: List[Any] = GenerationConfig() A: Tuple = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) A: Union[str, Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) assert not hasattr(SCREAMING_SNAKE_CASE_ , '''foo''' ) # no new kwargs should be initialized if from config def _snake_case ( self : str ) -> Any: '''simple docstring''' A: int = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(default_config.num_beams , 1 ) A: int = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ ) A: Any = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _snake_case ( cls : Any ) -> Optional[int]: '''simple docstring''' A: Tuple = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def _snake_case ( cls : Optional[Any] ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def _snake_case ( self : Any ) -> Union[str, Any]: '''simple docstring''' A: Tuple = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) A: List[Any] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''test-generation-config''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) A: Optional[Any] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : Any ) -> int: '''simple docstring''' A: List[Any] = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) A: Optional[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) A: List[str] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
363
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _a ( _lowercase): _a : int = 'roformer' def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=5_0000 , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : int=768 , _SCREAMING_SNAKE_CASE : int=12 , _SCREAMING_SNAKE_CASE : str=12 , _SCREAMING_SNAKE_CASE : Dict=3072 , _SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1536 , _SCREAMING_SNAKE_CASE : List[Any]=2 , _SCREAMING_SNAKE_CASE : Tuple=0.02 , _SCREAMING_SNAKE_CASE : str=1E-12 , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : Optional[Any]=False , _SCREAMING_SNAKE_CASE : str=True , **_SCREAMING_SNAKE_CASE : int , )-> Union[str, Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : List[Any] = hidden_size if embedding_size is None else embedding_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Optional[int] = type_vocab_size lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : Any = rotary_value lowerCAmelCase__ : Optional[int] = use_cache class _a ( _lowercase): @property def UpperCAmelCase__( self : Optional[Any] )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : Dict = {0: '''batch''', 1: '''sequence'''} lowerCAmelCase__ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
131
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = """https://openaipublic.azureedge.net/jukebox/models/""" __snake_case = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :int = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Union[str, Any] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[Any] = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[int] = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: UpperCamelCase :Any = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: UpperCamelCase :int = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase :Any = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: UpperCamelCase :str = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Optional[int] = {} import re UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :str = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[int] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[Any] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[Any] = regex_match.groups() UpperCamelCase :Any = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :Any = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' UpperCamelCase :List[str] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = prefix + resnet_block UpperCamelCase :str = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = regex_match.groups() UpperCamelCase :int = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' UpperCamelCase :str = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Any = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' UpperCamelCase :Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Optional[int] = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = regex_match.groups() UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :int = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' UpperCamelCase :List[Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Dict = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :List[str] = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :Dict = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # keep original key else: UpperCamelCase :List[str] = original_key UpperCamelCase :Any = replace_key(SCREAMING_SNAKE_CASE__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: UpperCamelCase :Union[str, Any] = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) UpperCamelCase :List[Any] = original_key UpperCamelCase :Any = original_key UpperCamelCase :Optional[int] = value return new_dict @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): UpperCamelCase :Dict = requests.get(F'''{PREFIX}{file}''' , allow_redirects=SCREAMING_SNAKE_CASE__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=SCREAMING_SNAKE_CASE__ ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content ) UpperCamelCase :Optional[int] = MODEL_MAPPING[model_name.split('''/''' )[-1]] UpperCamelCase :Any = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = JukeboxModel(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = [] UpperCamelCase :List[Any] = {} for i, dict_name in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] UpperCamelCase :Tuple = {} for k in old_dic.keys(): if k.endswith('''.b''' ): UpperCamelCase :Optional[int] = old_dic[k] elif k.endswith('''.w''' ): UpperCamelCase :Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase :Optional[Any] = old_dic[k] else: UpperCamelCase :Any = old_dic[k] UpperCamelCase :Any = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' UpperCamelCase :Dict = fix_jukebox_keys(SCREAMING_SNAKE_CASE__ , model.state_dict() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) weight_dict.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = weight_dict.pop(0 ) model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) return weight_dict if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
0
import enum import shutil import sys __A, __A : Union[str, Any] = shutil.get_terminal_size() __A : List[Any] = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class _SCREAMING_SNAKE_CASE ( enum.Enum): _UpperCamelCase:Dict = 0 _UpperCamelCase:str = 1 def __UpperCamelCase ( _A : int , _A : List[str]="" ) ->Optional[int]: """simple docstring""" sys.stdout.write(str(_A ) + end ) sys.stdout.flush() def __UpperCamelCase ( _A : Optional[int] , _A : List[str] , _A : List[Any]="" ) ->int: """simple docstring""" forceWrite(f'\u001b[{color}m{content}\u001b[0m' , _A ) def __UpperCamelCase ( ) ->Union[str, Any]: """simple docstring""" forceWrite("""\r""" ) def __UpperCamelCase ( _A : int , _A : str ) ->Any: """simple docstring""" forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __UpperCamelCase ( ) ->int: """simple docstring""" forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
154
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , )-> Union[str, Any]: lowerCamelCase_ =size if size is not None else {"""shortest_edge""": 20} lowerCamelCase_ =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =min_resolution lowerCamelCase_ =max_resolution lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_flip_channel_order def _snake_case ( self )-> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Tuple = MobileViTImageProcessor if is_vision_available() else None def _snake_case ( self )-> List[str]: lowerCamelCase_ =MobileViTImageProcessingTester(self ) @property def _snake_case ( self )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self )-> Any: lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_flip_channel_order""" ) ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _snake_case ( self )-> Union[str, Any]: pass def _snake_case ( self )-> Dict: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> str: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self )-> List[Any]: # Initialize image_processing lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase_ =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
154
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Union[str, Any] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any ): snake_case__ : List[str] = b.T snake_case__ : Union[str, Any] = np.sum(np.square(snake_case_ ) , axis=1 ) snake_case__ : Dict = np.sum(np.square(snake_case_ ) , axis=0 ) snake_case__ : Dict = np.matmul(snake_case_ , snake_case_ ) snake_case__ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Tuple ): snake_case__ : Tuple = x.reshape(-1 , 3 ) snake_case__ : int = squared_euclidean_distance(snake_case_ , snake_case_ ) return np.argmin(snake_case_ , axis=1 ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["pixel_values"] def __init__( self : str , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : bool = True , __A : Dict[str, int] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : bool = True , **__A : Union[str, Any] , ): super().__init__(**__A ) snake_case__ : Optional[int] = size if size is not None else {"height": 2_5_6, "width": 2_5_6} snake_case__ : List[Any] = get_size_dict(__A ) snake_case__ : Any = np.array(__A ) if clusters is not None else None snake_case__ : Optional[Any] = do_resize snake_case__ : Any = size snake_case__ : List[Any] = resample snake_case__ : List[Any] = do_normalize snake_case__ : Dict = do_color_quantize def _lowercase ( self : List[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : Optional[Union[str, ChannelDimension]] = None , **__A : int , ): snake_case__ : List[Any] = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __A , size=(size["height"], size["width"]) , resample=__A , data_format=__A , **__A ) def _lowercase ( self : List[Any] , __A : np.ndarray , __A : Optional[Union[str, ChannelDimension]] = None , ): snake_case__ : List[str] = rescale(image=__A , scale=1 / 1_2_7.5 , data_format=__A ) snake_case__ : List[Any] = image - 1 return image def _lowercase ( self : Dict , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Optional[bool] = None , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__A : Optional[int] , ): snake_case__ : Any = do_resize if do_resize is not None else self.do_resize snake_case__ : Union[str, Any] = size if size is not None else self.size snake_case__ : Union[str, Any] = get_size_dict(__A ) snake_case__ : Optional[Any] = resample if resample is not None else self.resample snake_case__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ : Union[str, Any] = clusters if clusters is not None else self.clusters snake_case__ : Union[str, Any] = np.array(__A ) snake_case__ : Any = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ : Optional[Any] = [to_numpy_array(__A ) for image in images] if do_resize: snake_case__ : List[str] = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_normalize: snake_case__ : Union[str, Any] = [self.normalize(image=__A ) for image in images] if do_color_quantize: snake_case__ : int = [to_channel_dimension_format(__A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ : int = np.array(__A ) snake_case__ : Dict = color_quantize(__A , __A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ : str = images.shape[0] snake_case__ : str = images.reshape(__A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ : Union[str, Any] = list(__A ) else: snake_case__ : Any = [to_channel_dimension_format(__A , __A ) for image in images] snake_case__ : Optional[int] = {"input_ids": images} return BatchFeature(data=__A , tensor_type=__A )
286
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = "gpt_neo" UpperCAmelCase__ : List[str] = ["past_key_values"] UpperCAmelCase__ : Optional[Any] = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, SCREAMING_SNAKE_CASE_=5_0257, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=24, SCREAMING_SNAKE_CASE_=[[["global", "local"], 12]], SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: UpperCamelCase : Tuple = vocab_size UpperCamelCase : int = max_position_embeddings UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : str = num_layers UpperCamelCase : Any = num_heads UpperCamelCase : str = intermediate_size UpperCamelCase : Any = window_size UpperCamelCase : Any = activation_function UpperCamelCase : Tuple = resid_dropout UpperCamelCase : List[str] = embed_dropout UpperCamelCase : Dict = attention_dropout UpperCamelCase : Optional[Any] = classifier_dropout UpperCamelCase : Optional[int] = layer_norm_epsilon UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = use_cache UpperCamelCase : Tuple = bos_token_id UpperCamelCase : Tuple = eos_token_id UpperCamelCase : Union[str, Any] = attention_types UpperCamelCase : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Optional[int] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : int ) -> Dict: import torch UpperCamelCase : Dict = input.size() UpperCamelCase : str = len(snake_case__ ) UpperCamelCase : str = shape[dimension] UpperCamelCase : List[Any] = torch.arange(0 , snake_case__ , snake_case__ ) UpperCamelCase : Optional[int] = torch.div(sizedim - size , snake_case__ , rounding_mode='floor' ) + 1 UpperCamelCase : Dict = torch.arange(snake_case__ ) + low_indices[:min_length][:, None] UpperCamelCase : Any = [slice(snake_case__ )] * rank UpperCamelCase : List[str] = indices UpperCamelCase : str = input[s] UpperCamelCase : Dict = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Union[str, Any]: import torch UpperCamelCase : Dict = torch.arange(1 , snake_case__ ) UpperCamelCase : Any = torch.remainder(snake_case__ , snake_case__ ) UpperCamelCase : Any = remainders == 0 UpperCamelCase : int = candidates[divisor_indices] UpperCamelCase : str = torch.max(snake_case__ ) return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='floor' ) class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : int = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs' ) UpperCamelCase : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : List[Any] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.num_heads def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : str = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : List[str] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : Union[str, Any] = seqlen + 2 UpperCamelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase : str = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : List[str] = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : List[Any] = ordered_inputs['attention_mask'].dtype UpperCamelCase : Union[str, Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ) -> tuple[list[int], int]: UpperCamelCase : int = [randint(-1000 , 1000 ) for i in range(10 )] UpperCamelCase : Dict = randint(-5000 , 5000 ) return (arr, r) __UpperCAmelCase = make_dataset() def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, ...]: for triplet in permutations(snake_case__ , 3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, int, int]: arr.sort() UpperCamelCase : List[str] = len(snake_case__ ) for i in range(n - 1 ): UpperCamelCase , UpperCamelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ) -> tuple[float, float]: UpperCamelCase : Any = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' UpperCamelCase : Optional[Any] = '\ntriplet_sum1(*dataset)\n' UpperCamelCase : Dict = '\ntriplet_sum2(*dataset)\n' UpperCamelCase : Optional[int] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) UpperCamelCase : Any = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
