code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : List[str] = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Any = """vit""" def __init__( self : Any , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : Optional[int]=12 , lowercase_ : List[Any]=3072 , lowercase_ : List[str]="gelu" , lowercase_ : List[Any]=0.0 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Any=1E-12 , lowercase_ : Optional[Any]=224 , lowercase_ : Optional[Any]=16 , lowercase_ : List[Any]=3 , lowercase_ : List[str]=True , lowercase_ : str=16 , **lowercase_ : Optional[Any] , ): super().__init__(**lowercase_ ) snake_case_ : Tuple = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Optional[int] = initializer_range snake_case_ : Tuple = layer_norm_eps snake_case_ : Tuple = image_size snake_case_ : List[Any] = patch_size snake_case_ : str = num_channels snake_case_ : Optional[Any] = qkv_bias snake_case_ : str = encoder_stride class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[str] = version.parse("""1.11""") @property def _snake_case ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self : Optional[Any] ): return 1E-4
264
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __lowercase ( _a , _a , _a = "x" , _a = 10**-10 , _a = 1 , ): snake_case_ : Any = symbols(_a ) snake_case_ : int = lambdify(_a , _a ) snake_case_ : Optional[Any] = lambdify(_a , diff(_a , _a ) ) snake_case_ : Optional[Any] = starting_point while True: if diff_function(_a ) != 0: snake_case_ : Optional[int] = prev_guess - multiplicity * func(_a ) / diff_function( _a ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ : int = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f'{newton_raphson("exp(x) - 1", 10, precision=0.005)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
264
1
"""simple docstring""" from math import pi def __A ( a_ :int , a_ :int) -> float: return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
351
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model'''} A = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } A = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } A = '''▁''' class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _UpperCAmelCase , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase = None , **_UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a : int = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) __a : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __a : Tuple = do_lower_case __a : Optional[Any] = remove_space __a : Optional[Any] = keep_accents __a : Union[str, Any] = vocab_file __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return len(self.sp_model ) def _lowerCamelCase ( self ): __a : Any = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a : str = self.__dict__.copy() __a : Tuple = None return state def __setstate__( self , _UpperCAmelCase ): __a : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a : Optional[Any] = {} __a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.remove_space: __a : Any = ''' '''.join(inputs.strip().split() ) else: __a : Tuple = inputs __a : Union[str, Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __a : List[str] = unicodedata.normalize('''NFKD''' , _UpperCAmelCase ) __a : Optional[int] = ''''''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: __a : Optional[Any] = outputs.lower() return outputs def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = self.preprocess_text(_UpperCAmelCase ) __a : Tuple = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) __a : int = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __a : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __a : Tuple = cur_pieces[1:] else: __a : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.PieceToId(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = [] __a : str = '''''' __a : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token __a : Tuple = True __a : Tuple = [] else: current_sub_tokens.append(_UpperCAmelCase ) __a : Optional[int] = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : int = [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Union[str, Any] = [self.sep_token_id] __a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : List[str] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: __a : Any = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
188
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Union[str, Any]=7, lowerCamelCase : Union[str, Any]=3, lowerCamelCase : Optional[Any]=18, lowerCamelCase : Optional[int]=30, lowerCamelCase : List[str]=400, lowerCamelCase : Dict=True, lowerCamelCase : Optional[Any]=None, lowerCamelCase : List[Any]=True, ): '''simple docstring''' lowercase__ = size if size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ImageGPTImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = ImageGPTImageProcessingTester(self ) @property def lowercase__ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''clusters''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_normalize''' ) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase, obj[key] ) ) else: self.assertEqual(obj[key], lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(lowerCamelCase, '''image_processor.json''' ) image_processor_first.to_json_file(lowerCamelCase ) lowercase__ = self.image_processing_class.from_json_file(lowerCamelCase ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase ) lowercase__ = self.image_processing_class.from_pretrained(lowerCamelCase ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], lowerCamelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass def a ( ): '''simple docstring''' lowercase__ = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) lowercase__ = Image.open(dataset[4]['''file'''] ) lowercase__ = Image.open(dataset[5]['''file'''] ) lowercase__ = [imagea, imagea] return images @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) lowercase__ = prepare_images() # test non-batched lowercase__ = image_processing(images[0], return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (1, 1_024) ) lowercase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist(), lowerCamelCase ) # test batched lowercase__ = image_processing(lowerCamelCase, return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (2, 1_024) ) lowercase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist(), lowerCamelCase )
207
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = """pixel_values""" lowercase__ = False lowercase__ = TimmBackboneConfig def __init__( self : Tuple, lowerCamelCase : List[str], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, '''timm''' ) super().__init__(lowerCamelCase ) lowercase__ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowercase__ = getattr(lowerCamelCase, '''use_pretrained_backbone''', lowerCamelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowercase__ = config.out_indices if getattr(lowerCamelCase, '''out_indices''', lowerCamelCase ) is not None else (-1,) lowercase__ = timm.create_model( config.backbone, pretrained=lowerCamelCase, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCamelCase, **lowerCamelCase, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase__ = self._backbone.return_layers lowercase__ = {layer['''module''']: str(lowerCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase ) @classmethod def lowercase__ ( cls : List[str], lowerCamelCase : List[str], *lowerCamelCase : Optional[int], **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowercase__ = kwargs.pop('''config''', TimmBackboneConfig() ) lowercase__ = kwargs.pop('''use_timm_backbone''', lowerCamelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowercase__ = kwargs.pop('''num_channels''', config.num_channels ) lowercase__ = kwargs.pop('''features_only''', config.features_only ) lowercase__ = kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowercase__ = kwargs.pop('''out_indices''', config.out_indices ) lowercase__ = TimmBackboneConfig( backbone=lowerCamelCase, num_channels=lowerCamelCase, features_only=lowerCamelCase, use_pretrained_backbone=lowerCamelCase, out_indices=lowerCamelCase, ) return super()._from_config(lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Optional[int]=None, lowerCamelCase : List[Any]=None, lowerCamelCase : int=None, **lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase__ = self._all_layers lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = self._return_layers lowercase__ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = None lowercase__ = tuple(lowerCamelCase ) lowercase__ = tuple(lowerCamelCase ) if hidden_states is not None else None if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: lowercase__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase, hidden_states=lowerCamelCase, attentions=lowerCamelCase )
207
1
import heapq import sys import numpy as np lowerCAmelCase__ : Optional[int] =tuple[int, int] class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = set() def _A ( self ): '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('inf' ) def _A ( self ): '''simple docstring''' return len(self.elements ) == 0 def _A ( self , _A , _A ): '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_A ) else: # update # print("update", item) __SCREAMING_SNAKE_CASE = [] ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _A ( self , _A ): '''simple docstring''' if item in self.set: self.set.remove(_A ) __SCREAMING_SNAKE_CASE = [] ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _A ( self ): '''simple docstring''' return self.elements[0][1] def _A ( self ): '''simple docstring''' ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = heapq.heappop(self.elements ) self.set.remove(_A ) return (priority, item) def __lowercase ( a__ , a__ ) -> int: # euclidean distance __SCREAMING_SNAKE_CASE = np.array(a__ ) __SCREAMING_SNAKE_CASE = np.array(a__ ) return np.linalg.norm(a - b ) def __lowercase ( a__ , a__ ) -> Optional[int]: # integer division by time variable return consistent_heuristic(a__ , a__ ) // t def __lowercase ( a__ , a__ ) -> List[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __lowercase ( a__ , a__ , a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = g_function[start] + Wa * heuristics[i](a__ , a__ ) return ans def __lowercase ( a__ , a__ , a__ ) -> Dict: __SCREAMING_SNAKE_CASE = np.chararray((n, n) ) for i in range(a__ ): for j in range(a__ ): __SCREAMING_SNAKE_CASE = '*' for i in range(a__ ): for j in range(a__ ): if (j, (n - 1) - i) in blocks: __SCREAMING_SNAKE_CASE = '#' __SCREAMING_SNAKE_CASE = '-' __SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = x # print(x) __SCREAMING_SNAKE_CASE = '-' __SCREAMING_SNAKE_CASE = back_pointer[x] __SCREAMING_SNAKE_CASE = '-' for i in range(a__ ): for j in range(a__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) __SCREAMING_SNAKE_CASE = back_pointer[goal] while x != start: print(a__ , end=' ' ) __SCREAMING_SNAKE_CASE = back_pointer[x] print(a__ ) sys.exit() def __lowercase ( a__ ) -> Optional[int]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> str: for itera in range(a__ ): open_list[itera].remove_element(a__ ) # print("s", s) # print("j", j) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = s __SCREAMING_SNAKE_CASE = (x - 1, y) __SCREAMING_SNAKE_CASE = (x + 1, y) __SCREAMING_SNAKE_CASE = (x, y + 1) __SCREAMING_SNAKE_CASE = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(a__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(a__ ) __SCREAMING_SNAKE_CASE = -1 __SCREAMING_SNAKE_CASE = float('inf' ) if valid(a__ ) and g_function[neighbours] > g_function[s] + 1: __SCREAMING_SNAKE_CASE = g_function[s] + 1 __SCREAMING_SNAKE_CASE = s if neighbours not in close_list_anchor: open_list[0].put(a__ , key(a__ , 0 , a__ , a__ ) ) if neighbours not in close_list_inad: for var in range(1 , a__ ): if key(a__ , a__ , a__ , a__ ) <= Wa * key( a__ , 0 , a__ , a__ ): open_list[j].put( a__ , key(a__ , a__ , a__ , a__ ) ) def __lowercase ( ) -> Any: __SCREAMING_SNAKE_CASE = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCAmelCase__ : Dict ={0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCAmelCase__ : Optional[Any] =[ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowerCAmelCase__ : str =make_common_ground() lowerCAmelCase__ : Any =blocks_blk # hyper parameters lowerCAmelCase__ : Dict =1 lowerCAmelCase__ : Tuple =1 lowerCAmelCase__ : Optional[Any] =20 lowerCAmelCase__ : Optional[Any] =3 # one consistent and two other inconsistent # start and end destination lowerCAmelCase__ : Optional[Any] =(0, 0) lowerCAmelCase__ : str =(n - 1, n - 1) lowerCAmelCase__ : List[Any] =1 def __lowercase ( a__ , a__ , a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = {start: 0, goal: float('inf' )} __SCREAMING_SNAKE_CASE = {start: -1, goal: -1} __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = set() for i in range(a__ ): open_list.append(PriorityQueue() ) open_list[i].put(a__ , key(a__ , a__ , a__ , a__ ) ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , a__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(a__ , a__ , a__ ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = open_list[i].top_show() visited.add(a__ ) expand_state( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) close_list_inad.append(a__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(a__ , a__ , a__ ) else: __SCREAMING_SNAKE_CASE = open_list[0].top_show() visited.add(a__ ) expand_state( a__ , 0 , a__ , a__ , a__ , a__ , a__ , a__ , ) close_list_anchor.append(a__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(a__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : str ={'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =[ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =[ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
0
__lowerCamelCase : Union[str, Any] = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _snake_case ( lowerCAmelCase : float ): """simple docstring""" assert type(lowerCAmelCase ) in (int, float) and decimal == int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = int(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = "" SCREAMING_SNAKE_CASE_ : Any = False if decimal < 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = True decimal *= -1 while decimal > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = divmod(lowerCAmelCase , 1_6 ) SCREAMING_SNAKE_CASE_ : List[Any] = values[remainder] + hexadecimal SCREAMING_SNAKE_CASE_ : Optional[int] = "0x" + hexadecimal if negative: SCREAMING_SNAKE_CASE_ : Optional[int] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
18