119
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = StableDiffusionLDMaDPipeline UpperCAmelCase__ : List[Any] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self ) -> List[str]: torch.manual_seed(0 ) _a : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) _a : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _a : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _a : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _a : List[str] = CLIPTextModel(_a ) _a : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowercase ( self , _a , _a=0 ) -> Optional[Any]: if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : str = torch.Generator(device=_a ).manual_seed(_a ) _a : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self ) -> int: _a : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : Union[str, Any] = self.get_dummy_components() _a : str = StableDiffusionLDMaDPipeline(**_a ) _a : int = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _a : Dict = self.get_dummy_inputs(_a ) _a : Any = ldmad_pipe(**_a ) _a : Union[str, Any] = output.rgb, output.depth _a : Tuple = rgb[0, -3:, -3:, -1] _a : int = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) _a : int = np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) _a : Any = np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def __lowercase ( self ) -> List[str]: _a : Optional[int] = self.get_dummy_components() _a : Optional[Any] = StableDiffusionLDMaDPipeline(**_a ) _a : int = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = self.get_dummy_inputs(_a ) _a : Union[str, Any] = 3 * [inputs['''prompt''']] # forward _a : List[Any] = ldmad_pipe(**_a ) _a : str = output.rgb, output.depth _a : str = rgb_slice_a[0, -3:, -3:, -1] _a : Optional[Any] = depth_slice_a[0, -3:, -1] _a : Any = self.get_dummy_inputs(_a ) _a : List[Any] = 3 * [inputs.pop('''prompt''' )] _a : int = ldmad_pipe.tokenizer( _a , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_a , return_tensors='''pt''' , ) _a : Tuple = text_inputs['''input_ids'''].to(_a ) _a : Union[str, Any] = ldmad_pipe.text_encoder(_a )[0] _a : Optional[int] = prompt_embeds # forward _a : Dict = ldmad_pipe(**_a ) _a : List[str] = output.rgb, output.depth _a : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] _a : int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def __lowercase ( self ) -> Dict: _a : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : List[str] = self.get_dummy_components() _a : Any = PNDMScheduler(skip_prk_steps=_a ) _a : Any = StableDiffusionLDMaDPipeline(**_a ) _a : Any = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _a : Tuple = self.get_dummy_inputs(_a ) _a : int = '''french fries''' _a : Tuple = ldmad_pipe(**_a , negative_prompt=_a ) _a : Optional[Any] = output.rgb, output.depth _a : List[Any] = rgb[0, -3:, -3:, -1] _a : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) _a : Any = np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) _a : int = np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Tuple: _a : int = torch.Generator(device=_a ).manual_seed(_a ) _a : Optional[int] = np.random.RandomState(_a ).standard_normal((1, 4, 6_4, 6_4) ) _a : Dict = torch.from_numpy(_a ).to(device=_a , dtype=_a ) _a : int = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Tuple = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) _a : Optional[Any] = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _a : int = self.get_inputs(_a ) _a : Optional[int] = ldmad_pipe(**_a ) _a : Any = output.rgb, output.depth _a : Tuple = rgb[0, -3:, -3:, -1].flatten() _a : int = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2) _a : int = np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) _a : Dict = np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Optional[int]: _a : Optional[Any] = torch.Generator(device=_a ).manual_seed(_a ) _a : Dict = np.random.RandomState(_a ).standard_normal((1, 4, 6_4, 6_4) ) _a : Optional[Any] = torch.from_numpy(_a ).to(device=_a , dtype=_a ) _a : str = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 5_0, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __lowercase ( self ) -> Tuple: _a : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _a : Any = self.get_inputs(_a ) _a : List[str] = ldmad_pipe(**_a ) _a : Any = output.rgb, output.depth _a : str = 0.49_5586 _a : Union[str, Any] = 0.3379_5515 _a : Any = 112.4_8518 _a : List[Any] = 98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def __lowercase ( self ) -> int: _a : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _a : List[str] = self.get_inputs(_a ) _a : List[Any] = ldmad_pipe(**_a ) _a : Union[str, Any] = output.rgb, output.depth _a : int = 0.419_4127 _a : str = 0.3537_5586 _a : str = 0.563_8502 _a : Tuple = 0.3468_6103 assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
365
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a__ = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } a__ = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) a__ = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) a__ = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' a__ = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' a__ = '''''' a__ = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' a__ = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' a__ = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : List[str] ) -> Optional[int]: """simple docstring""" assert ReadMe.from_string(__a ,__a ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[str] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): _a : List[Any] = ReadMe.from_string(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Dict ,__a : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__a ,match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" ReadMe.from_string(__a ,__a ,suppress_parsing_errors=__a ) @pytest.mark.parametrize( '''readme_md, expected_dict''' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Tuple = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[Any] = ReadMe.from_readme(__a ,__a ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : Optional[int] = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): _a : Any = ReadMe.from_readme(__a ,__a ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : str ,__a : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : Optional[Any] = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) _a : str = expected_error.format(path=__a ) with pytest.raises(__a ,match=re.escape(__a ) ): ReadMe.from_readme(__a ,__a ) @pytest.mark.parametrize( '''readme_md,''' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def __UpperCAmelCase ( __a : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a : int = Path(__a ) / '''README.md''' with open(__a ,'''w+''' ) as readme_file: readme_file.write(__a ) ReadMe.from_readme(__a ,__a ,suppress_parsing_errors=__a )
15
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) + 1 lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] # since string of zero length match pattern of zero length lowerCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(1 , SCREAMING_SNAKE_CASE ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase = dp[i - 1][j] else: lowerCAmelCase = 0 else: lowerCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE__ = "aab" SCREAMING_SNAKE_CASE__ = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'{input_string} matches the given pattern {pattern}') else: print(f'{input_string} does not match with the given pattern {pattern}')
46
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } UpperCAmelCase__ = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = EfficientNetConfig() _UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = 10_00 _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} ,image_mean=[0.4_85, 0.4_56, 0.4_06] ,image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] ,do_center_crop=lowercase ,) return preprocessor def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase = sorted(set(lowercase ) ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = {b: str(lowercase ) for b, i in zip(lowercase ,range(lowercase ) )} _UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase = """efficientnet.""" + item[1] _UpperCAmelCase = """classifier.weight""" _UpperCAmelCase = """classifier.bias""" return key_mapping def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: _UpperCAmelCase = torch.from_numpy(lowercase ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: _UpperCAmelCase = torch.from_numpy(np.transpose(lowercase ) ) else: _UpperCAmelCase = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = model_classes[model_name]( include_top=lowercase ,weights="""imagenet""" ,input_tensor=lowercase ,input_shape=lowercase ,pooling=lowercase ,classes=10_00 ,classifier_activation="""softmax""" ,) _UpperCAmelCase = original_model.trainable_variables _UpperCAmelCase = original_model.non_trainable_variables _UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase = param.numpy() _UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase = get_efficientnet_config(lowercase ) _UpperCAmelCase = EfficientNetForImageClassification(lowercase ).eval() _UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase = rename_keys(lowercase ) replace_params(lowercase ,lowercase ,lowercase ) # Initialize preprocessor and preprocess input image _UpperCAmelCase = convert_image_processor(lowercase ) _UpperCAmelCase = preprocessor(images=prepare_img() ,return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase = hf_model(**lowercase ) _UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase = False _UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) _UpperCAmelCase = image.img_to_array(lowercase ) _UpperCAmelCase = np.expand_dims(lowercase ,axis=0 ) _UpperCAmelCase = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase ,lowercase ,atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") UpperCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
289
0
import numpy class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : numpy.ndarray , __a : numpy.ndarray ) -> None: """simple docstring""" __lowercase : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __lowercase : Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __lowercase : int = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __lowercase : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. __lowercase : Tuple = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __lowercase : List[str] = numpy.zeros(output_array.shape ) def lowerCAmelCase ( self : Optional[Any] ) -> numpy.ndarray: """simple docstring""" __lowercase : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __lowercase : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __lowercase : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase ( self : int ) -> None: """simple docstring""" __lowercase : Any = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __lowercase : Any = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __lowercase : str = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase ( self : Dict , __a : numpy.ndarray , __a : int , __a : bool ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): __lowercase : Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: __lowercase : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def lowerCAmelCase ( self : Optional[Any] , __a : numpy.ndarray ) -> int: """simple docstring""" __lowercase : Dict = input_arr __lowercase : str = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __lowercase : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __lowercase : List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def snake_case_ ( lowerCAmelCase_ : Any ): return 1 / (1 + numpy.exp(-value )) def snake_case_ ( lowerCAmelCase_ : Tuple ): return (value) * (1 - (value)) def snake_case_ ( ): __lowercase : Dict = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __lowercase : Optional[Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __lowercase : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a__ , output_array=a__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a__ , iterations=10 , give_loss=a__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
import os import jsonlines import numpy as np from tqdm import tqdm _UpperCamelCase = 2048 _UpperCamelCase = 4096 _UpperCamelCase = 42 _UpperCamelCase = os.environ.pop('''PROCESS_TRAIN''', '''false''') _UpperCamelCase = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def lowerCAmelCase__( lowercase : List[Any] ) -> Optional[Any]: def choose_first(lowercase : Any , lowercase : Tuple=False ): assert isinstance(lowercase , lowercase ) if len(lowercase ) == 1: __snake_case : str = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __snake_case : List[Any] = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a __snake_case : Union[str, Any] = {'''id''': example['''id''']} __snake_case : Optional[Any] = example['''annotations'''] __snake_case : Tuple = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: __snake_case : List[Any] = ['''yes'''] if 1 in yes_no_answer else ['''no'''] __snake_case : Tuple = [] __snake_case : List[Any] = [] __snake_case : Tuple = ['''<cls>'''] else: __snake_case : Optional[Any] = ['''short'''] __snake_case : Union[str, Any] = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available __snake_case : int = ['''long'''] __snake_case : List[Any] = choose_first(annotation["long_answer"] , is_long_answer=lowercase ) __snake_case : str = [] answer.update(lowercase ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: __snake_case : Any = True else: __snake_case : str = False __snake_case : Tuple = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , lowercase ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def lowerCAmelCase__( lowercase : str , lowercase : List[str]=False ) -> str: __snake_case : Tuple = _get_single_answer(lowercase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case : str = example['''document''']['''tokens'''] __snake_case : Any = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowercase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __snake_case : Optional[int] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __snake_case : Optional[Any] = example['''document''']['''tokens'''] __snake_case : List[Any] = answer['''start_token'''] __snake_case : Dict = answer['''end_token'''] __snake_case : Tuple = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __snake_case : Optional[int] = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: __snake_case : str = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] __snake_case : Union[str, Any] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] __snake_case : Dict = ''' '''.join([old[i] for i in range(len(lowercase ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , lowercase , end="\n" ) print("Old:" , lowercase , end="\n\n" ) return { "context": " ".join(lowercase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : int=2048 , lowercase : int=4096 , lowercase : Tuple=True ) -> Dict: __snake_case : Optional[Any] = get_context_and_ans(lowercase , assertion=lowercase ) __snake_case : List[str] = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __snake_case : Optional[int] = tokenizer(example["question"]["text"] , out["context"] ).input_ids __snake_case : Optional[int] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case : int = [] __snake_case : Any = [] __snake_case : Tuple = input_ids[:q_len] __snake_case : Any = range(lowercase , len(lowercase ) , max_length - doc_stride ) for i in doc_start_indices: __snake_case : Tuple = i + max_length - q_len __snake_case : Any = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowercase ), "end_token": [-100] * len(lowercase ), "category": category, }, } __snake_case : Tuple = out['''context'''].split() __snake_case : Optional[Any] = splitted_context[answer['''end_token''']] __snake_case : List[str] = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=lowercase , ).input_ids ) __snake_case : Dict = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=lowercase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __snake_case : Any = len(tokenizer(lowercase , add_special_tokens=lowercase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __snake_case : Optional[Any] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive __snake_case : List[Any] = answer['''start_token'''] __snake_case : Optional[Any] = answer['''end_token'''] if assertion: __snake_case : Optional[int] = tokenizer.decode(lowercase ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , lowercase , end="\n\n" ) if len(lowercase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __snake_case : List[str] = input_ids[:q_len] __snake_case : Optional[Any] = range(lowercase , len(lowercase ) , max_length - doc_stride ) __snake_case : str = [] __snake_case : List[str] = [] __snake_case : str = [] __snake_case : List[Any] = [] # null, yes, no, long, short for i in doc_start_indices: __snake_case : str = i + max_length - q_len __snake_case : str = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __snake_case : Tuple = start_token - i + q_len __snake_case : List[str] = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: __snake_case : Any = -100 __snake_case : Union[str, Any] = -100 answers_category.append("null" ) __snake_case : str = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase ) answers_end_token.append(lowercase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(lowercase ) ) print("Old:" , tokenizer.decode(lowercase ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase__( lowercase : Dict , lowercase : Dict , lowercase : int=2048 , lowercase : Dict=4096 , lowercase : Any=False ) -> Optional[Any]: __snake_case : Any = get_strided_contexts_and_ans( lowercase , lowercase , doc_stride=lowercase , max_length=lowercase , assertion=lowercase , ) return example def lowerCAmelCase__( lowercase : Any , lowercase : List[Any] ) -> Tuple: with jsonlines.open(lowercase , "a" ) as writer: for example in tqdm(lowercase , total=len(lowercase ) , desc="Saving samples ... " ): __snake_case : Union[str, Any] = example['''labels'''] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _UpperCamelCase = load_dataset('''natural_questions''') _UpperCamelCase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _UpperCamelCase = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] _UpperCamelCase = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } _UpperCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _UpperCamelCase = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) _UpperCamelCase = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
326
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : int = StableUnCLIPImgaImgPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS a__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ : int = frozenset([] ) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = 32 __UpperCamelCase :Optional[int] = embedder_hidden_size # image encoding components __UpperCamelCase :Union[str, Any] = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowercase , projection_dim=__lowercase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) __UpperCamelCase :str = StableUnCLIPImageNormalizer(embedding_dim=__lowercase) __UpperCamelCase :Optional[int] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''') torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') torch.manual_seed(0) __UpperCamelCase :Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )) torch.manual_seed(0) __UpperCamelCase :List[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowercase , layers_per_block=1 , upcast_attention=__lowercase , use_linear_projection=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Tuple = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) torch.manual_seed(0) __UpperCamelCase :List[str] = AutoencoderKL() __UpperCamelCase :Tuple = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0 , __lowercase=True) -> str: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :Union[str, Any] = torch.manual_seed(__lowercase) else: __UpperCamelCase :int = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase)).to(__lowercase) if pil_image: __UpperCamelCase :List[Any] = input_image * 0.5 + 0.5 __UpperCamelCase :Optional[Any] = input_image.clamp(0 , 1) __UpperCamelCase :int = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() __UpperCamelCase :Optional[Any] = DiffusionPipeline.numpy_to_pil(__lowercase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Tuple = self.get_dummy_components() __UpperCamelCase :Any = StableUnCLIPImgaImgPipeline(**__lowercase) __UpperCamelCase :Optional[Any] = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :List[Any] = self.get_dummy_inputs(__lowercase) inputs.update({'''image_embeds''': None}) __UpperCamelCase :Any = sd_pipe(**__lowercase).images __UpperCamelCase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase :List[Any] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[Any] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowercase) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowercase) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :Dict = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :Any = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :Optional[int] = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase :List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) __UpperCamelCase :Union[str, Any] = pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :Optional[Any] = pipe( __lowercase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) __UpperCamelCase :int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
43
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=5 ) -> Dict: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 UpperCAmelCase_ = torch.tensor(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase_ = model(__UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase_ = logits[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ = prob.topk(k=__UpperCamelCase , dim=0 ) UpperCAmelCase_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCamelCase ) )] ) UpperCAmelCase_ = tokenizer.mask_token UpperCAmelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): UpperCAmelCase_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__UpperCamelCase ) , __UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCamelCase , __UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowerCamelCase = CamembertTokenizer.from_pretrained('camembert-base') _lowerCamelCase = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() _lowerCamelCase = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
177
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __snake_case : int , __snake_case : List[Any]=7 , __snake_case : Any=3 , __snake_case : Any=18 , __snake_case : str=30 , __snake_case : Any=4_00 , __snake_case : Optional[int]=True , __snake_case : str=None , __snake_case : Any=True , __snake_case : List[Any]=None , ): UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 20} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size def lowerCamelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = MobileNetVaImageProcessingTester(self ) @property def lowerCamelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''crop_size''' ) ) def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : Tuple ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : str ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : int ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
177
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Dict , A : List[Any] , A : Tuple=7 , A : Dict=3 , A : Optional[Any]=18 , A : Union[str, Any]=30 , A : List[str]=4_00 , A : List[Any]=True , A : Union[str, Any]=32 , A : Any=True , ) -> List[Any]: lowercase_ : Optional[Any] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Any = num_channels lowercase_ : List[str] = image_size lowercase_ : Optional[int] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : str = do_resize lowercase_ : Optional[Any] = size_divisor lowercase_ : List[Any] = do_rescale def A ( self : Dict ) -> Optional[int]: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = GLPNImageProcessor if is_vision_available() else None def A ( self : Union[str, Any] ) -> List[str]: lowercase_ : Any = GLPNImageProcessingTester(self ) @property def A ( self : int ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[str] ) -> int: lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size_divisor''' ) ) self.assertTrue(hasattr(A , '''resample''' ) ) self.assertTrue(hasattr(A , '''do_rescale''' ) ) def A ( self : Any ) -> str: pass def A ( self : Tuple ) -> Tuple: # Initialize image_processing lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : List[Any] ) -> Tuple: # Initialize image_processing lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : Optional[int] ) -> List[Any]: # Initialize image_processing lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
33
"""simple docstring""" from math import isqrt, loga def A__ ( UpperCamelCase ): A = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase , UpperCamelCase ): A = False return [i for i in range(2 , UpperCamelCase ) if is_prime[i]] def A__ ( UpperCamelCase = 800_800 , UpperCamelCase = 800_800 ): A = degree * loga(UpperCamelCase ) A = int(UpperCamelCase ) A = calculate_prime_numbers(UpperCamelCase ) A = 0 A = 0 A = len(UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
292
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: # Load checkpoint __lowerCAmelCase: Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" ) __lowerCAmelCase: int = chkpt["model"] # We have the base model one level deeper than the original XLM repository __lowerCAmelCase: Optional[int] = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCAmelCase: Any = v else: __lowerCAmelCase: List[str] = v __lowerCAmelCase: Optional[Any] = chkpt["params"] __lowerCAmelCase: Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__SCREAMING_SNAKE_CASE , (torch.FloatTensor, numpy.ndarray) )} __lowerCAmelCase: Optional[Any] = chkpt["dico_word2id"] __lowerCAmelCase: Optional[int] = {s + "</w>" if s.find("@@" ) == -1 and i > 1_3 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model __lowerCAmelCase: Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME __lowerCAmelCase: Dict = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
367
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: # Load configuration defined in the metadata file with open(__SCREAMING_SNAKE_CASE ) as metadata_file: __lowerCAmelCase: List[Any] = json.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = LukeConfig(use_entity_aware_attention=__SCREAMING_SNAKE_CASE , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __lowerCAmelCase: Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" )["module"] # Load the entity vocab file __lowerCAmelCase: List[Any] = load_original_entity_vocab(__SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] __lowerCAmelCase: Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __lowerCAmelCase: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __lowerCAmelCase: str = AddedToken("<ent>" , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = AddedToken("<ent2>" , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "r" ) as f: __lowerCAmelCase: Optional[int] = json.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = "MLukeTokenizer" with open(os.path.join(__SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "w" ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens __lowerCAmelCase: Union[str, Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] __lowerCAmelCase: Optional[int] = tokenizer.convert_tokens_to_ids(["#"] )[0] __lowerCAmelCase: Dict = state_dict["embeddings.word_embeddings.weight"] __lowerCAmelCase: Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) __lowerCAmelCase: int = word_emb[enta_init_index].unsqueeze(0 ) __lowerCAmelCase: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __lowerCAmelCase: Dict = state_dict[bias_name] __lowerCAmelCase: Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) __lowerCAmelCase: Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) __lowerCAmelCase: Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowerCAmelCase: Optional[int] = F"encoder.layer.{layer_index}.attention.self." __lowerCAmelCase: Tuple = state_dict[prefix + matrix_name] __lowerCAmelCase: Dict = state_dict[prefix + matrix_name] __lowerCAmelCase: Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowerCAmelCase: int = state_dict["entity_embeddings.entity_embeddings.weight"] __lowerCAmelCase: Dict = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __lowerCAmelCase: str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __lowerCAmelCase: List[str] = state_dict["entity_predictions.bias"] __lowerCAmelCase: Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __lowerCAmelCase: str = torch.cat([entity_prediction_bias, entity_mask_bias] ) __lowerCAmelCase: Optional[int] = LukeForMaskedLM(config=__SCREAMING_SNAKE_CASE ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __lowerCAmelCase: Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __lowerCAmelCase: Any = state_dict[key] else: __lowerCAmelCase: Tuple = state_dict[key] __lowerCAmelCase , __lowerCAmelCase: Tuple = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) if set(__SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(__SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __lowerCAmelCase: Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , task="entity_classification" ) __lowerCAmelCase: Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __lowerCAmelCase: Optional[Any] = (0, 9) __lowerCAmelCase: Optional[int] = tokenizer(__SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" ) __lowerCAmelCase: int = model(**__SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __lowerCAmelCase: Dict = torch.Size((1, 3_3, 7_6_8) ) __lowerCAmelCase: Optional[int] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __lowerCAmelCase: Union[str, Any] = torch.Size((1, 1, 7_6_8) ) __lowerCAmelCase: Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __lowerCAmelCase: Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = "Tokyo is the capital of <mask>." __lowerCAmelCase: List[str] = (2_4, 3_0) __lowerCAmelCase: int = tokenizer(__SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" ) __lowerCAmelCase: Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = encoding["input_ids"][0].tolist() __lowerCAmelCase: int = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __lowerCAmelCase: Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = outputs.entity_logits[0][0].argmax().item() __lowerCAmelCase: Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__SCREAMING_SNAKE_CASE ) ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE ) -> Any: __lowerCAmelCase: Tuple = ["[MASK]", "[PAD]", "[UNK]"] __lowerCAmelCase: Optional[Any] = [json.loads(__SCREAMING_SNAKE_CASE ) for line in open(__SCREAMING_SNAKE_CASE )] __lowerCAmelCase: str = {} for entry in data: __lowerCAmelCase: Tuple = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __lowerCAmelCase: Optional[int] = entity_id break __lowerCAmelCase: Optional[Any] = F"{language}:{entity_name}" __lowerCAmelCase: Optional[int] = entity_id return new_mapping if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