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a__ ( A__ , A__ , A__ , unittest.TestCase ): A = StableDiffusionLatentUpscalePipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } A = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) A = True @property def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(_A ) return image def __UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( act_fn="gelu",attention_head_dim=8,norm_num_groups=_A,block_out_channels=[32, 32, 64, 64],time_cond_proj_dim=160,conv_in_kernel=1,conv_out_kernel=1,cross_attention_dim=32,down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ),in_channels=8,mid_block_type=_A,only_cross_attention=_A,out_channels=5,resnet_time_scale_shift="scale_shift",time_embedding_type="fourier",timestep_post_act="gelu",up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"),) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64],in_channels=3,out_channels=3,down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) SCREAMING_SNAKE_CASE_ : int = EulerDiscreteScheduler(prediction_type="sample" ) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act="quick_gelu",projection_dim=512,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCamelCase ( self : List[Any],_A : int,_A : Tuple=0 ): """simple docstring""" if str(_A ).startswith("mps" ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Dict = pipe(**_A ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A,1E-3 ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : int ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : Tuple = getattr(_A,scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Tuple = "a photo of an astronaut high resolution, unreal engine, ultra realistic" SCREAMING_SNAKE_CASE_ : str = pipe(_A,generator=_A,output_type="latent" ).images SCREAMING_SNAKE_CASE_ : Optional[Any] = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler",torch_dtype=torch.floataa ) upscaler.to("cuda" ) SCREAMING_SNAKE_CASE_ : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_A,image=_A,num_inference_steps=20,guidance_scale=0,generator=_A,output_type="np",).images[0] SCREAMING_SNAKE_CASE_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
18
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : int = logging.get_logger(__name__) __A : Any = {'vocab_file': 'sentencepiece.bpe.model'} __A : List[Any] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } __A : Tuple = { 'camembert-base': 512, } __A : Union[str, Any] = '▁' class __UpperCamelCase ( lowercase__ ): lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self :str ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple="<s>" ,_UpperCamelCase :List[str]="</s>" ,_UpperCamelCase :Dict="</s>" ,_UpperCamelCase :Union[str, Any]="<s>" ,_UpperCamelCase :Tuple="<unk>" ,_UpperCamelCase :Union[str, Any]="<pad>" ,_UpperCamelCase :Dict="<mask>" ,_UpperCamelCase :int=["<s>NOTUSED", "</s>NOTUSED"] ,_UpperCamelCase :Optional[Dict[str, Any]] = None ,**_UpperCamelCase :List[Any] ,): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : List[Any] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else mask_token snake_case_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,additional_special_tokens=_UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCamelCase ,) snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ : Union[str, Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> snake_case_ : int = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} snake_case_ : str = len(self.fairseq_tokens_to_ids ) snake_case_ : Tuple = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) snake_case_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a__ ( self :List[str] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Union[str, Any] = [self.cls_token_id] snake_case_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self :Tuple ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ,_UpperCamelCase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def a__ ( self :Optional[Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : Union[str, Any] = [self.sep_token_id] snake_case_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self :int ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def a__ ( self :str ): snake_case_ : List[Any] = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self :Tuple ,_UpperCamelCase :str ): return self.sp_model.encode(_UpperCamelCase ,out_type=_UpperCamelCase ) def a__ ( self :str ,_UpperCamelCase :Tuple ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_UpperCamelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_UpperCamelCase ) def a__ ( self :List[Any] ,_UpperCamelCase :Dict ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : List[str] = [] snake_case_ : Union[str, Any] = """""" snake_case_ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ : Union[str, Any] = True snake_case_ : Tuple = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ : Optional[Any] = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def __getstate__( self :Any ): snake_case_ : List[Any] = self.__dict__.copy() snake_case_ : str = None return state def __setstate__( self :Union[str, Any] ,_UpperCamelCase :List[Any] ): snake_case_ : Optional[Any] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): snake_case_ : Optional[int] = {} snake_case_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self :str ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Union[str, Any] = os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase ,"""wb""" ) as fi: snake_case_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
8
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
1
def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _A : Tuple = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
11
class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = set_counts A__ = max(__lowerCamelCase ) A__ = len(__lowerCamelCase ) A__ = [1] * num_sets A__ = list(range(__lowerCamelCase ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.get_parent(__lowerCamelCase ) A__ = self.get_parent(__lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A__ = 0 A__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A__ = 0 A__ = src_parent A__ = self.set_counts[src_parent] A__ = max(self.max_set,__lowerCamelCase ) return True def UpperCamelCase ( self,__lowerCamelCase ): if self.parents[disj_set] == disj_set: return disj_set A__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
193
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Dict ) -> Dict: __UpperCamelCase : List[Any] = tempfile.mkdtemp() __UpperCamelCase : Tuple = BlipImageProcessor() __UpperCamelCase : Dict = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __UpperCamelCase : Dict = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) __UpperCamelCase : Optional[Any] = InstructBlipProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self :Tuple , **a :Union[str, Any] ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def _lowerCamelCase ( self :Any , **a :Optional[Any] ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def _lowerCamelCase ( self :Dict , **a :List[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer def _lowerCamelCase ( self :Optional[int] ) -> int: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self :List[str] ) -> Dict: __UpperCamelCase : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __UpperCamelCase : str = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self :List[Any] ) -> str: __UpperCamelCase : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __UpperCamelCase : List[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __UpperCamelCase : Tuple = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: __UpperCamelCase : Optional[int] = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : Optional[Any] = self.get_qformer_tokenizer() __UpperCamelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : List[Any] = self.prepare_image_inputs() __UpperCamelCase : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="np" ) __UpperCamelCase : Any = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self :Optional[Any] ) -> Union[str, Any]: __UpperCamelCase : Optional[int] = self.get_image_processor() __UpperCamelCase : List[Any] = self.get_tokenizer() __UpperCamelCase : int = self.get_qformer_tokenizer() __UpperCamelCase : str = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : List[str] = """lower newer""" __UpperCamelCase : List[Any] = processor(text=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : Dict = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : Optional[int] = qformer_tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def _lowerCamelCase ( self :List[str] ) -> List[str]: __UpperCamelCase : Tuple = self.get_image_processor() __UpperCamelCase : Union[str, Any] = self.get_tokenizer() __UpperCamelCase : List[str] = self.get_qformer_tokenizer() __UpperCamelCase : Dict = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : List[Any] = """lower newer""" __UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def _lowerCamelCase ( self :Optional[Any] ) -> List[Any]: __UpperCamelCase : Tuple = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : str = self.get_qformer_tokenizer() __UpperCamelCase : str = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : Optional[int] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : str = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : str = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Tuple = self.get_qformer_tokenizer() __UpperCamelCase : Optional[int] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase : int = """lower newer""" __UpperCamelCase : List[str] = self.prepare_image_inputs() __UpperCamelCase : Tuple = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
366
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase : str = logging.get_logger(__name__) @add_end_docstrings(__lowercase) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Any , **a :Union[str, Any] ) -> Union[str, Any]: super().__init__(**a ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Any , a :Union[str, List[str], "Image", List["Image"]] , **a :Tuple ) -> List[str]: return super().__call__(a , **a ) def _lowerCamelCase ( self :List[Any] , **a :List[str] ) -> List[Any]: __UpperCamelCase : List[Any] = {} if "candidate_labels" in kwargs: __UpperCamelCase : Optional[int] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: __UpperCamelCase : List[str] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _lowerCamelCase ( self :List[str] , a :Optional[int] , a :List[str]=None , a :Dict="This is a photo of {}." ) -> Any: __UpperCamelCase : Dict = load_image(a ) __UpperCamelCase : Any = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCamelCase : str = candidate_labels __UpperCamelCase : List[Any] = [hypothesis_template.format(a ) for x in candidate_labels] __UpperCamelCase : List[Any] = self.tokenizer(a , return_tensors=self.framework , padding=a ) __UpperCamelCase : Any = [text_inputs] return inputs def _lowerCamelCase ( self :Union[str, Any] , a :Optional[Any] ) -> List[Any]: __UpperCamelCase : List[str] = model_inputs.pop("candidate_labels" ) __UpperCamelCase : Dict = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , a ): __UpperCamelCase : Optional[Any] = text_inputs[0] else: # Batching case. __UpperCamelCase : int = text_inputs[0][0] __UpperCamelCase : str = self.model(**a , **a ) __UpperCamelCase : List[Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def _lowerCamelCase ( self :List[Any] , a :List[Any] ) -> Tuple: __UpperCamelCase : Any = model_outputs.pop("candidate_labels" ) __UpperCamelCase : Optional[Any] = model_outputs["logits"][0] if self.framework == "pt": __UpperCamelCase : int = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCamelCase : List[str] = probs.tolist() if not isinstance(a , a ): __UpperCamelCase : List[Any] = [scores] elif self.framework == "tf": __UpperCamelCase : Optional[int] = stable_softmax(a , axis=-1 ) __UpperCamelCase : Dict = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) __UpperCamelCase : Tuple = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(a , a ) , key=lambda a : -x[0] ) ] return result
151
0
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = RobertaPreLayerNormConfig.from_pretrained( _lowerCAmelCase , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict snake_case_ = torch.load(hf_hub_download(repo_id=_lowerCAmelCase , filename='pytorch_model.bin' ) ) snake_case_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): snake_case_ = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue snake_case_ = tensor_value snake_case_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_lowerCAmelCase , config=_lowerCAmelCase , state_dict=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) # convert tokenizer snake_case_ = AutoTokenizer.from_pretrained(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
69
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
0
"""simple docstring""" from math import sqrt def lowerCamelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" __UpperCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: __UpperCAmelCase : Dict = False for divisor in range(2 , int(round(sqrt(_UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __UpperCAmelCase : Optional[int] = False break # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'status' must been from type bool" return status def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __UpperCAmelCase : Union[str, Any] = list(range(2 , n + 1 ) ) __UpperCAmelCase : List[str] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCamelCase ) ): for j in range(i + 1 , len(_UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __UpperCAmelCase : Union[str, Any] = 0 # filters actual prime numbers. __UpperCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" __UpperCAmelCase : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCamelCase ): ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase ( _UpperCamelCase : str ) -> Optional[Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" __UpperCAmelCase : str = [] # this list will be returns of the function. # potential prime number factors. __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCamelCase ): while quotient != 1: if is_prime(_UpperCamelCase ) and (quotient % factor == 0): ans.append(_UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : Optional[Any] = 0 # prime factorization of 'number' __UpperCAmelCase : Tuple = prime_factorization(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = max(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase ( _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : Optional[int] = 0 # prime factorization of 'number' __UpperCAmelCase : Tuple = prime_factorization(_UpperCamelCase ) __UpperCAmelCase : Tuple = min(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase ( _UpperCamelCase : List[str] ) -> int: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase ( _UpperCamelCase : Tuple ) -> List[str]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (number > 2) and is_even(_UpperCamelCase ) ), "'number' must been an int, even and > 2" __UpperCAmelCase : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __UpperCAmelCase : Tuple = get_prime_numbers(_UpperCamelCase ) __UpperCAmelCase : Tuple = len(_UpperCamelCase ) # run variable for while-loops. __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = None # exit variable. for break up the loops __UpperCAmelCase : int = True while i < len_pn and loop: __UpperCAmelCase : List[str] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __UpperCAmelCase : List[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (len(_UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : Optional[Any] = 0 while numbera != 0: __UpperCAmelCase : Union[str, Any] = numbera % numbera __UpperCAmelCase : Any = numbera __UpperCAmelCase : Tuple = rest # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : Optional[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __UpperCAmelCase : Dict = prime_factorization(_UpperCamelCase ) __UpperCAmelCase : List[Any] = prime_factorization(_UpperCamelCase ) elif numbera == 1 or numbera == 1: __UpperCAmelCase : str = [] __UpperCAmelCase : Any = [] __UpperCAmelCase : Tuple = max(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Any = 0 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __UpperCAmelCase : Union[str, Any] = prime_fac_a.count(_UpperCamelCase ) __UpperCAmelCase : List[str] = prime_fac_a.count(_UpperCamelCase ) for _ in range(max(_UpperCamelCase , _UpperCamelCase ) ): ans *= n else: __UpperCAmelCase : List[str] = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __UpperCAmelCase : Tuple = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase ( _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'number' must been a positive int" __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCamelCase ): ans += 1 # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and is_prime( _UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' assert ( is_prime(_UpperCamelCase ) and is_prime(_UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __UpperCAmelCase : int = p_number_a + 1 # jump to the next number __UpperCAmelCase : Any = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 while number < p_number_a: ans.append(_UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and ans[0] != p_number_a and ans[len(_UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" __UpperCAmelCase : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __UpperCAmelCase : List[str] = get_divisors(_UpperCamelCase ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : int ) -> str: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __UpperCAmelCase : Any = gcd(abs(_UpperCamelCase ) , abs(_UpperCamelCase ) ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase ( _UpperCamelCase : Dict ) -> Any: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" __UpperCAmelCase : Union[str, Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : List[Any] = 1 # this will be return for _ in range(n - 1 ): __UpperCAmelCase : Any = ans ans += fiba __UpperCAmelCase : List[Any] = tmp return ans
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: Optional[int] = logging.get_logger(__name__) A__: Tuple = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """owlvit_text_model""" def __init__( self: Tuple , __lowerCamelCase: List[Any]=4_9408 , __lowerCamelCase: Tuple=512 , __lowerCamelCase: Tuple=2048 , __lowerCamelCase: Optional[int]=12 , __lowerCamelCase: Optional[Any]=8 , __lowerCamelCase: Dict=16 , __lowerCamelCase: List[Any]="quick_gelu" , __lowerCamelCase: Any=1e-5 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: List[str]=1.0 , __lowerCamelCase: Any=0 , __lowerCamelCase: str=4_9406 , __lowerCamelCase: Optional[int]=4_9407 , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = vocab_size UpperCamelCase__: List[str] = hidden_size UpperCamelCase__: str = intermediate_size UpperCamelCase__: Dict = num_hidden_layers UpperCamelCase__: Optional[Any] = num_attention_heads UpperCamelCase__: Optional[int] = max_position_embeddings UpperCamelCase__: Union[str, Any] = hidden_act UpperCamelCase__: Optional[int] = layer_norm_eps UpperCamelCase__: Union[str, Any] = attention_dropout UpperCamelCase__: Any = initializer_range UpperCamelCase__: Union[str, Any] = initializer_factor @classmethod def UpperCAmelCase_ ( cls: Optional[Any] , __lowerCamelCase: Union[str, os.PathLike] , **__lowerCamelCase: Dict ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: List[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCamelCase__: int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """owlvit_vision_model""" def __init__( self: Any , __lowerCamelCase: List[Any]=768 , __lowerCamelCase: Tuple=3072 , __lowerCamelCase: str=12 , __lowerCamelCase: Union[str, Any]=12 , __lowerCamelCase: Dict=3 , __lowerCamelCase: Optional[Any]=768 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Tuple="quick_gelu" , __lowerCamelCase: Dict=1e-5 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: Optional[int]=1.0 , **__lowerCamelCase: str , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) UpperCamelCase__: Tuple = hidden_size UpperCamelCase__: int = intermediate_size UpperCamelCase__: Optional[Any] = num_hidden_layers UpperCamelCase__: Optional[int] = num_attention_heads UpperCamelCase__: Any = num_channels UpperCamelCase__: Dict = image_size UpperCamelCase__: Optional[Any] = patch_size UpperCamelCase__: str = hidden_act UpperCamelCase__: List[str] = layer_norm_eps UpperCamelCase__: List[Any] = attention_dropout UpperCamelCase__: List[str] = initializer_range UpperCamelCase__: Union[str, Any] = initializer_factor @classmethod def UpperCAmelCase_ ( cls: Dict , __lowerCamelCase: Union[str, os.PathLike] , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Any = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCamelCase__: Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """owlvit""" UpperCamelCase__ = True def __init__( self: Optional[Any] , __lowerCamelCase: Dict=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: List[Any]=512 , __lowerCamelCase: int=2.6_592 , __lowerCamelCase: Dict=True , **__lowerCamelCase: Any , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if text_config is None: UpperCamelCase__: List[str] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCamelCase__: List[str] = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCamelCase__: Optional[Any] = OwlViTTextConfig(**__lowerCamelCase ) UpperCamelCase__: List[str] = OwlViTVisionConfig(**__lowerCamelCase ) UpperCamelCase__: Optional[int] = projection_dim UpperCamelCase__: str = logit_scale_init_value UpperCamelCase__: int = return_dict UpperCamelCase__: Union[str, Any] = 1.0 @classmethod def UpperCAmelCase_ ( cls: Union[str, Any] , __lowerCamelCase: Union[str, os.PathLike] , **__lowerCamelCase: List[str] ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls: str , __lowerCamelCase: Dict , __lowerCamelCase: Dict , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Optional[int] = {} UpperCamelCase__: Optional[int] = text_config UpperCamelCase__: Dict = vision_config return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Dict = copy.deepcopy(self.__dict__ ) UpperCamelCase__: List[Any] = self.text_config.to_dict() UpperCamelCase__: Any = self.vision_config.to_dict() UpperCamelCase__: Any = self.__class__.model_type return output class _a ( UpperCamelCase__): """simple docstring""" @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: "ProcessorMixin" , __lowerCamelCase: int = -1 , __lowerCamelCase: int = -1 , __lowerCamelCase: Optional["TensorType"] = None , ): '''simple docstring''' UpperCamelCase__: Optional[int] = super().generate_dummy_inputs( processor.tokenizer , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , framework=__lowerCamelCase ) UpperCamelCase__: List[str] = super().generate_dummy_inputs( processor.image_processor , batch_size=__lowerCamelCase , framework=__lowerCamelCase ) return {**text_input_dict, **image_input_dict} @property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return 14
149
from collections import deque class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[Any] = process_name # process name UpperCamelCase__: Optional[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCamelCase__: Tuple = arrival_time UpperCamelCase__: str = burst_time # remaining burst time UpperCamelCase__: int = 0 # total time of the process wait in ready queue UpperCamelCase__: List[Any] = 0 # time from arrival time to completion time class _a : """simple docstring""" def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: list[int] , __lowerCamelCase: deque[Process] , __lowerCamelCase: int , ): '''simple docstring''' UpperCamelCase__: List[str] = number_of_queues # time slice of queues that round robin algorithm applied UpperCamelCase__: Optional[Any] = time_slices # unfinished process is in this ready_queue UpperCamelCase__: Optional[int] = queue # current time UpperCamelCase__: Any = current_time # finished process is in this sequence queue UpperCamelCase__: deque[Process] = deque() def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase_ ( self: Any , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Dict = [] for i in range(len(__lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: int = [] for i in range(len(__lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Optional[int] = [] for i in range(len(__lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: deque[Process] ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of finished process while len(__lowerCamelCase ) != 0: UpperCamelCase__: int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCamelCase__: Optional[int] = 0 # set the process's turnaround time because it is finished UpperCamelCase__: Optional[Any] = self.current_time - cp.arrival_time # set the completion time UpperCamelCase__: List[Any] = self.current_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase_ ( self: Any , __lowerCamelCase: deque[Process] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCamelCase ) ): UpperCamelCase__: str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCamelCase__: Optional[int] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCamelCase__: Optional[int] = 0 # set the finish time UpperCamelCase__: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished UpperCamelCase__: Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCamelCase__ , UpperCamelCase__: Dict = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A__: Any = Process('''P1''', 0, 53) A__: Tuple = Process('''P2''', 0, 17) A__: Tuple = Process('''P3''', 0, 68) A__: Tuple = Process('''P4''', 0, 24) A__: Any = 3 A__: str = [17, 25] A__: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A__: str = Process('''P1''', 0, 53) A__: Union[str, Any] = Process('''P2''', 0, 17) A__: Optional[Any] = Process('''P3''', 0, 68) A__: str = Process('''P4''', 0, 24) A__: Any = 3 A__: Optional[Any] = [17, 25] A__: Any = deque([Pa, Pa, Pa, Pa]) A__: Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A__: str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
149
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase__ : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : List[Any] = torch.permute(UpperCamelCase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase__ ): # linear layer UpperCAmelCase__ : Any = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : Optional[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase__ : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if "metadata" in layer: UpperCAmelCase__ : int = layer.split("""metadata""" ) UpperCAmelCase__ : Any = """""".join(split_layer[0] )[:-1] UpperCAmelCase__ : List[Any] = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: UpperCAmelCase__ : Union[str, Any] = layer.split("""kvstore""" ) UpperCAmelCase__ : Optional[Any] = """""".join(split_layer[0] )[:-1] UpperCAmelCase__ : Dict = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: UpperCAmelCase__ : List[Any] = layer.split("""/""" ) UpperCAmelCase__ : Optional[int] = """/""".join(split_layer[:-1] ) UpperCAmelCase__ : List[Any] = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase__ : Tuple = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: UpperCAmelCase__ : int = """file""" else: UpperCAmelCase__ : List[str] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = rename_keys(UpperCamelCase__ ) UpperCAmelCase__ : str = {} for k, v in current_block.items(): UpperCAmelCase__ : Optional[int] = v UpperCAmelCase__ : int = new_current_block torch.save(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = WEIGHTS_NAME ): UpperCAmelCase__ : List[Any] = convert_file_size_to_int(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : str = {} UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Any = 0 os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: UpperCAmelCase__ : str = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] UpperCAmelCase__ : Union[str, Any] = flatten_dict(UpperCamelCase__ , sep="""/""" ) UpperCAmelCase__ : List[Any] = {} for layer in checkpoint_info.keys(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = get_key_and_tensorstore_dict( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if curr_real_layer_name in all_layers: UpperCAmelCase__ : Union[str, Any] = content else: UpperCAmelCase__ : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase__ : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase__ : Optional[int] = torch.tensor(UpperCamelCase__ ) UpperCAmelCase__ : Any = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase__ , UpperCAmelCase__ : int = rename_base_flax_keys(tuple(key.split("""/""" ) ) , UpperCamelCase__ ) UpperCAmelCase__ : Tuple = """/""".join(UpperCamelCase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase__ : Optional[int] = os.path.join( UpperCamelCase__ , weights_name.replace(""".bin""" , f'''-{len(UpperCamelCase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : str = 0 UpperCAmelCase__ : str = raw_weights.to(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase__ : Optional[int] = os.path.join(UpperCamelCase__ , weights_name.replace(""".bin""" , f'''-{len(UpperCamelCase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCamelCase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase__ : str = {} UpperCAmelCase__ : str = {} for idx, shard in enumerate(UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = weights_name.replace( """.bin""" , f'''-{idx+1:05d}-of-{len(UpperCamelCase__ ):05d}.bin''' ) # len(sharded_state_dicts):05d} UpperCAmelCase__ : int = os.path.join(UpperCamelCase__ , weights_name.replace(""".bin""" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase__ : List[Any] = shard for key in shard: UpperCAmelCase__ : str = shard_file # Add the metadata UpperCAmelCase__ : Union[str, Any] = {"""total_size""": total_size} UpperCAmelCase__ : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase__ : Union[str, Any] = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + """\n""" f.write(UpperCamelCase__ ) return metadata, index if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __A =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _UpperCamelCase ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase__ : Dict = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) UpperCAmelCase__ : Optional[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) UpperCAmelCase__ : Tuple = TaTokenizer.from_pretrained("""t5-small""" ) UpperCAmelCase__ : Any = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" UpperCAmelCase__ : Optional[int] = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids UpperCAmelCase__ : Dict = model.generate(UpperCamelCase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