108
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ = pytest.mark.integration @require_faiss class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" a = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" import faiss a = self._create_dummy_dataset() a = dset.map( lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ) a = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" import faiss a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) a , a = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" import faiss a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) a , a = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" from elasticsearch import Elasticsearch a = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} a = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=__UpperCAmelCase ) a , a = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" import faiss a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query a = np.zeros(5 , dtype=np.floataa ) a = 1 a , a = index.search(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries a = np.eye(5 , dtype=np.floataa )[::-1] a , a = index.search_batch(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] ) a = [scores[0] for scores in total_scores] a = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" import faiss a = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) a = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__UpperCAmelCase ): a = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" import faiss a = faiss.IndexFlat(5 ) a = FaissIndex(custom_index=__UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" import faiss a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) a = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) a = np.zeros(5 , dtype=np.floataa ) a = 1 a , a = index.search(__UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _a ( a :Dict ) -> Any: import faiss a = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) a = '''index.faiss''' a = F"""mock://{index_name}""" index.save(a , storage_options=mockfs.storage_options ) a = FaissIndex.load(a , storage_options=mockfs.storage_options ) a = np.zeros(5 , dtype=np.floataa ) a = 1 a , a = index.search(a ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowercase_ ( lowercase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a = Elasticsearch() a = {'''acknowledged''': True} a = ElasticSearchIndex(es_client=__UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query a = '''foo''' a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} a , a = index.search(__UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout a = '''foo''' a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} a , a = index.search(__UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries a = ['''foo''', '''bar''', '''foobar'''] a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} a , a = index.search_batch(__UpperCAmelCase ) a = [scores[0] for scores in total_scores] a = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __UpperCAmelCase ) # batched queries with timeout a = ['''foo''', '''bar''', '''foobar'''] a = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} a , a = index.search_batch(__UpperCAmelCase , request_timeout=30 ) a = [scores[0] for scores in total_scores] a = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
0
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets a :str = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" a :List[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" a :int = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __a (datasets.Metric): '''simple docstring''' def _a ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _a ( self , _a , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.0 for i, j in zip(_a , _a ): n_correct += 1.0 if math_equivalence.is_equiv(_a , _a ) else 0.0 SCREAMING_SNAKE_CASE__ : List[str] = n_correct / len(_a ) return { "accuracy": accuracy, }
132
0
"""simple docstring""" import re def _lowerCamelCase( lowercase__ ) -> list: '''simple docstring''' return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' __lowercase= split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' try: __lowercase= split_input(lowercase__ ) if upper: __lowercase= ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowercase= ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return to_simple_case(lowercase__ ) def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' try: __lowercase= to_simple_case(lowercase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' return to_complex_case(lowercase__ , lowercase__ , '_' ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' return to_complex_case(lowercase__ , lowercase__ , '-' ) if __name__ == "__main__": __import__('''doctest''').testmod()
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'roberta-prelayernorm' def __init__( self , lowercase=50265 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class a__ ( snake_case ): """simple docstring""" @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: "batch", 1: "choice", 2: "sequence"} else: A__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
68
import datasets from .evaluate import evaluate lowerCAmelCase__ = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowerCAmelCase__ = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowerCAmelCase__ = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCamelCase ( self , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} A__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] A__ = evaluate(dataset=lowercase , predictions=lowercase ) return score
68
1
def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase = _modexpt(lowercase , exponent // 2 , lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase , exponent - 1 , lowercase )) % modulo_value def A ( lowercase = 1_777 , lowercase = 1_855 , lowercase = 8 ) -> int: '''simple docstring''' UpperCamelCase = base for _ in range(1 , lowercase ): UpperCamelCase = _modexpt(lowercase , lowercase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
110
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = tempfile.mkdtemp() # fmt: off UpperCamelCase = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) UpperCamelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A_ , A_ ) def __UpperCamelCase ( self , **A_ ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __UpperCamelCase ( self , **A_ ) -> Tuple: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **A_ ) def __UpperCamelCase ( self , **A_ ) -> Union[str, Any]: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = self.get_image_processor() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=A_ ) UpperCamelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(A_ , return_tensors='np' ) UpperCamelCase = processor(images=A_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=A_ , return_tensors='np' ) UpperCamelCase = tokenizer(A_ , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = ['cat', 'nasa badge'] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = [['cat', 'nasa badge'], ['person']] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 UpperCamelCase = len(A_ ) UpperCamelCase = max([len(A_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 'google/owlvit-base-patch32' UpperCamelCase = OwlViTProcessor.from_pretrained(A_ ) UpperCamelCase = ['cat', 'nasa badge'] UpperCamelCase = processor(text=A_ ) UpperCamelCase = 16 UpperCamelCase = inputs['input_ids'] UpperCamelCase = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(images=A_ , query_images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = OwlViTProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(A_ ) UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
110
1
"""simple docstring""" from __future__ import annotations import math _snake_case = "2020.9.26" _snake_case = "xcodz-dot, cclaus, dhruvmanila" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not all(isinstance(_UpperCamelCase , (float, int) ) for val in locals().values() ): _a : Optional[Any] = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(_UpperCamelCase ) _a : Union[str, Any] = ((x * distance) / (z + distance)) * scale _a : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("""Axis must be a str""" ) _a : Tuple = locals() del input_variables["axis"] if not all(isinstance(_UpperCamelCase , (float, int) ) for val in input_variables.values() ): _a : Tuple = ( """Input values except axis must either be float or int: """ F"""{list(input_variables.values() )}""" ) raise TypeError(_UpperCamelCase ) _a : Optional[int] = (angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": _a : int = x * math.cos(_UpperCamelCase ) - y * math.sin(_UpperCamelCase ) _a : Union[str, Any] = y * math.cos(_UpperCamelCase ) + x * math.sin(_UpperCamelCase ) _a : str = z elif axis == "x": _a : Optional[int] = y * math.cos(_UpperCamelCase ) - z * math.sin(_UpperCamelCase ) _a : Union[str, Any] = z * math.cos(_UpperCamelCase ) + y * math.sin(_UpperCamelCase ) _a : Optional[int] = x elif axis == "y": _a : Union[str, Any] = x * math.cos(_UpperCamelCase ) - z * math.sin(_UpperCamelCase ) _a : Tuple = z * math.cos(_UpperCamelCase ) + x * math.sin(_UpperCamelCase ) _a : int = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
294
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) A : Tuple = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] A : Optional[Any] = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" ) return sd def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=rename_keys_prefix ): '''simple docstring''' __lowerCAmelCase = OrderedDict() __lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowerCAmelCase = key for name_pair in rename_keys_prefix: __lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) __lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowerCAmelCase = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowerCAmelCase = "pretraining" if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 512} __lowerCAmelCase = "multichoice" elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048} __lowerCAmelCase = "vqa_advanced" elif "vqa" in checkpoint_path: __lowerCAmelCase = {"visual_embedding_dim": 2048, "num_labels": 3129} __lowerCAmelCase = "vqa" elif "nlvr" in checkpoint_path: __lowerCAmelCase = { "visual_embedding_dim": 1024, "num_labels": 2, } __lowerCAmelCase = "nlvr" __lowerCAmelCase = VisualBertConfig(**_UpperCamelCase ) # Load State Dict __lowerCAmelCase = load_state_dict(_UpperCamelCase ) __lowerCAmelCase = get_new_dict(_UpperCamelCase , _UpperCamelCase ) if model_type == "pretraining": __lowerCAmelCase = VisualBertForPreTraining(_UpperCamelCase ) elif model_type == "vqa": __lowerCAmelCase = VisualBertForQuestionAnswering(_UpperCamelCase ) elif model_type == "nlvr": __lowerCAmelCase = VisualBertForVisualReasoning(_UpperCamelCase ) elif model_type == "multichoice": __lowerCAmelCase = VisualBertForMultipleChoice(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # Save Checkpoints Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") A : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
57
0
'''simple docstring''' class A : def __init__( self : List[Any] , lowerCAmelCase_ : list[int] ) -> None: """simple docstring""" _a = len(lowerCAmelCase_ ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , lowerCAmelCase_ ): _a = self.prefix_sum[i - 1] + array[i] def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCAmelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
179
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class A ( _a ): def __init__( self : str , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ) -> List[Any]: """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) _a = {} def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Tuple , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Tuple ) -> str: """simple docstring""" _a = super().add_tokens(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ''' `placeholder_token` that is not already in the tokenizer.''' ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple=1 , **lowerCAmelCase_ : int ) -> Any: """simple docstring""" _a = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) output.append(lowerCAmelCase_ ) else: _a = [] for i in range(lowerCAmelCase_ ): _a = placeholder_token + F'_{i}' self.try_adding_tokens(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) output.append(lowerCAmelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) _a = output def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[int]=1.0 ) -> Tuple: """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _a = [] for i in range(len(lowerCAmelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCAmelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _a = self.token_map[placeholder_token] _a = tokens[: 1 + int(len(lowerCAmelCase_ ) * prop_tokens_to_load )] if vector_shuffle: _a = copy.copy(lowerCAmelCase_ ) random.shuffle(lowerCAmelCase_ ) _a = text.replace(lowerCAmelCase_ , ''' '''.join(lowerCAmelCase_ ) ) return text def __call__( self : List[str] , lowerCAmelCase_ : str , *lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Union[str, Any]=1.0 , **lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( lowerCAmelCase_ , vector_shuffle=lowerCAmelCase_ , prop_tokens_to_load=lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : int , *lowerCAmelCase_ : str , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=1.0 , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( lowerCAmelCase_ , vector_shuffle=lowerCAmelCase_ , prop_tokens_to_load=lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ , )
179