283
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A =logging.getLogger(__name__) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ): UpperCAmelCase__ : str = bnb_quantization_config.load_in_abit UpperCAmelCase__ : str = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) UpperCAmelCase__ : List[Any] = [] # custom device map if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(device_map.keys() ) > 1: UpperCAmelCase__ : Dict = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase__ : Any = get_keys_to_not_convert(UpperCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase__ ) # compatibility with peft UpperCAmelCase__ : Optional[int] = load_in_abit UpperCAmelCase__ : List[Any] = load_in_abit UpperCAmelCase__ : Dict = get_parameter_device(UpperCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) UpperCAmelCase__ : Optional[int] = replace_with_bnb_layers(UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) # convert param to the right dtype UpperCAmelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase__ : List[str] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) UpperCAmelCase__ : int = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase__ ): param.to(UpperCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): UpperCAmelCase__ : Tuple = replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) UpperCAmelCase__ : Any = get_quantized_model_device_map( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_memory=UpperCamelCase__ , no_split_module_classes=UpperCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Any = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase__ , offload_state_dict=UpperCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase__ , device_map=UpperCamelCase__ , offload_dir=UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ): if device_map is None: if torch.cuda.is_available(): UpperCAmelCase__ : Any = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) UpperCAmelCase__ : List[Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Union[str, Any] = special_dtypes UpperCAmelCase__ : Optional[int] = no_split_module_classes UpperCAmelCase__ : Optional[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase__ : Optional[int] = get_balanced_memory( UpperCamelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase__ : str = max_memory UpperCAmelCase__ : Any = infer_auto_device_map(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # check if don't have any quantized module on the cpu UpperCAmelCase__ : Optional[int] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase__ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): if modules_to_not_convert is None: UpperCAmelCase__ : Any = [] UpperCAmelCase__ , UpperCAmelCase__ : List[str] = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ): UpperCAmelCase__ : List[str] = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase__ : Dict = [] current_key_name.append(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase__ : List[str] = """.""".join(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase__ : Union[str, Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase__ : Optional[Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase__ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) UpperCAmelCase__ : int = module.weight.data if module.bias is not None: UpperCAmelCase__ : Dict = module.bias.data bnb_module.requires_grad_(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = True if len(list(module.children() ) ) > 0: UpperCAmelCase__ , UpperCAmelCase__ : str = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Any = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCamelCase ( UpperCamelCase__ ): # Create a copy of the model with init_empty_weights(): UpperCAmelCase__ : Optional[int] = deepcopy(UpperCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase__ : Any = find_tied_parameters(UpperCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase__ : str = sum(UpperCamelCase__ , [] ) UpperCAmelCase__ : int = len(UpperCamelCase__ ) > 0 # Check if it is a base model UpperCAmelCase__ : int = False if hasattr(UpperCamelCase__ , """base_model_prefix""" ): UpperCAmelCase__ : Tuple = not hasattr(UpperCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase__ : Optional[Any] = list(model.named_children() ) UpperCAmelCase__ : int = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase__ : Optional[int] = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) UpperCAmelCase__ : Any = list(set(UpperCamelCase__ ) ) + list(UpperCamelCase__ ) # remove ".weight" from the keys UpperCAmelCase__ : int = [""".weight""", """.bias"""] UpperCAmelCase__ : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase__ : List[Any] = name.replace(UpperCamelCase__ , """""" ) filtered_module_names.append(UpperCamelCase__ ) return filtered_module_names def _UpperCamelCase ( UpperCamelCase__ ): for m in model.modules(): if isinstance(UpperCamelCase__ , bnb.nn.Linearabit ): return True return False def _UpperCamelCase ( UpperCamelCase__ ): return next(parameter.parameters() ).device def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 0 , dtype=UpperCamelCase__ , value=UpperCamelCase__ ) UpperCAmelCase__ : Any = param_name UpperCAmelCase__ : Dict = model if "." in tensor_name: UpperCAmelCase__ : List[Any] = tensor_name.split(""".""" ) for split in splits[:-1]: UpperCAmelCase__ : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) UpperCAmelCase__ : List[str] = new_module UpperCAmelCase__ : Dict = splits[-1] # offload weights UpperCAmelCase__ : Any = False offload_weight(module._parameters[tensor_name] , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , UpperCamelCase__ , index=UpperCamelCase__ , ) else: offload_weight(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) offload_weight(UpperCamelCase__ , param_name.replace("""weight""" , """SCB""" ) , UpperCamelCase__ , index=UpperCamelCase__ ) set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , """meta""" , dtype=UpperCamelCase__ , value=torch.empty(*param.size() ) )
283
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str]=1_3 ,SCREAMING_SNAKE_CASE__ : List[str]=3_2 ,SCREAMING_SNAKE_CASE__ : Tuple=2 ,SCREAMING_SNAKE_CASE__ : str=3 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_6 ,SCREAMING_SNAKE_CASE__ : List[str]=[1, 2, 1] ,SCREAMING_SNAKE_CASE__ : Tuple=[2, 2, 4] ,SCREAMING_SNAKE_CASE__ : Dict=2 ,SCREAMING_SNAKE_CASE__ : List[Any]=2.0 ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : Dict=0.0 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=0.02 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-5 ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : List[str]=1_0 ,SCREAMING_SNAKE_CASE__ : Optional[int]=8 ,): __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Union[str, Any] = batch_size __lowerCamelCase : List[Any] = image_size __lowerCamelCase : Optional[Any] = patch_size __lowerCamelCase : int = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : Optional[Any] = num_heads __lowerCamelCase : Tuple = window_size __lowerCamelCase : Tuple = mlp_ratio __lowerCamelCase : Dict = qkv_bias __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : Tuple = drop_path_rate __lowerCamelCase : str = hidden_act __lowerCamelCase : Optional[Any] = use_absolute_embeddings __lowerCamelCase : str = patch_norm __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : int = is_training __lowerCamelCase : str = scope __lowerCamelCase : int = use_labels __lowerCamelCase : int = type_sequence_label_size __lowerCamelCase : int = encoder_stride def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCamelCase : int = None if self.use_labels: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size) __lowerCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : int): return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Tuple = SwinvaModel(config=SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __lowerCamelCase : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim)) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase : List[str] = SwinvaForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE__) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __lowerCamelCase : Tuple = 1 __lowerCamelCase : Union[str, Any] = SwinvaForMaskedImageModeling(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size)) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Optional[Any] = self.type_sequence_label_size __lowerCamelCase : Optional[int] = SwinvaForImageClassification(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size)) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Any = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = config_and_inputs __lowerCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Any = False def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : List[Any] = SwinvaModelTester(self) __lowerCamelCase : Optional[int] = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,embed_dim=3_7) def lowerCAmelCase ( self : int): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : Any): __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def lowerCAmelCase ( self : Tuple): pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def lowerCAmelCase ( self : Optional[Any]): pass def lowerCAmelCase ( self : Any): __lowerCamelCase , __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module)) __lowerCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ ,nn.Linear)) def lowerCAmelCase ( self : str): __lowerCamelCase , __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = True for model_class in self.all_model_classes: __lowerCamelCase : str = True __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = True __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Optional[Any] = outputs.attentions __lowerCamelCase : Tuple = len(self.model_tester.depths) self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase : Dict = True __lowerCamelCase : int = config.window_size**2 __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() with torch.no_grad(): __lowerCamelCase : str = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Optional[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__) self.assertListEqual( list(attentions[0].shape[-3:]) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) __lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE__) # Check attention is always last and order is fine __lowerCamelCase : Optional[Any] = True __lowerCamelCase : List[Any] = True __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() with torch.no_grad(): __lowerCamelCase : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) if hasattr(self.model_tester ,'num_hidden_states_types'): __lowerCamelCase : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __lowerCamelCase : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Optional[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__) self.assertListEqual( list(self_attentions[0].shape[-3:]) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : int = model_class(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() with torch.no_grad(): __lowerCamelCase : Dict = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Dict = outputs.hidden_states __lowerCamelCase : List[str] = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths) + 1) self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__) # Swinv2 has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __lowerCamelCase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) ,[num_patches, self.model_tester.embed_dim] ,) __lowerCamelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = reshaped_hidden_states[0].shape __lowerCamelCase : Union[str, Any] = ( reshaped_hidden_states[0].view(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,height * width).permute(0 ,2 ,1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) ,[num_patches, self.model_tester.embed_dim] ,) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase , __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : int = 3 __lowerCamelCase : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,(padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : List[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,(padded_height, padded_width)) def lowerCAmelCase ( self : int): __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[int] = SwinvaModel.