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } __lowerCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: for attribute in key.split('.' ): lowercase__: Tuple = getattr(snake_case , snake_case ) if weight_type is not None: lowercase__: int = getattr(snake_case , snake_case ).shape else: lowercase__: int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__: int = value elif weight_type == "weight_g": lowercase__: List[Any] = value elif weight_type == "weight_v": lowercase__: List[Any] = value elif weight_type == "bias": lowercase__: Optional[int] = value else: lowercase__: Optional[Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def snake_case_ ( snake_case , snake_case ) -> Tuple: lowercase__: str = [] lowercase__: Union[str, Any] = fairseq_model.state_dict() lowercase__: Optional[Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__: Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == 'group' , ) lowercase__: Dict = True else: for key, mapped_key in MAPPING.items(): lowercase__: List[str] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__: int = True if "*" in mapped_key: lowercase__: List[Any] = name.split(snake_case )[0].split('.' )[-2] lowercase__: List[str] = mapped_key.replace('*' , snake_case ) if "weight_g" in name: lowercase__: Optional[Any] = 'weight_g' elif "weight_v" in name: lowercase__: Optional[int] = 'weight_v' elif "bias" in name: lowercase__: Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__: List[str] = 'weight' else: lowercase__: List[Any] = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: lowercase__: Union[str, Any] = full_name.split('conv_layers.' )[-1] lowercase__: List[str] = name.split('.' ) lowercase__: int = int(items[0] ) lowercase__: str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__: List[str] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__: str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) lowercase__: Tuple = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__: List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case ) @torch.no_grad() def snake_case_ ( snake_case , snake_case , snake_case=None , snake_case=None , snake_case=True ) -> List[Any]: if config_path is not None: lowercase__: List[Any] = UniSpeechSatConfig.from_pretrained(snake_case ) else: lowercase__: Dict = UniSpeechSatConfig() lowercase__: Any = '' if is_finetuned: lowercase__: Tuple = UniSpeechSatForCTC(snake_case ) else: lowercase__: Optional[int] = UniSpeechSatForPreTraining(snake_case ) lowercase__ , lowercase__ , lowercase__: str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__: List[Any] = model[0].eval() recursively_load_weights(snake_case , snake_case ) hf_wavavec.save_pretrained(snake_case ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowerCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
288
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCAmelCase = logging.getLogger(__name__) def snake_case_ ( snake_case , snake_case ) -> Optional[int]: lowercase__: Optional[int] = np.argmax(snake_case , axis=1 ) return np.sum(outputs == labels ) def snake_case_ ( snake_case ) -> Dict: with open(snake_case , encoding='utf_8' ) as f: lowercase__: str = csv.reader(snake_case ) lowercase__: int = [] next(snake_case ) # skip the first line for line in tqdm(snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Tuple: lowercase__: List[Any] = [] for dataset in encoded_datasets: lowercase__: Dict = len(snake_case ) lowercase__: int = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowercase__: int = np.zeros((n_batch, 2) , dtype=np.intaa ) lowercase__: Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) lowercase__: Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case ): lowercase__: List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: Union[str, Any] = with_conta lowercase__: List[Any] = with_conta lowercase__: Any = len(snake_case ) - 1 lowercase__: Dict = len(snake_case ) - 1 lowercase__: Optional[Any] = with_conta lowercase__: Tuple = with_conta lowercase__: int = mc_label lowercase__: Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case ) for t in all_inputs ) ) return tensor_datasets def snake_case_ ( ) -> Union[str, Any]: lowercase__: Optional[Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=snake_case , default='' ) parser.add_argument('--eval_dataset' , type=snake_case , default='' ) parser.add_argument('--seed' , type=snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=snake_case , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=snake_case , default=0.0_1 ) parser.add_argument('--lm_coef' , type=snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=snake_case , default=3_74 ) parser.add_argument('--server_ip' , type=snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=snake_case , default='' , help='Can be used for distant debugging.' ) lowercase__: List[str] = parser.parse_args() print(snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase__: Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowercase__: Tuple = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(snake_case , snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase__: Any = ['_start_', '_delimiter_', '_classify_'] lowercase__: Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case ) lowercase__: int = tokenizer.convert_tokens_to_ids(snake_case ) lowercase__: int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case ) ) model.to(snake_case ) # Load and encode the datasets def tokenize_and_encode(snake_case ): if isinstance(snake_case , snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case ) ) elif isinstance(snake_case , snake_case ): return obj return [tokenize_and_encode(snake_case ) for o in obj] logger.info('Encoding dataset...' ) lowercase__: Dict = load_rocstories_dataset(args.train_dataset ) lowercase__: Dict = load_rocstories_dataset(args.eval_dataset ) lowercase__: str = (train_dataset, eval_dataset) lowercase__: Any = tokenize_and_encode(snake_case ) # Compute the max input length for the Transformer lowercase__: Optional[Any] = model.config.n_positions // 2 - 2 lowercase__: Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase__: List[str] = min(snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase__: str = pre_process_datasets(snake_case , snake_case , snake_case , *snake_case ) lowercase__ , lowercase__: Optional[Any] = tensor_datasets[0], tensor_datasets[1] lowercase__: List[str] = TensorDataset(*snake_case ) lowercase__: Dict = RandomSampler(snake_case ) lowercase__: Optional[int] = DataLoader(snake_case , sampler=snake_case , batch_size=args.train_batch_size ) lowercase__: str = TensorDataset(*snake_case ) lowercase__: str = SequentialSampler(snake_case ) lowercase__: Optional[Any] = DataLoader(snake_case , sampler=snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase__: Union[str, Any] = args.max_steps lowercase__: Tuple = args.max_steps // (len(snake_case ) // args.gradient_accumulation_steps) + 1 else: lowercase__: Optional[Any] = len(snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase__: str = list(model.named_parameters() ) lowercase__: Any = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowercase__: str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowercase__: Tuple = AdamW(snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) lowercase__: Tuple = get_linear_schedule_with_warmup( snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case ) if args.do_train: lowercase__ , lowercase__ , lowercase__: int = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowercase__: str = 0 lowercase__: Optional[Any] = 0 lowercase__: List[Any] = tqdm(snake_case , desc='Training' ) for step, batch in enumerate(snake_case ): lowercase__: Union[str, Any] = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: List[Any] = batch lowercase__: List[str] = model(snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase__: Union[str, Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase__: Tuple = 'Training loss: {:.2e} lr: {:.2e}'.format(snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase__: Any = model.module if hasattr(snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase__: Tuple = os.path.join(args.output_dir , snake_case ) lowercase__: List[str] = os.path.join(args.output_dir , snake_case ) torch.save(model_to_save.state_dict() , snake_case ) model_to_save.config.to_json_file(snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase__: Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase__: Any = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case ) if args.do_eval: model.eval() lowercase__ , lowercase__: Optional[Any] = 0, 0 lowercase__ , lowercase__: List[Any] = 0, 0 for batch in tqdm(snake_case , desc='Evaluating' ): lowercase__: str = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: Union[str, Any] = batch with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ , lowercase__: Any = model( snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Dict = mc_logits.detach().cpu().numpy() lowercase__: Tuple = mc_labels.to('cpu' ).numpy() lowercase__: Dict = accuracy(snake_case , snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase__: Optional[int] = eval_loss / nb_eval_steps lowercase__: Optional[int] = eval_accuracy / nb_eval_examples lowercase__: int = tr_loss / nb_tr_steps if args.do_train else None lowercase__: Optional[Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowercase__: Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
288
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case :Optional[int] = logging.get_logger(__name__) __snake_case :Optional[Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''table-transformer''' UpperCamelCase__ : Tuple = ['''past_key_values'''] UpperCamelCase__ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=100 , __SCREAMING_SNAKE_CASE : Tuple=6 , __SCREAMING_SNAKE_CASE : Optional[int]=2_048 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : Union[str, Any]=6 , __SCREAMING_SNAKE_CASE : str=2_048 , __SCREAMING_SNAKE_CASE : Tuple=8 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Dict="relu" , __SCREAMING_SNAKE_CASE : int=256 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : Any=1.0 , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Dict="sine" , __SCREAMING_SNAKE_CASE : str="resnet50" , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , **__SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = backbone_config.get('''model_type''') __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(__SCREAMING_SNAKE_CASE) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : int): '''simple docstring''' return self.encoder_attention_heads @property def _lowerCamelCase ( self : int): '''simple docstring''' return self.d_model class _A ( __UpperCAmelCase ): UpperCamelCase__ : Union[str, Any] = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' return 1E-5 @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 12
49
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : str = R'''\w+[.]\d+''' UpperCAmelCase__ : List[Any] = re.findall(lowerCAmelCase__ , lowerCAmelCase__ ) for pat in pats: UpperCAmelCase__ : Union[str, Any] = key.replace(lowerCAmelCase__ , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase__ : str = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase__ : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : int = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=42 ) -> Tuple: # Step 1: Convert pytorch tensor to numpy UpperCAmelCase__ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase__ : Tuple = flax_model.init_weights(PRNGKey(lowerCAmelCase__ ) ) UpperCAmelCase__ : Optional[Any] = flatten_dict(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : Optional[int] = rename_key(lowerCAmelCase__ ) UpperCAmelCase__ : str = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = rename_key_and_reshape_tensor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase__ : List[str] = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ )
181
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCAmelCase ,max_new_tokens=10 ,do_sample=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCAmelCase ) model.generate(__lowerCAmelCase ,max_new_tokens=10 ,do_sample=__lowerCAmelCase ,streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCAmelCase ,max_new_tokens=10 ,do_sample=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate ,kwargs=__lowerCAmelCase ) thread.start() SCREAMING_SNAKE_CASE = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCAmelCase ,max_new_tokens=10 ,do_sample=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCAmelCase ,skip_prompt=__lowerCAmelCase ) model.generate(__lowerCAmelCase ,max_new_tokens=10 ,do_sample=__lowerCAmelCase ,streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""distilgpt2""" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) ,device=__lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) model.generate(__lowerCAmelCase ,max_new_tokens=1 ,do_sample=__lowerCAmelCase ,streamer=__lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCAmelCase ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCAmelCase ,timeout=0.001 ) SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate ,kwargs=__lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCAmelCase ): SCREAMING_SNAKE_CASE = """""" for new_text in streamer: streamer_text += new_text
371
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : List[Any] = True __snake_case : Optional[int] = "ml.p3.2xlarge" __snake_case : List[str] = "accelerate_sagemaker_execution_role" __snake_case : Tuple = "hf-sm" __snake_case : Any = "us-east-1" __snake_case : Union[str, Any] = 1 __snake_case : Dict = "accelerate-sagemaker-1" __snake_case : Tuple = "1.6" __snake_case : List[str] = "4.4" __snake_case : str = "train.py" __snake_case : List[str] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __snake_case : Optional[int] = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""do_train"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""epochs"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""learning_rate"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""max_steps"""] ,lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
193
0
from heapq import heappop, heappush import numpy as np def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : tuple[int, int] , SCREAMING_SNAKE_CASE__ : tuple[int, int] , SCREAMING_SNAKE_CASE__ : bool , ): __UpperCamelCase , __UpperCamelCase =grid.shape __UpperCamelCase =[-1, 1, 0, 0] __UpperCamelCase =[0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __UpperCamelCase , __UpperCamelCase =[(0, source)], set() __UpperCamelCase =np.full((rows, cols) , np.inf ) __UpperCamelCase =0 __UpperCamelCase =np.empty((rows, cols) , dtype=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =None while queue: ((__UpperCamelCase) , (__UpperCamelCase)) =heappop(SCREAMING_SNAKE_CASE__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __UpperCamelCase =[] while (x, y) != source: path.append((x, y) ) __UpperCamelCase , __UpperCamelCase =predecessors[x, y] path.append(SCREAMING_SNAKE_CASE__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase , __UpperCamelCase =x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __UpperCamelCase =grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(SCREAMING_SNAKE_CASE__ , (dist + 1, (nx, ny)) ) __UpperCamelCase =dist + 1 __UpperCamelCase =(x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
62
_A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) order.append(SCREAMING_SNAKE_CASE__ ) return order def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return component def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] __UpperCamelCase ={vert: [] for vert in range(len(SCREAMING_SNAKE_CASE__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE__ ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =order[len(SCREAMING_SNAKE_CASE__ ) - i - 1] if not visited[vert]: __UpperCamelCase =find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) components_list.append(SCREAMING_SNAKE_CASE__ ) return components_list
62
1