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str): __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : int = _config_zero_init(SCREAMING_SNAKE_CASE__) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(config=SCREAMING_SNAKE_CASE__) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"Parameter {name} of model {model_class} seems not properly initialized" ,) @require_vision @require_torch class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : str): return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str): __lowerCamelCase : List[str] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.default_image_processor __lowerCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') __lowerCamelCase : List[str] = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='pt').to(SCREAMING_SNAKE_CASE__) # forward pass with torch.no_grad(): __lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE__) # verify the logits __lowerCamelCase : Tuple = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = torch.tensor([-0.3947, -0.4306, 0.0026]).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """align_text_model""" def __init__( self : Optional[int] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Any=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Union[str, Any]=5_12 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[str]=1E-12 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : str="absolute" , _UpperCAmelCase : str=True , **_UpperCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = pad_token_id @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCAmelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = """align_vision_model""" def __init__( self : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 6_00 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 3.1 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , _UpperCAmelCase : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , _UpperCAmelCase : List[int] = [] , _UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase : float = 0.25 , _UpperCAmelCase : str = "swish" , _UpperCAmelCase : int = 25_60 , _UpperCAmelCase : str = "mean" , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 0.001 , _UpperCAmelCase : float = 0.99 , _UpperCAmelCase : float = 0.2 , **_UpperCAmelCase : Tuple , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = width_coefficient UpperCAmelCase__ = depth_coefficient UpperCAmelCase__ = depth_divisor UpperCAmelCase__ = kernel_sizes UpperCAmelCase__ = in_channels UpperCAmelCase__ = out_channels UpperCAmelCase__ = depthwise_padding UpperCAmelCase__ = strides UpperCAmelCase__ = num_block_repeats UpperCAmelCase__ = expand_ratios UpperCAmelCase__ = squeeze_expansion_ratio UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dim UpperCAmelCase__ = pooling_type UpperCAmelCase__ = initializer_range UpperCAmelCase__ = batch_norm_eps UpperCAmelCase__ = batch_norm_momentum UpperCAmelCase__ = drop_connect_rate UpperCAmelCase__ = sum(_UpperCAmelCase ) * 4 @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCAmelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : int = """align""" lowerCAmelCase_ : Union[str, Any] = True def __init__( self : List[str] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Tuple=6_40 , _UpperCAmelCase : Optional[Any]=1.0 , _UpperCAmelCase : Any=0.02 , **_UpperCAmelCase : Union[str, Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase__ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase__ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) UpperCAmelCase__ = AlignTextConfig(**_UpperCAmelCase ) UpperCAmelCase__ = AlignVisionConfig(**_UpperCAmelCase ) UpperCAmelCase__ = projection_dim UpperCAmelCase__ = temperature_init_value UpperCAmelCase__ = initializer_range @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , _UpperCAmelCase : AlignTextConfig , _UpperCAmelCase : AlignVisionConfig , **_UpperCAmelCase : Union[str, Any] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
359
'''simple docstring''' UpperCAmelCase_ = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase_ = [None] * 1_0_0_0_0_0_0_0 UpperCAmelCase_ = True UpperCAmelCase_ = False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase__ = chain(next_number(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = number_chain while number < 10000000: UpperCAmelCase__ = number_chain number *= 10 return number_chain def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 10000000 ): '''simple docstring''' for i in range(1 , SCREAMING_SNAKE_CASE__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
61
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __UpperCAmelCase = pytest.mark.integration __UpperCAmelCase = {"comet"} __UpperCAmelCase = importlib.util.find_spec("fairseq") is not None __UpperCAmelCase = {"code_eval"} __UpperCAmelCase = os.name == "nt" __UpperCAmelCase = {"bertscore", "frugalscore", "perplexity"} __UpperCAmelCase = importlib.util.find_spec("transformers") is not None def A__ ( __lowerCamelCase ): @wraps(__lowerCamelCase ) def wrapper(self, __lowerCamelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self, __lowerCamelCase ) return wrapper def A__ ( __lowerCamelCase ): @wraps(__lowerCamelCase ) def wrapper(self, __lowerCamelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self, __lowerCamelCase ) return wrapper def A__ ( __lowerCamelCase ): @wraps(__lowerCamelCase ) def wrapper(self, __lowerCamelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self, __lowerCamelCase ) return wrapper def A__ ( ): SCREAMING_SNAKE_CASE_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @local class UpperCamelCase__ ( parameterized.TestCase ): """simple docstring""" UpperCAmelCase_ ={} UpperCAmelCase_ =None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def _UpperCamelCase ( self , _A ) -> int: SCREAMING_SNAKE_CASE_ = '''[...]''' SCREAMING_SNAKE_CASE_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _A ) ).module_path ) SCREAMING_SNAKE_CASE_ = datasets.load.import_main_class(metric_module.__name__ , dataset=_A ) # check parameters SCREAMING_SNAKE_CASE_ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_A , metric_module.__name__ ): with self.use_local_metrics(): try: SCREAMING_SNAKE_CASE_ = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _UpperCamelCase ( self , _A ) -> List[str]: SCREAMING_SNAKE_CASE_ = '''[...]''' SCREAMING_SNAKE_CASE_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _A ) ).module_path ) # run doctest with self.use_local_metrics(): SCREAMING_SNAKE_CASE_ = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _UpperCamelCase ( self , _A , _A ) -> List[str]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_A ): yield else: yield @contextmanager def _UpperCamelCase ( self ) -> Dict: def load_local_metric(_A , *_A , **_A ): return load_metric(os.path.join('''metrics''' , _A ) , *_A , **_A ) with patch('''datasets.load_metric''' ) as mock_load_metric: SCREAMING_SNAKE_CASE_ = load_local_metric yield @classmethod def _UpperCamelCase ( cls , _A ) -> Tuple: def wrapper(_A ): SCREAMING_SNAKE_CASE_ = contextmanager(_A ) SCREAMING_SNAKE_CASE_ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def A__ ( __lowerCamelCase ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''', '''''', '''''' ) # handle pytest cli flags class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def _UpperCamelCase ( self , _A ) -> Tuple: assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: SCREAMING_SNAKE_CASE_ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def A__ ( __lowerCamelCase ): import torch def bert_cos_score_idf(__lowerCamelCase, __lowerCamelCase, *__lowerCamelCase, **__lowerCamelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__lowerCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: SCREAMING_SNAKE_CASE_ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def A__ ( __lowerCamelCase ): def load_from_checkpoint(__lowerCamelCase ): class UpperCamelCase__ : """simple docstring""" def _UpperCamelCase ( self , _A , *_A , **_A ) -> int: assert len(_A ) == 2 SCREAMING_SNAKE_CASE_ = [0.19, 0.92] return scores, sum(_A ) / len(_A ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: SCREAMING_SNAKE_CASE_ = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: SCREAMING_SNAKE_CASE_ = load_from_checkpoint yield def A__ ( ): SCREAMING_SNAKE_CASE_ = load_metric(os.path.join('''metrics''', '''seqeval''' ) ) SCREAMING_SNAKE_CASE_ = '''ERROR''' SCREAMING_SNAKE_CASE_ = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(__lowerCamelCase, match=re.escape(__lowerCamelCase ) ): metric.compute(predictions=[], references=[], scheme=__lowerCamelCase )
299
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _A : int =imread(r'''digital_image_processing/image_data/lena_small.jpg''') _A : Optional[Any] =cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE_ () -> Any: lowerCamelCase__ : int = cn.convert_to_negative(UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE_ () -> Optional[int]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCamelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def SCREAMING_SNAKE_CASE_ () -> Union[str, Any]: lowerCamelCase__ : Optional[int] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE_ () -> str: lowerCamelCase__ : int = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase__ : Union[str, Any] = canny.canny(UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE_ () -> str: assert gg.gaussian_filter(UpperCamelCase , 5 , sigma=0.9 ).all() def SCREAMING_SNAKE_CASE_ () -> int: # laplace diagonals lowerCamelCase__ : int = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase__ : int = conv.img_convolve(UpperCamelCase , UpperCamelCase ).astype(UpperCamelCase ) assert res.any() def SCREAMING_SNAKE_CASE_ () -> Any: assert med.median_filter(UpperCamelCase , 3 ).any() def SCREAMING_SNAKE_CASE_ () -> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = sob.sobel_filter(UpperCamelCase ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE_ () -> Tuple: lowerCamelCase__ : Union[str, Any] = sp.make_sepia(UpperCamelCase , 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = bs.Burkes(imread(UpperCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: lowerCamelCase__ : int = rs.NearestNeighbour(imread(UpperCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : Union[str, Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. lowerCamelCase__ : Tuple = imread(UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase__ : int = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Optional[Any] = image[x_coordinate][y_coordinate] lowerCamelCase__ : str = lbp.get_neighbors_pixel( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase__ : List[str] = lbp.local_binary_value(UpperCamelCase , UpperCamelCase , UpperCamelCase ) assert lbp_image.any()
129
'''simple docstring''' from __future__ import annotations from typing import Any class _lowercase ( _lowercase ): pass class _lowercase : def __init__( self: Optional[int] , UpperCamelCase__: Any ): lowerCamelCase__ : Any = data lowerCamelCase__ : Node | None = None def __iter__( self: List[Any] ): lowerCamelCase__ : Optional[Any] = self lowerCamelCase__ : int = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase__ ) yield node.data lowerCamelCase__ : List[str] = node.next_node @property def lowerCamelCase_ ( self: Optional[Any] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _A : Any =Node(1) _A : Optional[int] =Node(2) _A : Dict =Node(3) _A : Optional[Any] =Node(4) print(root_node.has_loop) # False _A : Any =root_node.next_node print(root_node.has_loop) # True _A : Dict =Node(5) _A : Union[str, Any] =Node(6) _A : str =Node(5) _A : int =Node(6) print(root_node.has_loop) # False _A : Optional[Any] =Node(1) print(root_node.has_loop) # False
129
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCamelCase : Any = '''hf-internal-testing/tiny-random-bert''' __lowerCamelCase : Dict = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __lowerCamelCase : Optional[int] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = cached_file(_A,_A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_A,_A ) ) ) with open(os.path.join(_A,"refs","main" ) ) as f: SCREAMING_SNAKE_CASE_ : Dict = f.read() self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) ) self.assertTrue(os.path.isfile(_A ) ) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A ) self.assertEqual(_A,_A ) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="9b8c223" ) self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex(_A,"is not a valid model identifier" ): SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file("tiny-random-bert",_A ) with self.assertRaisesRegex(_A,"is not a valid git identifier" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="aaaa" ) with self.assertRaisesRegex(_A,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" ) def __UpperCamelCase ( self : Any ): """simple docstring""" with self.assertRaisesRegex(_A,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" ) with open(os.path.join(_A,"refs","main" ) ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(_A,".no_exist",_A,"conf" ) ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file(_A,"conf",_raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",local_files_only=_A,_raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) SCREAMING_SNAKE_CASE_ : int = mock.Mock() SCREAMING_SNAKE_CASE_ : int = 500 SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : List[Any] = HTTPError SCREAMING_SNAKE_CASE_ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request",return_value=_A ) as mock_head: SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",_raise_exceptions_for_connection_errors=_A ) self.assertIsNone(_A ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) def __UpperCamelCase ( self : Any ): """simple docstring""" self.assertIsNone(get_file_from_repo("bert-base-cased","ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_A,"is not a valid model identifier" ): get_file_from_repo("bert-base-case",_A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_A,"is not a valid git identifier" ): get_file_from_repo("bert-base-cased",_A,revision="ahaha" ) SCREAMING_SNAKE_CASE_ : List[str] = get_file_from_repo("bert-base-cased",_A ) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE_ : Dict = json.loads(open(_A,"r" ).read() ) self.assertEqual(config["hidden_size"],768 ) def __UpperCamelCase ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Dict = Path(_A ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(_A,"a.txt" ),str(_A ) ) self.assertIsNone(get_file_from_repo(_A,"b.txt" ) )