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : str = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class __UpperCAmelCase ( __lowerCamelCase ): '''simple docstring''' __lowercase : int = 'autoformer' __lowercase : int = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "student_t" , _SCREAMING_SNAKE_CASE = "nll" , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7] , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 64 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 25 , _SCREAMING_SNAKE_CASE = 3 , **_SCREAMING_SNAKE_CASE , ) -> Dict: # time series specific configuration A_ = prediction_length A_ = context_length if context_length is not None else prediction_length A_ = distribution_output A_ = loss A_ = input_size A_ = num_time_features A_ = lags_sequence A_ = scaling A_ = num_dynamic_real_features A_ = num_static_real_features A_ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) A_ = cardinality else: A_ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) A_ = embedding_dimension else: A_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A_ = num_parallel_samples # Transformer architecture configuration A_ = input_size * len(self.lags_sequence ) + self._number_of_features A_ = d_model A_ = encoder_attention_heads A_ = decoder_attention_heads A_ = encoder_ffn_dim A_ = decoder_ffn_dim A_ = encoder_layers A_ = decoder_layers A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = activation_function A_ = init_std A_ = use_cache # Autoformer A_ = label_length A_ = moving_average A_ = autocorrelation_factor super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def __A ( self ) -> Any: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
356
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
0
'''simple docstring''' import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = 1 @register_to_config def __init__(self , _UpperCAmelCase=2_0_0_0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=2_0 , _UpperCAmelCase=1E-3 ) -> List[Any]: __UpperCamelCase : List[Any] = None __UpperCamelCase : int = None __UpperCamelCase : Optional[int] = None def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple: __UpperCamelCase : List[Any] = torch.linspace(1 , self.config.sampling_eps , _UpperCAmelCase , device=_UpperCAmelCase ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ) -> str: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __UpperCamelCase : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __UpperCamelCase : Union[str, Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __UpperCamelCase : List[Any] = std.flatten() while len(std.shape ) < len(score.shape ): __UpperCamelCase : Tuple = std.unsqueeze(-1 ) __UpperCamelCase : List[str] = -score / std # compute __UpperCamelCase : Tuple = -1.0 / len(self.timesteps ) __UpperCamelCase : Dict = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __UpperCamelCase : Union[str, Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __UpperCamelCase : Dict = beta_t.unsqueeze(-1 ) __UpperCamelCase : List[str] = -0.5 * beta_t * x __UpperCamelCase : Dict = torch.sqrt(_UpperCAmelCase ) __UpperCamelCase : List[str] = drift - diffusion**2 * score __UpperCamelCase : List[str] = x + drift * dt # add noise __UpperCamelCase : Tuple = randn_tensor(x.shape , layout=x.layout , generator=_UpperCAmelCase , device=x.device , dtype=x.dtype ) __UpperCamelCase : int = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> Dict: return self.config.num_train_timesteps
298
"""simple docstring""" import math def lowercase__ ( _UpperCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) lowercase : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
255
0
'''simple docstring''' from collections.abc import Callable def _A ( snake_case , snake_case , snake_case ) -> str: _lowercase : float = a _lowercase : float = b if function(_a ) == 0: # one of the a or b is a root for the function return a elif function(_a ) == 0: return b elif ( function(_a ) * function(_a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: _lowercase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_a ) == 0: return mid elif function(_a ) * function(_a ) < 0: _lowercase : List[str] = mid else: _lowercase : int = mid _lowercase : Dict = start + (end - start) / 2.0 return mid def _A ( snake_case ) -> int: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = 'roc_bert' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=768 , _UpperCamelCase=910 , _UpperCamelCase=512 , _UpperCamelCase=24858 , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = vocab_size _lowercase : List[str] = max_position_embeddings _lowercase : List[Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : int = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Dict = initializer_range _lowercase : List[Any] = type_vocab_size _lowercase : Tuple = layer_norm_eps _lowercase : Optional[int] = use_cache _lowercase : Tuple = enable_pronunciation _lowercase : Optional[int] = enable_shape _lowercase : int = pronunciation_embed_dim _lowercase : List[str] = pronunciation_vocab_size _lowercase : int = shape_embed_dim _lowercase : str = shape_vocab_size _lowercase : str = concat_input _lowercase : Dict = position_embedding_type _lowercase : Optional[Any] = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
199
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : str = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 ) -> Dict: _lowercase : Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase : str = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowercase : List[str] = 8 else: _lowercase : List[Any] = None return tokenizer.pad( lowerCamelCase_ , padding='longest' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. _lowercase : Any = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) _lowercase : Optional[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE : Tuple = mocked_dataloaders # noqa: F811 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCamelCase_ ) == "1": _lowercase : int = 2 # Initialize accelerator _lowercase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : str = config['lr'] _lowercase : Any = int(config['num_epochs'] ) _lowercase : int = int(config['seed'] ) _lowercase : Dict = int(config['batch_size'] ) _lowercase : int = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase_ ) def inner_training_loop(lowerCamelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase : Dict = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) _lowercase , _lowercase : Tuple = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate scheduler _lowercase : int = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[str] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase : str = model(**lowerCamelCase_ ) _lowercase : List[str] = outputs.loss accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : List[Any] = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase_( ) -> List[Any]: _lowercase : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowercase : Union[str, Any] = parser.parse_args() _lowercase : Optional[int] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowercase : '''simple docstring''' def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=50 , snake_case__=0.02 , snake_case__=True , snake_case__=None , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = initializer_range UpperCamelCase_ = use_labels UpperCamelCase_ = scope def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ): '''simple docstring''' ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = self.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ ) UpperCamelCase_ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = True UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = BertGenerationDecoder(config=snake_case__ ).to(snake_case__ ).eval() # first forward pass UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ , ): '''simple docstring''' UpperCamelCase_ = BertGenerationDecoder(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase__ = (BertGenerationDecoder,) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoderTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = "bert" self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*snake_case__ ) @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(snake_case__ ) @require_torch class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): UpperCamelCase_ = model(snake_case__ )[0] UpperCamelCase_ = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @require_torch class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): UpperCamelCase_ = model(snake_case__ )[0] UpperCamelCase_ = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
128
0
from __future__ import annotations a_ = list[tuple[int, int]] a_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowercase : def __init__( self : Any , snake_case : int , snake_case : int , snake_case : int , snake_case : int , snake_case : float , snake_case : Node | None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ : str = pos_x UpperCamelCase_ : Optional[Any] = pos_y UpperCamelCase_ : Dict = (pos_y, pos_x) UpperCamelCase_ : Tuple = goal_x UpperCamelCase_ : str = goal_y UpperCamelCase_ : Tuple = g_cost UpperCamelCase_ : Optional[int] = parent UpperCamelCase_ : Optional[Any] = self.calculate_heuristic() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> float: """simple docstring""" UpperCamelCase_ : Dict = abs(self.pos_x - self.goal_x ) UpperCamelCase_ : Dict = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : int , snake_case : Union[str, Any] ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class _lowercase : def __init__( self : Optional[int] , snake_case : tuple[int, int] , snake_case : tuple[int, int] ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case ) UpperCamelCase_ : Optional[int] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case ) UpperCamelCase_ : Optional[Any] = [self.start] UpperCamelCase_ : list[Node] = [] UpperCamelCase_ : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase_ : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase_ : str = True return self.retrace_path(snake_case ) self.closed_nodes.append(snake_case ) UpperCamelCase_ : List[Any] = self.get_successors(snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case ) else: # retrieve the best current path UpperCamelCase_ : Any = self.open_nodes.pop(self.open_nodes.index(snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case ) else: self.open_nodes.append(snake_case ) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : Node ) -> list[Node]: """simple docstring""" UpperCamelCase_ : Any = [] for action in delta: UpperCamelCase_ : Tuple = parent.pos_x + action[1] UpperCamelCase_ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case , snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case , ) ) return successors def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Node | None ) -> Path: """simple docstring""" UpperCamelCase_ : str = node UpperCamelCase_ : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase_ : Optional[int] = current_node.parent path.reverse() return path if __name__ == "__main__": a_ = (0, 0) a_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') a_ = GreedyBestFirst(init, goal) a_ = greedy_bf.search() if path: for pos_x, pos_y in path: a_ = 2 for elem in grid: print(elem)
50
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self : List[Any] , snake_case : List[str] , snake_case : str=1_3 , snake_case : Any=3_0 , snake_case : Tuple=2 , snake_case : List[Any]=3 , snake_case : str=True , snake_case : List[Any]=True , snake_case : List[Any]=3_2 , snake_case : Union[str, Any]=5 , snake_case : Dict=4 , snake_case : str=3_7 , snake_case : Optional[int]="gelu" , snake_case : Any=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Union[str, Any]=1_0 , snake_case : List[str]=0.02 , snake_case : Optional[int]=3 , snake_case : str=0.6 , snake_case : Any=None , ) -> Dict: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : List[str] = image_size UpperCamelCase_ : Optional[Any] = patch_size UpperCamelCase_ : Optional[int] = num_channels UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Dict = use_labels UpperCamelCase_ : Tuple = hidden_size UpperCamelCase_ : str = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Any = intermediate_size UpperCamelCase_ : Dict = hidden_act UpperCamelCase_ : Tuple = hidden_dropout_prob UpperCamelCase_ : Dict = attention_probs_dropout_prob UpperCamelCase_ : Any = type_sequence_label_size UpperCamelCase_ : str = initializer_range UpperCamelCase_ : Tuple = mask_ratio UpperCamelCase_ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase_ : List[Any] = (image_size // patch_size) ** 2 UpperCamelCase_ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : List[str] = None if self.use_labels: UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Dict , snake_case : List[str] , snake_case : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = ViTMAEModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Tuple = model(snake_case ) UpperCamelCase_ : Tuple = (self.image_size // self.patch_size) ** 2 UpperCamelCase_ : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : Dict = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ : Tuple = model(snake_case ) UpperCamelCase_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : int = config_and_inputs UpperCamelCase_ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" UpperCamelCase_ : Any = ViTMAEModelTester(self ) UpperCamelCase_ : Tuple = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Any = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : List[str] = model_class(snake_case ) UpperCamelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCamelCase_ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : List[str] , snake_case : Optional[int] , snake_case : Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase_ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase_ : int = torch.from_numpy(snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase_ : Tuple = pt_noise super().check_pt_tf_models(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : str = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase_ : Any = outputs[0].cpu().numpy() UpperCamelCase_ : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_ : Union[str, Any] = model_class.from_pretrained(snake_case ) model.to(snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) # Make sure we don't have nans UpperCamelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Dict = ViTMAEModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __lowercase ( ): UpperCamelCase_ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : List[str] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case ) UpperCamelCase_ : Tuple = self.default_image_processor UpperCamelCase_ : Union[str, Any] = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase_ : int = ViTMAEConfig() UpperCamelCase_ : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase_ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase_ : str = model(**snake_case , noise=torch.from_numpy(snake_case ).to(device=snake_case ) ) # verify the logits UpperCamelCase_ : Dict = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCamelCase_ : Union[str, Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case ) , atol=1e-4 ) )
50
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): A__ = f"""Expected string as input, found {type(_UpperCAmelCase )}""" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): A__ = f"""Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}""" raise ValueError(_UpperCAmelCase ) A__ = input_str.split('''_''' ) A__ = 0 if use_pascal else 1 A__ = words[start_index:] A__ = [word[0].upper() + word[1:] for word in words_to_capitalize] A__ = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
14
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[str] = CustomTokenizer pass
286