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase__ ( __lowercase , __lowercase , __lowercase): '''simple docstring''' @register_to_config def __init__( self :str , a :int , a :int , a :int , a :float , a :int , a :int , a :int , a :int , a :str , a :bool = False , ) -> int: super().__init__() __UpperCamelCase : Union[str, Any] = nn.Embedding(a , a ) __UpperCamelCase : List[str] = nn.Embedding(a , a ) __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Any = nn.Dropout(p=a ) __UpperCamelCase : List[Any] = TaConfig( vocab_size=a , d_model=a , num_heads=a , d_kv=a , d_ff=a , dropout_rate=a , feed_forward_proj=a , is_decoder=a , is_encoder_decoder=a , ) __UpperCamelCase : str = nn.ModuleList() for lyr_num in range(a ): __UpperCamelCase : Optional[Any] = TaBlock(a ) self.encoders.append(a ) __UpperCamelCase : Any = TaLayerNorm(a ) __UpperCamelCase : str = nn.Dropout(p=a ) def _lowerCamelCase ( self :int , a :List[Any] , a :int ) -> Tuple: __UpperCamelCase : Dict = self.token_embedder(a ) __UpperCamelCase : List[str] = encoder_input_tokens.shape[1] __UpperCamelCase : int = torch.arange(a , device=encoder_input_tokens.device ) x += self.position_encoding(a ) __UpperCamelCase : Dict = self.dropout_pre(a ) # inverted the attention mask __UpperCamelCase : Dict = encoder_input_tokens.size() __UpperCamelCase : Any = self.get_extended_attention_mask(a , a ) for lyr in self.encoders: __UpperCamelCase : int = lyr(a , a )[0] __UpperCamelCase : Any = self.layer_norm(a ) return self.dropout_post(a ), encoder_inputs_mask
151
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Any = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :int , a :List[Any] , a :Optional[Any]=False , a :List[str]=True , a :str=False , a :Optional[Any]="<s>" , a :Tuple="</s>" , a :int="<unk>" , a :Optional[Any]="<sep>" , a :List[str]="<pad>" , a :Any="<cls>" , a :List[Any]="<mask>" , a :Optional[Any]=["<eop>", "<eod>"] , a :Optional[Dict[str, Any]] = None , **a :List[str] , ) -> None: __UpperCamelCase : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : int = 3 __UpperCamelCase : Union[str, Any] = do_lower_case __UpperCamelCase : str = remove_space __UpperCamelCase : int = keep_accents __UpperCamelCase : Optional[int] = vocab_file __UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) __UpperCamelCase : Optional[Any] = jieba __UpperCamelCase : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self :Optional[int] ) -> List[str]: return len(self.sp_model ) def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[int] ) -> int: __UpperCamelCase : Tuple = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :Optional[int] , a :Dict ) -> str: __UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> int: if self.remove_space: __UpperCamelCase : int = " ".join(inputs.strip().split() ) else: __UpperCamelCase : Union[str, Any] = inputs __UpperCamelCase : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCamelCase : Tuple = unicodedata.normalize("NFKD" , a ) __UpperCamelCase : Optional[Any] = "".join([c for c in outputs if not unicodedata.combining(a )] ) if self.do_lower_case: __UpperCamelCase : Any = outputs.lower() return outputs def _lowerCamelCase ( self :Tuple , a :str ) -> List[str]: __UpperCamelCase : List[Any] = self.preprocess_text(a ) __UpperCamelCase : int = self.sp_model.encode(a , out_type=a ) __UpperCamelCase : Optional[Any] = [] for piece in pieces: if len(a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCamelCase : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : List[str] = cur_pieces[1:] else: __UpperCamelCase : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a ) else: new_pieces.append(a ) return new_pieces def _lowerCamelCase ( self :str , a :Dict ) -> List[str]: return self.sp_model.PieceToId(a ) def _lowerCamelCase ( self :Tuple , a :int ) -> Tuple: return self.sp_model.IdToPiece(a ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any] ) -> List[Any]: __UpperCamelCase : str = "".join(a ).replace(a , " " ).strip() return out_string def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is not None: return ([0] * len(a )) + [1] + ([0] * len(a )) + [1, 1] return ([0] * len(a )) + [1, 1] def _lowerCamelCase ( self :Dict , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Optional[int] = [self.sep_token_id] __UpperCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self :Union[str, Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _lowerCamelCase ( self :str , *a :str , **a :Any ) -> Tuple: __UpperCamelCase : int = super()._decode(*a , **a ) __UpperCamelCase : int = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
151
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger() def lowerCAmelCase_ ( __A, __A, __A, __A, __A = True ) -> str: '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCAmelCase__ = timm.create_model("levit_128s", pretrained=__A ) else: UpperCAmelCase__ = timm.create_model("levit_128", pretrained=__A ) if hidden_sizes == 192: UpperCAmelCase__ = timm.create_model("levit_192", pretrained=__A ) if hidden_sizes == 256: UpperCAmelCase__ = timm.create_model("levit_256", pretrained=__A ) if hidden_sizes == 384: UpperCAmelCase__ = timm.create_model("levit_384", pretrained=__A ) from_model.eval() UpperCAmelCase__ = LevitForImageClassificationWithTeacher(__A ).eval() UpperCAmelCase__ = OrderedDict() UpperCAmelCase__ = from_model.state_dict() UpperCAmelCase__ = list(from_model.state_dict().keys() ) UpperCAmelCase__ = list(our_model.state_dict().keys() ) print(len(__A ), len(__A ) ) for i in range(len(__A ) ): UpperCAmelCase__ = weights[og_keys[i]] our_model.load_state_dict(__A ) UpperCAmelCase__ = torch.randn((2, 3, 224, 224) ) UpperCAmelCase__ = from_model(__A ) UpperCAmelCase__ = our_model(__A ).logits assert torch.allclose(__A, __A ), "The model logits don't match the original one." UpperCAmelCase__ = name print(__A ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCAmelCase__ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def lowerCAmelCase_ ( __A, __A = None, __A = True ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = 1_000 UpperCAmelCase__ = (1, num_labels) UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = num_labels UpperCAmelCase__ = json.load(open(hf_hub_download(__A, __A, repo_type="dataset" ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = partial(__A, num_labels=__A, idalabel=__A, labelaid=__A ) UpperCAmelCase__ = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } UpperCAmelCase__ = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name], __A, names_to_config[model_name], __A, __A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name], __A, __A, __A, __A ) return config, expected_shape if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
65
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case = 16000 ) -> Any: '''simple docstring''' lowerCamelCase__ = int(round(sample_rate * max_length ) ) if len(__snake_case ) <= sample_length: return wav lowerCamelCase__ = randint(0 ,len(__snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field(default=lowerCAmelCase , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the training audio paths and labels."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) lowerCAmelCase_ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) lowerCAmelCase_ = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) lowerCAmelCase_ = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) lowerCAmelCase_ = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) lowerCAmelCase_ = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) lowerCAmelCase_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def lowerCAmelCase__() -> Optional[int]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' ,__snake_case ,__snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCamelCase__ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--label_column_name` to the correct text column - one of ''' F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(__snake_case ): lowerCamelCase__ = [] for audio in batch[data_args.audio_column_name]: lowerCamelCase__ = random_subsample( audio['''array'''] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__snake_case ) lowerCamelCase__ = feature_extractor(__snake_case ,sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__snake_case )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__snake_case ): lowerCamelCase__ = [audio['''array'''] for audio in batch[data_args.audio_column_name]] lowerCamelCase__ = feature_extractor(__snake_case ,sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__snake_case )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCamelCase__ = raw_datasets['''train'''].features[data_args.label_column_name].names lowerCamelCase__ , lowerCamelCase__ = {}, {} for i, label in enumerate(__snake_case ): lowerCamelCase__ = str(__snake_case ) lowerCamelCase__ = label # Load the accuracy metric from the datasets package lowerCamelCase__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__snake_case ): lowerCamelCase__ = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=__snake_case ,references=eval_pred.label_ids ) lowerCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__snake_case ) ,labelaid=__snake_case ,idalabel=__snake_case ,finetuning_task='''audio-classification''' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=__snake_case ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase__ = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__snake_case ,output_all_columns=__snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase__ = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__snake_case ,output_all_columns=__snake_case ) # Initialize our trainer lowerCamelCase__ = Trainer( model=__snake_case ,args=__snake_case ,train_dataset=raw_datasets['''train'''] if training_args.do_train else None ,eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None ,compute_metrics=__snake_case ,tokenizer=__snake_case ,) # Training if training_args.do_train: lowerCamelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ = last_checkpoint lowerCamelCase__ = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('''train''' ,train_result.metrics ) trainer.save_metrics('''train''' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ = trainer.evaluate() trainer.log_metrics('''eval''' ,__snake_case ) trainer.save_metrics('''eval''' ,__snake_case ) # Write model card and (optionally) push to hub lowerCamelCase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) if __name__ == "__main__": main()
209
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _snake_case = 'src/transformers' _snake_case = 'docs/source/en/tasks' def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with open(__a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _a : Tuple = f.readlines() # Find the start prompt. _a : Optional[Any] = 0 while not lines[start_index].startswith(__a ): start_index += 1 start_index += 1 _a : Tuple = start_index while not lines[end_index].startswith(__a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) _snake_case = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _snake_case = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = TASK_GUIDE_TO_MODELS[task_guide] _a : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__a , set() ) _a : List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' _a , _a , _a , _a : str = _find_text_in_file( filename=os.path.join(__a , __a ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) _a : Optional[Any] = get_model_list_for_task(__a ) if current_list != new_list: if overwrite: with open(os.path.join(__a , __a ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _snake_case = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ = """pt""" elif is_tf_available(): lowercase__ = """tf""" else: lowercase__ = """jax""" class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = PerceiverTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : Optional[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def A_ ( self , **lowercase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A_ ( self , lowercase , lowercase=False , lowercase=20 , lowercase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowerCamelCase : List[Any] = [] for i in range(len(lowercase ) ): try: _lowerCamelCase : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCamelCase : Optional[int] = list(filter(lambda lowercase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , lowercase ) ) _lowerCamelCase : Any = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: _lowerCamelCase : List[str] = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: _lowerCamelCase : int = toks + toks # toks_str = [t[1] for t in toks] _lowerCamelCase : str = [t[0] for t in toks] # Ensure consistency _lowerCamelCase : Dict = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: _lowerCamelCase : str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: _lowerCamelCase : Optional[Any] = ' ' + output_txt _lowerCamelCase : Tuple = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A_ ( self ): _lowerCamelCase : Optional[Any] = self.perceiver_tokenizer _lowerCamelCase : Dict = 'Unicode €.' _lowerCamelCase : int = tokenizer(lowercase ) _lowerCamelCase : Tuple = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _lowerCamelCase : Optional[int] = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]Unicode €.[SEP]' ) _lowerCamelCase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowerCamelCase : Tuple = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , lowercase ) # decoding _lowerCamelCase : int = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.perceiver_tokenizer _lowerCamelCase : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowerCamelCase : List[Any] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _lowerCamelCase : Dict = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": _lowerCamelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowerCamelCase : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A_ ( self ): _lowerCamelCase : List[Any] = self.perceiver_tokenizer _lowerCamelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCamelCase : List[str] = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase ) self.assertIn('attention_mask' , lowercase ) self.assertNotIn('decoder_input_ids' , lowercase ) self.assertNotIn('decoder_attention_mask' , lowercase ) def A_ ( self ): _lowerCamelCase : str = self.perceiver_tokenizer _lowerCamelCase : Optional[int] = [ 'Summary of the text.', 'Another summary.', ] _lowerCamelCase : Optional[int] = tokenizer( text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def A_ ( self ): # safety check on max_len default value so we are sure the test works _lowerCamelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowerCamelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase : Optional[Any] = tempfile.mkdtemp() _lowerCamelCase : List[str] = ' He is very happy, UNwant\u00E9d,running' _lowerCamelCase : List[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _lowerCamelCase : Any = tokenizer.__class__.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) _lowerCamelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowerCamelCase : Dict = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowerCamelCase : Optional[int] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) _lowerCamelCase : str = tokenizer.__class__.from_pretrained(lowercase ) _lowerCamelCase : Any = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowerCamelCase : List[Any] = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A_ ( self ): _lowerCamelCase : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase : Tuple = json.load(lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase : List[str] = json.load(lowercase ) _lowerCamelCase : Optional[int] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowerCamelCase : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowerCamelCase : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCamelCase : Optional[int] = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCamelCase : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase )] _lowerCamelCase : Any = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): pass def A_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowerCamelCase : List[Any] = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowerCamelCase : Dict = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowerCamelCase : Optional[Any] = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
96
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=768 ): super().__init__(lowercase ) _lowerCamelCase : Any = proj_size _lowerCamelCase : Dict = CLIPVisionModel(lowercase ) _lowerCamelCase : List[str] = PaintByExampleMapper(lowercase ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size ) _lowerCamelCase : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _lowerCamelCase : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , lowercase , lowercase=False ): _lowerCamelCase : Union[str, Any] = self.model(pixel_values=lowercase ) _lowerCamelCase : int = clip_output.pooler_output _lowerCamelCase : str = self.mapper(latent_states[:, None] ) _lowerCamelCase : List[Any] = self.final_layer_norm(lowercase ) _lowerCamelCase : Dict = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase ): super().__init__() _lowerCamelCase : Tuple = (config.num_hidden_layers + 1) // 5 _lowerCamelCase : int = config.hidden_size _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : str = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn='gelu' , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def A_ ( self , lowercase ): for block in self.blocks: _lowerCamelCase : Tuple = block(lowercase ) return hidden_states
96
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: Optional[int] = logging.get_logger(__name__) __lowercase: Tuple = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE): _lowerCamelCase = 'time_series_transformer' _lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Union[str, Any], a_ : int = None, a_ : Dict = None, a_ : Union[str, Any] = "student_t", a_ : Optional[Any] = "nll", a_ : Optional[int] = 1, a_ : Tuple = [1, 2, 3, 4, 5, 6, 7], a_ : Any = "mean", a_ : Union[str, Any] = 0, a_ : str = 0, a_ : Dict = 0, a_ : Tuple = 0, a_ : int = None, a_ : Tuple = None, a_ : str = 32, a_ : str = 32, a_ : List[str] = 2, a_ : List[str] = 2, a_ : Dict = 2, a_ : Any = 2, a_ : Optional[Any] = True, a_ : Dict = "gelu", a_ : str = 64, a_ : int = 0.1, a_ : str = 0.1, a_ : int = 0.1, a_ : Union[str, Any] = 0.1, a_ : List[Any] = 0.1, a_ : Tuple = 100, a_ : List[Any] = 0.02, a_ : Optional[Any]=True, **a_ : Dict, ): """simple docstring""" UpperCamelCase__ = prediction_length UpperCamelCase__ = context_length or prediction_length UpperCamelCase__ = distribution_output UpperCamelCase__ = loss UpperCamelCase__ = input_size UpperCamelCase__ = num_time_features UpperCamelCase__ = lags_sequence UpperCamelCase__ = scaling UpperCamelCase__ = num_dynamic_real_features UpperCamelCase__ = num_static_real_features UpperCamelCase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase__ = cardinality else: UpperCamelCase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase__ = embedding_dimension else: UpperCamelCase__ = [min(50, (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase__ = num_parallel_samples # Transformer architecture configuration UpperCamelCase__ = input_size * len(_a ) + self._number_of_features UpperCamelCase__ = d_model UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = decoder_layers UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = use_cache super().__init__(is_encoder_decoder=_a, **_a ) @property def lowercase_ ( self : List[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
361
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= OmegaConf.load(lowercase__ ) __lowercase= torch.load(lowercase__ , map_location='cpu' )['model'] __lowercase= list(state_dict.keys() ) # extract state_dict for VQVAE __lowercase= {} __lowercase= 'first_stage_model.' for key in keys: if key.startswith(lowercase__ ): __lowercase= state_dict[key] # extract state_dict for UNetLDM __lowercase= {} __lowercase= 'model.diffusion_model.' for key in keys: if key.startswith(lowercase__ ): __lowercase= state_dict[key] __lowercase= config.model.params.first_stage_config.params __lowercase= config.model.params.unet_config.params __lowercase= VQModel(**lowercase__ ).eval() vqvae.load_state_dict(lowercase__ ) __lowercase= UNetLDMModel(**lowercase__ ).eval() unet.load_state_dict(lowercase__ ) __lowercase= DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowercase__ , ) __lowercase= LDMPipeline(lowercase__ , lowercase__ , lowercase__ ) pipeline.save_pretrained(lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
from collections.abc import Sequence def _lowerCamelCase( lowercase__ , lowercase__ = False ) -> float: '''simple docstring''' if not arr: return 0 __lowercase= 0 if allow_empty_subarrays else float('-inf' ) __lowercase= 0.0 for num in arr: __lowercase= max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowercase= max(lowercase__ , lowercase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
295
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def snake_case_ ( lowerCAmelCase_ : str ): if hor == 128: __lowercase : Any = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __lowercase : List[Any] = (32, 128, 256) __lowercase : Any = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: __lowercase : str = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __lowercase : int = (32, 64, 128, 256) __lowercase : int = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") __lowercase : List[str] = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) __lowercase : Any = model.state_dict() __lowercase : Union[str, Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 65536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } __lowercase : Dict = UNetaDModel(**lowerCAmelCase_ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __lowercase : Any = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) hf_value_function.load_state_dict(lowerCAmelCase_ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : List[Any] = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 65536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } __lowercase : Optional[Any] = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) __lowercase : int = model __lowercase : Union[str, Any] = UNetaDModel(**lowerCAmelCase_ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __lowercase : str = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase : int = state_dict.pop(lowerCAmelCase_ ) hf_value_function.load_state_dict(lowerCAmelCase_ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
import random def __lowerCAmelCase ( a__ ) -> bool: __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(a__ , a__ , a__ ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def __lowerCAmelCase ( a__ ) -> bool: if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a__ ) def __lowerCAmelCase ( a__ = 1024 ) -> int: while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a__ ): return num if __name__ == "__main__": A : Any = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
6
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return 10 - x * x def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if equation(_SCREAMING_SNAKE_CASE ) * equation(_SCREAMING_SNAKE_CASE ) >= 0: raise ValueError("""Wrong space!""" ) SCREAMING_SNAKE_CASE = a while (b - a) >= 0.01: # Find middle point SCREAMING_SNAKE_CASE = (a + b) / 2 # Check if middle point is root if equation(_SCREAMING_SNAKE_CASE ) == 0.0: break # Decide the side to repeat the steps if equation(_SCREAMING_SNAKE_CASE ) * equation(_SCREAMING_SNAKE_CASE ) < 0: SCREAMING_SNAKE_CASE = c else: SCREAMING_SNAKE_CASE = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
193
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
1
from __future__ import annotations UpperCAmelCase__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" _lowercase =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) ) ] # the reference grid _lowercase =1 _lowercase =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) ) ] # the action grid _lowercase =init[0] _lowercase =init[1] _lowercase =0 _lowercase =g + heuristic[x][y] # cost from starting cell to destination cell _lowercase =[[f, g, x, y]] _lowercase =False # flag that is set when search is complete _lowercase =False # flag set if we can't find expand while not found and not resign: if len(__snake_case ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _lowercase =cell.pop() _lowercase =next_cell[2] _lowercase =next_cell[3] _lowercase =next_cell[1] if x == goal[0] and y == goal[1]: _lowercase =True else: for i in range(len(__snake_case ) ): # to try out different valid actions _lowercase =x + DIRECTIONS[i][0] _lowercase =y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__snake_case ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _lowercase =g + cost _lowercase =ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _lowercase =1 _lowercase =i _lowercase =[] _lowercase =goal[0] _lowercase =goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _lowercase =x - DIRECTIONS[action[x][y]][0] _lowercase =y - DIRECTIONS[action[x][y]][1] _lowercase =xa _lowercase =ya invpath.append([x, y] ) _lowercase =[] for i in range(len(__snake_case ) ): path.append(invpath[len(__snake_case ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ = 99 UpperCAmelCase__ ,UpperCAmelCase__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
5
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
1
'''simple docstring''' import re import subprocess import sys _lowerCAmelCase = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") _lowerCAmelCase = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() _lowerCAmelCase = "|".join(sys.argv[1:]) _lowerCAmelCase = re.compile(rF'''^({joined_dirs}).*?\.py$''') _lowerCAmelCase = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
371
'''simple docstring''' from random import randint, random def UpperCamelCase ( a , a , a , a = False , a = False , a = 5 , ) -> list: '''simple docstring''' __magic_name__ = [[-1] * number_of_cells] # Create a highway without any car __magic_name__ = 0 __magic_name__ = max(a , 0 ) while i < number_of_cells: __magic_name__ = ( randint(0 , a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def UpperCamelCase ( a , a ) -> int: '''simple docstring''' __magic_name__ = 0 __magic_name__ = highway_now[car_index + 1 :] for cell in range(len(a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(a , -1 ) def UpperCamelCase ( a , a , a ) -> list: '''simple docstring''' __magic_name__ = len(a ) # Beforce calculations, the highway is empty __magic_name__ = [-1] * number_of_cells for car_index in range(a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __magic_name__ = min(highway_now[car_index] + 1 , a ) # Number of empty cell before the next car __magic_name__ = get_distance(a , a ) - 1 # We can't have the car causing an accident __magic_name__ = min(next_highway[car_index] , a ) if random() < probability: # Randomly, a driver will slow down __magic_name__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def UpperCamelCase ( a , a , a , a ) -> list: '''simple docstring''' __magic_name__ = len(highway[0] ) for i in range(a ): __magic_name__ = update(highway[i] , a , a ) __magic_name__ = [-1] * number_of_cells for car_index in range(a ): __magic_name__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __magic_name__ = (car_index + speed) % number_of_cells # Commit the change of position __magic_name__ = speed highway.append(a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
98