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowercase = logging.get_logger(__name__) # General docstring __lowercase = '''MobileNetV1Config''' # Base docstring __lowercase = '''google/mobilenet_v1_1.0_224''' __lowercase = [1, 1024, 7, 7] # Image classification docstring __lowercase = '''google/mobilenet_v1_1.0_224''' __lowercase = '''tabby, tabby cat''' __lowercase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __UpperCamelCase :Tuple = {} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Dict = model.mobilenet_va else: __UpperCamelCase :str = model __UpperCamelCase :int = '''MobilenetV1/Conv2d_0/''' __UpperCamelCase :str = backbone.conv_stem.convolution.weight __UpperCamelCase :int = backbone.conv_stem.normalization.bias __UpperCamelCase :Union[str, Any] = backbone.conv_stem.normalization.weight __UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_mean __UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): __UpperCamelCase :Optional[Any] = i + 1 __UpperCamelCase :Optional[int] = i * 2 __UpperCamelCase :List[Any] = backbone.layer[pt_index] __UpperCamelCase :Tuple = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" __UpperCamelCase :Any = pointer.convolution.weight __UpperCamelCase :Dict = pointer.normalization.bias __UpperCamelCase :List[str] = pointer.normalization.weight __UpperCamelCase :Any = pointer.normalization.running_mean __UpperCamelCase :List[str] = pointer.normalization.running_var __UpperCamelCase :Union[str, Any] = backbone.layer[pt_index + 1] __UpperCamelCase :List[str] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" __UpperCamelCase :Optional[Any] = pointer.convolution.weight __UpperCamelCase :Dict = pointer.normalization.bias __UpperCamelCase :int = pointer.normalization.weight __UpperCamelCase :Optional[int] = pointer.normalization.running_mean __UpperCamelCase :Optional[int] = pointer.normalization.running_var if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Any = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __UpperCamelCase :Union[str, Any] = model.classifier.weight __UpperCamelCase :int = model.classifier.bias return tf_to_pt_map def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __UpperCamelCase :Any = tf.train.list_variables(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) __UpperCamelCase :str = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = array # Build TF to PyTorch weights loading map __UpperCamelCase :Optional[Any] = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue __UpperCamelCase :Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __UpperCamelCase :Optional[int] = np.transpose(SCREAMING_SNAKE_CASE , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __UpperCamelCase :Tuple = array.squeeze().transpose() else: __UpperCamelCase :Union[str, Any] = np.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) __UpperCamelCase :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE ) tf_weights.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/RMSProp''' , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/RMSProp_1''' , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , SCREAMING_SNAKE_CASE ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :str = features.shape[-2:] __UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.stride __UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.kernel_size if in_height % stride_height == 0: __UpperCamelCase :Optional[int] = max(kernel_height - stride_height , 0 ) else: __UpperCamelCase :List[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __UpperCamelCase :List[str] = max(kernel_width - stride_width , 0 ) else: __UpperCamelCase :Tuple = max(kernel_width - (in_width % stride_width) , 0 ) __UpperCamelCase :Any = pad_along_width // 2 __UpperCamelCase :Tuple = pad_along_width - pad_left __UpperCamelCase :Union[str, Any] = pad_along_height // 2 __UpperCamelCase :str = pad_along_height - pad_top __UpperCamelCase :Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''constant''' , 0.0 ) class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = 1 , __lowercase = 1 , __lowercase = False , __lowercase = True , __lowercase = True , ) -> None: super().__init__() __UpperCamelCase :str = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""") if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""") __UpperCamelCase :Any = 0 if config.tf_padding else int((kernel_size - 1) / 2) __UpperCamelCase :List[Any] = nn.Convad( in_channels=__lowercase , out_channels=__lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase , groups=__lowercase , bias=__lowercase , padding_mode='''zeros''' , ) if use_normalization: __UpperCamelCase :str = nn.BatchNormad( num_features=__lowercase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowercase , track_running_stats=__lowercase , ) else: __UpperCamelCase :Tuple = None if use_activation: if isinstance(__lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowercase): __UpperCamelCase :Dict = ACTaFN[config.hidden_act] else: __UpperCamelCase :List[Any] = config.hidden_act else: __UpperCamelCase :Optional[Any] = None def UpperCamelCase__ ( self , __lowercase) -> torch.Tensor: if self.config.tf_padding: __UpperCamelCase :Any = apply_tf_padding(__lowercase , self.convolution) __UpperCamelCase :str = self.convolution(__lowercase) if self.normalization is not None: __UpperCamelCase :Any = self.normalization(__lowercase) if self.activation is not None: __UpperCamelCase :List[str] = self.activation(__lowercase) return features class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = MobileNetVaConfig a__ : Dict = load_tf_weights_in_mobilenet_va a__ : Tuple = """mobilenet_v1""" a__ : Optional[Any] = """pixel_values""" a__ : int = False def UpperCamelCase__ ( self , __lowercase) -> None: if isinstance(__lowercase , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowercase , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) __lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = True) -> Optional[Any]: super().__init__(__lowercase) __UpperCamelCase :List[str] = config __UpperCamelCase :Any = 32 __UpperCamelCase :List[str] = max(int(depth * config.depth_multiplier) , config.min_depth) __UpperCamelCase :Union[str, Any] = MobileNetVaConvLayer( __lowercase , in_channels=config.num_channels , out_channels=__lowercase , kernel_size=3 , stride=2 , ) __UpperCamelCase :str = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __UpperCamelCase :Any = nn.ModuleList() for i in range(13): __UpperCamelCase :str = out_channels if strides[i] == 2 or i == 0: depth *= 2 __UpperCamelCase :Tuple = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=3 , stride=strides[i] , groups=__lowercase , )) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=1 , )) __UpperCamelCase :str = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: raise NotImplementedError @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __UpperCamelCase :Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase :str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''') __UpperCamelCase :int = self.conv_stem(__lowercase) __UpperCamelCase :List[str] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): __UpperCamelCase :Optional[Any] = layer_module(__lowercase) if output_hidden_states: __UpperCamelCase :int = all_hidden_states + (hidden_states,) __UpperCamelCase :Any = hidden_states if self.pooler is not None: __UpperCamelCase :str = torch.flatten(self.pooler(__lowercase) , start_dim=1) else: __UpperCamelCase :Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=__lowercase , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase) -> None: super().__init__(__lowercase) __UpperCamelCase :int = config.num_labels __UpperCamelCase :Optional[int] = MobileNetVaModel(__lowercase) __UpperCamelCase :Optional[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __UpperCamelCase :str = nn.Dropout(config.classifier_dropout_prob , inplace=__lowercase) __UpperCamelCase :Dict = nn.Linear(__lowercase , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __UpperCamelCase :List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase :Tuple = self.mobilenet_va(__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase) __UpperCamelCase :List[str] = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase :Union[str, Any] = self.classifier(self.dropout(__lowercase)) __UpperCamelCase :int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCamelCase :Tuple = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCamelCase :Union[str, Any] = '''single_label_classification''' else: __UpperCamelCase :Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCamelCase :Any = MSELoss() if self.num_labels == 1: __UpperCamelCase :List[str] = loss_fct(logits.squeeze() , labels.squeeze()) else: __UpperCamelCase :Dict = loss_fct(__lowercase , __lowercase) elif self.config.problem_type == "single_label_classification": __UpperCamelCase :Optional[int] = CrossEntropyLoss() __UpperCamelCase :str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __UpperCamelCase :Dict = BCEWithLogitsLoss() __UpperCamelCase :List[str] = loss_fct(__lowercase , __lowercase) if not return_dict: __UpperCamelCase :Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states , )
105
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = "▁" SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "sentencepiece.bpe.model"} SCREAMING_SNAKE_CASE : Optional[Any] = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } SCREAMING_SNAKE_CASE : Tuple = { "facebook/xglm-564M": 2048, } class _lowerCamelCase( _a ): lowercase_ : Dict = VOCAB_FILES_NAMES lowercase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Any = ["""input_ids""", """attention_mask"""] def __init__( self, lowerCamelCase, lowerCamelCase="<s>", lowerCamelCase="</s>", lowerCamelCase="</s>", lowerCamelCase="<s>", lowerCamelCase="<unk>", lowerCamelCase="<pad>", lowerCamelCase = None, **lowerCamelCase, ) -> None: """simple docstring""" _lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _lowercase : List[str] = 7 _lowercase : str = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words)] _lowercase : List[str] = kwargs.get('additional_special_tokens', []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCamelCase)) _lowercase : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token _lowercase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _lowercase : Any = len(self.sp_model) _lowercase : Optional[int] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(lowerCamelCase) _lowercase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self) -> Dict: """simple docstring""" _lowercase : Any = self.__dict__.copy() _lowercase : Optional[int] = None _lowercase : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : List[Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): _lowercase : str = {} _lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a _lowercase : Union[str, Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase)) return [1] + ([0] * len(lowerCamelCase)) + [1, 1] + ([0] * len(lowerCamelCase)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : Optional[Any] = self.sp_model.PieceToId(lowerCamelCase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = ''.join(lowerCamelCase).replace(lowerCamelCase, ' ').strip() return out_string def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Optional[Any] = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase, 'wb') as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase) return (out_vocab_file,)
21
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __magic_name__ ( __lowerCAmelCase): A: Optional[int] = ComputeEnvironment.AMAZON_SAGEMAKER A: str = True A: Tuple = "ml.p3.2xlarge" A: int = "accelerate_sagemaker_execution_role" A: List[Any] = "hf-sm" A: str = "us-east-1" A: int = 1 A: Tuple = "accelerate-sagemaker-1" A: Optional[int] = "1.6" A: Dict = "4.4" A: Dict = "train.py" A: List[Any] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] A: Optional[Any] = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase__ ) assert isinstance(converted_args['''do_train'''] , lowerCamelCase__ ) assert isinstance(converted_args['''epochs'''] , lowerCamelCase__ ) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase__ ) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
51
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __magic_name__ ( __lowerCAmelCase): A: Optional[int] = "vit" def __init__( self : Optional[int] , lowerCamelCase__ : Union[str, Any]=768 , lowerCamelCase__ : Optional[int]=12 , lowerCamelCase__ : Optional[int]=12 , lowerCamelCase__ : Any=3072 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : Tuple=0.02 , lowerCamelCase__ : str=1E-1_2 , lowerCamelCase__ : Dict=224 , lowerCamelCase__ : int=16 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Optional[int]=16 , **lowerCamelCase__ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : Optional[Any] = hidden_act UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : List[Any] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : List[Any] = qkv_bias UpperCamelCase__ : Union[str, Any] = encoder_stride class __magic_name__ ( __lowerCAmelCase): A: int = version.parse("1.11") @property def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self : Tuple ) -> float: '''simple docstring''' return 1E-4
51
1
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
'''simple docstring''' from ....utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def __init__(self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=2048 ): '''simple docstring''' lowercase__ = config.__dict__ lowercase__ = modal_hidden_size if num_labels: lowercase__ = num_labels
2
1
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return int(input_a == input_a == 0 ) def __snake_case ( ): print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
131
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : str): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any): '''simple docstring''' __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__SCREAMING_SNAKE_CASE) return image @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' def extract(*__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict): class _A : def __init__( self : int): '''simple docstring''' __a = torch.ones([0]) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.pixel_values.to(__SCREAMING_SNAKE_CASE) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__SCREAMING_SNAKE_CASE) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) assert isinstance(pipe.scheduler , __SCREAMING_SNAKE_CASE) assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE) __a = StableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __a = 4_003_660_346 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''padme amidala taking a bath artwork, safe for work, no nudity''' __a = 2_734_971_755 __a = 7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : str): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''') __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __a = 1_044_355_234 __a = 12 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
131
1
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __SCREAMING_SNAKE_CASE : Optional[int] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __SCREAMING_SNAKE_CASE : str = BASE_URL + '''/user''' # https://github.com/settings/tokens __SCREAMING_SNAKE_CASE : List[Any] = os.environ.get("""USER_TOKEN""", """""") def UpperCamelCase_ ( _UpperCAmelCase : str ) -> dict[Any, Any]: """simple docstring""" _UpperCAmelCase : List[str] = { "Authorization": F"""token {auth_token}""", "Accept": "application/vnd.github.v3+json", } return requests.get(__lowercase , headers=__lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError("""\'USER_TOKEN\' field cannot be empty.""")
31
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "longformer" def __init__( self : Optional[Any] , lowercase : Union[List[int], int] = 512 , lowercase : int = 2 , lowercase : int = 1 , lowercase : int = 0 , lowercase : int = 2 , lowercase : int = 30_522 , lowercase : int = 768 , lowercase : int = 12 , lowercase : int = 12 , lowercase : int = 3_072 , lowercase : str = "gelu" , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : int = 512 , lowercase : int = 2 , lowercase : float = 0.02 , lowercase : float = 1E-12 , lowercase : bool = False , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) _snake_case = attention_window _snake_case = sep_token_id _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = onnx_export class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : int , lowercase : "PretrainedConfig" , lowercase : str = "default" , lowercase : "List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(lowercase , lowercase , lowercase ) _snake_case = True @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def A ( self : int ): '''simple docstring''' _snake_case = super().outputs if self.task == "default": _snake_case = {0: 'batch'} return outputs @property def A ( self : List[Any] ): '''simple docstring''' return 1E-4 @property def A ( self : List[str] ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def A ( self : str , lowercase : "PreTrainedTokenizerBase" , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' _snake_case = super().generate_dummy_inputs( preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _snake_case = torch.zeros_like(inputs['input_ids'] ) # make every second token global _snake_case = 1 return inputs
282
0
'''simple docstring''' import functools from typing import Any def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not all( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie __UpperCAmelCase : int = {} __UpperCAmelCase : Union[str, Any] = """WORD_KEEPER""" for word in words: __UpperCAmelCase : Optional[int] = trie for c in word: if c not in trie_node: __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : int = trie_node[c] __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = len(lowerCAmelCase__ ) # Dynamic programming method @functools.cache def is_breakable(lowerCAmelCase__ : str ) -> bool: if index == len_string: return True __UpperCAmelCase : Dict = trie for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = trie_node.get(string[i] , lowerCAmelCase__ ) if trie_node is None: return False if trie_node.get(lowerCAmelCase__ , lowerCAmelCase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
"""simple docstring""" def lowercase (snake_case__ : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : List[str] , ) -> float: '''simple docstring''' lowerCAmelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: lowerCAmelCase = 1 - (matter_density + radiation_density + dark_energy) lowerCAmelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCAmelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
155
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) class UpperCamelCase ( metaclass=snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["flax"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""flax"""] )
336
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = arr[i + 1], arr[i] return arr if __name__ == "__main__": a__ : str = list(range(1_0, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
54
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = CLIPTokenizer snake_case__ : Dict = CLIPTokenizerFast snake_case__ : List[Any] = True snake_case__ : Optional[Any] = {} snake_case__ : Dict = False def UpperCAmelCase_ ( self : Any ) -> Any: super().setUp() # fmt: off __SCREAMING_SNAKE_CASE = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def UpperCAmelCase_ ( self : List[Any] , **UpperCAmelCase__ : Tuple ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any , **UpperCAmelCase__ : Optional[Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "lower newer" __SCREAMING_SNAKE_CASE = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @require_ftfy def UpperCAmelCase_ ( self : Optional[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __SCREAMING_SNAKE_CASE = "xa\u0303y" + " " + "x\xe3y" __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of space type __SCREAMING_SNAKE_CASE = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type __SCREAMING_SNAKE_CASE = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __SCREAMING_SNAKE_CASE = tokenizer_s.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __SCREAMING_SNAKE_CASE = F"""{text_of_1_token} {text_of_1_token}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase__ ) + 1, len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) __SCREAMING_SNAKE_CASE = F""" {text}""" __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase__ , use_fast=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r(UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase__ ) + 1, 1 + len(UpperCAmelCase__ ) + 1 + len(UpperCAmelCase__ )) , ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase_ ( self : Optional[int] ) -> int: super().test_tokenization_python_rust_equals() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: # CLIP always lower cases letters pass
54
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : str = [] snake_case__ : str = [] snake_case__ : Optional[int] = [] for rt in rc.restypes: snake_case__ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case__ : int = {name: i for i, name in enumerate(_a )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case__ : Tuple = torch.tensor( _a , dtype=torch.intaa , device=protein["""aatype"""].device , ) snake_case__ : List[str] = torch.tensor( _a , dtype=torch.intaa , device=protein["""aatype"""].device , ) snake_case__ : Tuple = torch.tensor( _a , dtype=torch.floataa , device=protein["""aatype"""].device , ) snake_case__ : Optional[Any] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case__ : str = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : List[Any] = restype_atomaa_mask[protein_aatype] snake_case__ : Tuple = residx_atomaa_mask snake_case__ : Optional[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case__ : Any = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case__ : Optional[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case__ : int = rc.restype_atoa[restype_letter] snake_case__ : List[str] = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case__ : Tuple = rc.atom_order[atom_name] snake_case__ : Any = 1 snake_case__ : List[str] = restype_atomaa_mask[protein_aatype] snake_case__ : Dict = residx_atomaa_mask return protein def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = tree_map(lambda _lowerCAmelCase : torch.tensor(_a , device=batch["""aatype"""].device ) , _a , np.ndarray ) snake_case__ : Optional[Any] = tensor_tree_map(lambda _lowerCAmelCase : np.array(_a ) , make_atomaa_masks(_a ) ) return out
364
'''simple docstring''' def __snake_case( ) -> list[list[int]]: return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] __a = generate_large_matrix() __a = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __snake_case( _lowerCAmelCase ) -> None: assert all(row == sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ) for row in grid ) assert all(list(_lowerCAmelCase ) == sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ) for col in zip(*_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[str] = 0 snake_case__ : str = len(_lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case__ : List[Any] = (left + right) // 2 snake_case__ : Tuple = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case__ : Tuple = mid + 1 else: snake_case__ : Tuple = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = 0 snake_case__ : Optional[int] = len(grid[0] ) for i in range(len(_lowerCAmelCase ) ): snake_case__ : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(_lowerCAmelCase ) * len(grid[0] )) - total def __snake_case( _lowerCAmelCase ) -> int: return len([number for row in grid for number in row if number < 0] ) def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = 0 for row in grid: for i, number in enumerate(_lowerCAmelCase ): if number < 0: total += len(_lowerCAmelCase ) - i break return total def __snake_case( ) -> None: from timeit import timeit print("""Running benchmarks""" ) snake_case__ : int = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case__ : Tuple = timeit(f"{func}(grid=grid)" , setup=_lowerCAmelCase , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( snake_case__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = ort.SessionOptions() A__ = False return options def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) A__ = "A red cat sitting on a park bench" A__ = np.random.RandomState(0 ) A__ = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) A__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) A__ = "A red cat sitting on a park bench" A__ = np.random.RandomState(0 ) A__ = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
68
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _a = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _a = parent _a = batch_size _a = num_channels _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std _a = do_rescale _a = rescale_factor _a = do_pad def _UpperCAmelCase ( self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: if not batched: _a = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): _a , _a = image.size else: _a , _a = image.shape[1], image.shape[2] if w < h: _a = int(self.size['''shortest_edge'''] * h / w ) _a = self.size['''shortest_edge'''] elif w > h: _a = self.size['''shortest_edge'''] _a = int(self.size['''shortest_edge'''] * w / h ) else: _a = self.size['''shortest_edge'''] _a = self.size['''shortest_edge'''] else: _a = [] for image in image_inputs: _a , _a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] _a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : int = ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[str]: _a = ConditionalDetrImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Any: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) _a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: pass def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values _a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ) -> Dict: # prepare image and target _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _a = json.loads(f.read() ) _a = {'''image_id''': 39769, '''annotations''': target} # encode them _a = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) _a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values _a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) ) # verify area _a = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) ) # verify image_id _a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels _a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify orig_size _a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size _a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: # prepare image, target and masks_path _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _a = json.loads(f.read() ) _a = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _a = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _a = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) _a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values _a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) ) # verify area _a = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes _a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) _a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) ) # verify image_id _a = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd _a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels _a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify masks _a = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCAmelCase ) # verify orig_size _a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size _a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) )
366
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _UpperCAmelCase ( self ) -> str: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCAmelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
0