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class snake_case : def __init__( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : str=1_0 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[Any]=3_2 * 8 , UpperCamelCase__ : List[Any]=3_2 * 8 , UpperCamelCase__ : str=4 , UpperCamelCase__ : List[str]=6_4 , )-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[Any] = parent __lowerCAmelCase: Any = batch_size __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Dict = use_auxiliary_loss __lowerCAmelCase: List[Any] = num_queries __lowerCAmelCase: str = num_channels __lowerCAmelCase: Union[str, Any] = min_size __lowerCAmelCase: List[Any] = max_size __lowerCAmelCase: Dict = num_labels __lowerCAmelCase: int = hidden_dim __lowerCAmelCase: Union[str, Any] = hidden_dim def lowercase_ ( self : Dict)-> List[str]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( UpperCamelCase__) __lowerCAmelCase: int = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase__) __lowerCAmelCase: Dict = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase__) > 0.5 ).float() __lowerCAmelCase: Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase__) > 0.5).long() __lowerCAmelCase: Optional[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self : Optional[int])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCAmelCase: Union[str, Any] = self.num_queries __lowerCAmelCase: Optional[int] = self.num_labels __lowerCAmelCase: Optional[int] = [1, 1, 1, 1] __lowerCAmelCase: str = self.num_channels __lowerCAmelCase: List[Any] = 6_4 __lowerCAmelCase: str = 1_2_8 __lowerCAmelCase: Any = self.hidden_dim __lowerCAmelCase: List[str] = self.hidden_dim __lowerCAmelCase: int = self.hidden_dim return config def lowercase_ ( self : Tuple)-> Dict: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: str = self.prepare_config_and_inputs() __lowerCAmelCase: str = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = output.encoder_hidden_states __lowerCAmelCase: Optional[Any] = output.pixel_decoder_hidden_states __lowerCAmelCase: str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase__) , config.decoder_layers) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[str]=False)-> Optional[Any]: '''simple docstring''' with torch.no_grad(): __lowerCAmelCase: List[str] = MaskaFormerModel(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() __lowerCAmelCase: int = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = model(UpperCamelCase__ , output_hidden_states=UpperCamelCase__) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[str])-> List[Any]: '''simple docstring''' __lowerCAmelCase: str = MaskaFormerForUniversalSegmentation(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() def comm_check_on_output(UpperCamelCase__ : Tuple): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): __lowerCAmelCase: Tuple = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__) __lowerCAmelCase: int = model(UpperCamelCase__) comm_check_on_output(UpperCamelCase__) __lowerCAmelCase: List[str] = model( pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__) comm_check_on_output(UpperCamelCase__) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class snake_case ( __snake_case, __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' __lowerCAmelCase: List[Any] = MaskaFormerModelTester(self) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__) def lowercase_ ( self : Optional[int])-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Dict)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__) def lowercase_ ( self : List[Any])-> int: '''simple docstring''' __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*UpperCamelCase__) @unittest.skip(reason="Mask2Former does not use inputs_embeds") def lowercase_ ( self : Any)-> Dict: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method") def lowercase_ ( self : Union[str, Any])-> str: '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model") def lowercase_ ( self : str)-> List[Any]: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings") def lowercase_ ( self : Tuple)-> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def lowercase_ ( self : str)-> str: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def lowercase_ ( self : List[Any])-> List[Any]: '''simple docstring''' pass def lowercase_ ( self : List[Any])-> Any: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: Union[str, Any] = model_class(UpperCamelCase__) __lowerCAmelCase: List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: List[Any] = [*signature.parameters.keys()] __lowerCAmelCase: str = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__) @slow def lowercase_ ( self : List[Any])-> Dict: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCAmelCase: Union[str, Any] = MaskaFormerModel.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) def lowercase_ ( self : Optional[int])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = (self.model_tester.min_size,) * 2 __lowerCAmelCase: Dict = { "pixel_values": torch.randn((2, 3, *size) , device=UpperCamelCase__), "mask_labels": torch.randn((2, 1_0, *size) , device=UpperCamelCase__), "class_labels": torch.zeros(2 , 1_0 , device=UpperCamelCase__).long(), } __lowerCAmelCase: Dict = self.model_tester.get_config() __lowerCAmelCase: int = MaskaFormerForUniversalSegmentation(UpperCamelCase__).to(UpperCamelCase__) __lowerCAmelCase: str = model(**UpperCamelCase__) self.assertTrue(outputs.loss is not None) def lowercase_ ( self : List[str])-> List[str]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> List[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: Dict = model_class(UpperCamelCase__).to(UpperCamelCase__) __lowerCAmelCase: List[str] = model(**UpperCamelCase__ , output_attentions=UpperCamelCase__) self.assertTrue(outputs.attentions is not None) def lowercase_ ( self : Dict)-> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCAmelCase: Dict = self.all_model_classes[1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() __lowerCAmelCase: Tuple = model_class(UpperCamelCase__) model.to(UpperCamelCase__) model.train() __lowerCAmelCase: Union[str, Any] = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__).loss loss.backward() def lowercase_ ( self : List[Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: List[Any] = self.all_model_classes[1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() __lowerCAmelCase: Dict = True __lowerCAmelCase: List[Any] = True __lowerCAmelCase: int = model_class(UpperCamelCase__).to(UpperCamelCase__) model.train() __lowerCAmelCase: Tuple = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__) __lowerCAmelCase: str = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCAmelCase: Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCAmelCase: Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCAmelCase: Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase__) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) __A = 1E-4 def a__ ( ) -> Optional[int]: __lowerCAmelCase: Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class snake_case ( unittest.TestCase ): @cached_property def lowercase_ ( self : Any)-> Tuple: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self : Tuple)-> int: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def lowercase_ ( self : List[str])-> str: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = self.default_image_processor __lowerCAmelCase: List[str] = prepare_img() __lowerCAmelCase: List[str] = image_processor(UpperCamelCase__ , return_tensors="pt").to(UpperCamelCase__) __lowerCAmelCase: Any = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): __lowerCAmelCase: List[str] = model(**UpperCamelCase__) __lowerCAmelCase: str = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]]).to(UpperCamelCase__) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) __lowerCAmelCase: int = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]]).to(UpperCamelCase__) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) __lowerCAmelCase: str = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]]).to(UpperCamelCase__) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) def lowercase_ ( self : int)-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(UpperCamelCase__).eval() __lowerCAmelCase: int = self.default_image_processor __lowerCAmelCase: Tuple = prepare_img() __lowerCAmelCase: List[str] = image_processor(UpperCamelCase__ , return_tensors="pt").to(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): __lowerCAmelCase: Optional[Any] = model(**UpperCamelCase__) # masks_queries_logits __lowerCAmelCase: int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) __lowerCAmelCase: str = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __lowerCAmelCase: Optional[int] = torch.tensor(UpperCamelCase__).to(UpperCamelCase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) # class_queries_logits __lowerCAmelCase: List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) __lowerCAmelCase: str = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ]).to(UpperCamelCase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) def lowercase_ ( self : str)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(UpperCamelCase__).eval() __lowerCAmelCase: Any = self.default_image_processor __lowerCAmelCase: List[str] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors="pt" , ) __lowerCAmelCase: Tuple = inputs["pixel_values"].to(UpperCamelCase__) __lowerCAmelCase: Dict = [el.to(UpperCamelCase__) for el in inputs["mask_labels"]] __lowerCAmelCase: Dict = [el.to(UpperCamelCase__) for el in inputs["class_labels"]] with torch.no_grad(): __lowerCAmelCase: int = model(**UpperCamelCase__) self.assertTrue(outputs.loss is not None)
217
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = """deformable_detr""" SCREAMING_SNAKE_CASE_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : int , UpperCamelCase__ : int=True , UpperCamelCase__ : str=None , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3_0_0 , UpperCamelCase__ : Optional[int]=1_0_2_4 , UpperCamelCase__ : int=6 , UpperCamelCase__ : List[Any]=1_0_2_4 , UpperCamelCase__ : List[Any]=8 , UpperCamelCase__ : str=6 , UpperCamelCase__ : str=1_0_2_4 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[Any]="relu" , UpperCamelCase__ : Tuple=2_5_6 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Dict=1.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]="sine" , UpperCamelCase__ : Any="resnet50" , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Optional[int]=3_0_0 , UpperCamelCase__ : int=False , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : str=1 , UpperCamelCase__ : int=1 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=0.25 , UpperCamelCase__ : List[Any]=False , **UpperCamelCase__ : Dict , )-> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") __lowerCAmelCase: List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: int = backbone_config.get("model_type") __lowerCAmelCase: List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase: Any = config_class.from_dict(UpperCamelCase__) __lowerCAmelCase: int = use_timm_backbone __lowerCAmelCase: Any = backbone_config __lowerCAmelCase: Tuple = num_channels __lowerCAmelCase: str = num_queries __lowerCAmelCase: List[str] = max_position_embeddings __lowerCAmelCase: List[Any] = d_model __lowerCAmelCase: Union[str, Any] = encoder_ffn_dim __lowerCAmelCase: Tuple = encoder_layers __lowerCAmelCase: List[str] = encoder_attention_heads __lowerCAmelCase: Any = decoder_ffn_dim __lowerCAmelCase: Union[str, Any] = decoder_layers __lowerCAmelCase: List[Any] = decoder_attention_heads __lowerCAmelCase: List[Any] = dropout __lowerCAmelCase: Optional[Any] = attention_dropout __lowerCAmelCase: Union[str, Any] = activation_dropout __lowerCAmelCase: Union[str, Any] = activation_function __lowerCAmelCase: Dict = init_std __lowerCAmelCase: int = init_xavier_std __lowerCAmelCase: str = encoder_layerdrop __lowerCAmelCase: Union[str, Any] = auxiliary_loss __lowerCAmelCase: List[Any] = position_embedding_type __lowerCAmelCase: str = backbone __lowerCAmelCase: Tuple = use_pretrained_backbone __lowerCAmelCase: int = dilation # deformable attributes __lowerCAmelCase: Union[str, Any] = num_feature_levels __lowerCAmelCase: Optional[Any] = encoder_n_points __lowerCAmelCase: Dict = decoder_n_points __lowerCAmelCase: Optional[Any] = two_stage __lowerCAmelCase: Tuple = two_stage_num_proposals __lowerCAmelCase: int = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher __lowerCAmelCase: str = class_cost __lowerCAmelCase: List[str] = bbox_cost __lowerCAmelCase: List[str] = giou_cost # Loss coefficients __lowerCAmelCase: Tuple = mask_loss_coefficient __lowerCAmelCase: int = dice_loss_coefficient __lowerCAmelCase: Any = bbox_loss_coefficient __lowerCAmelCase: str = giou_loss_coefficient __lowerCAmelCase: int = eos_coefficient __lowerCAmelCase: Tuple = focal_alpha __lowerCAmelCase: Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__) @property def lowercase_ ( self : List[Any])-> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase_ ( self : Optional[Any])-> int: '''simple docstring''' return self.d_model def lowercase_ ( self : Union[str, Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowerCAmelCase: str = self.backbone_config.to_dict() __lowerCAmelCase: Tuple = self.__class__.model_type return output
217
1
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): __snake_case : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: __snake_case : List[str] = "" else: __snake_case : List[Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : Any = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) __snake_case : List[str] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Dict = in_proj_weight[ : config.hidden_size, : ] __snake_case : Tuple = in_proj_bias[: config.hidden_size] __snake_case : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : List[str] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __snake_case : Tuple = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : str = dct.pop(__lowerCamelCase ) __snake_case : Union[str, Any] = val def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = ViTMSNConfig() __snake_case : Optional[int] = 1_0_0_0 __snake_case : Optional[int] = "datasets/huggingface/label-files" __snake_case : Union[str, Any] = "imagenet-1k-id2label.json" __snake_case : List[Any] = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase ) , "r" ) ) __snake_case : Any = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Tuple = idalabel __snake_case : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __snake_case : Tuple = 3_8_4 __snake_case : str = 1_5_3_6 __snake_case : Any = 6 elif "l16" in checkpoint_url: __snake_case : Any = 1_0_2_4 __snake_case : List[str] = 4_0_9_6 __snake_case : Optional[int] = 2_4 __snake_case : Dict = 1_6 __snake_case : Optional[int] = 0.1 elif "b4" in checkpoint_url: __snake_case : Tuple = 4 elif "l7" in checkpoint_url: __snake_case : List[Any] = 7 __snake_case : Dict = 1_0_2_4 __snake_case : Union[str, Any] = 4_0_9_6 __snake_case : Tuple = 2_4 __snake_case : Any = 1_6 __snake_case : Dict = 0.1 __snake_case : List[str] = ViTMSNModel(__lowerCamelCase ) __snake_case : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="cpu" )["target_encoder"] __snake_case : Optional[int] = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCamelCase ) __snake_case : Tuple = create_rename_keys(__lowerCamelCase , base_model=__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , base_model=__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() __snake_case : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) __snake_case : str = ViTImageProcessor( size=config.image_size , image_mean=__lowerCamelCase , image_std=__lowerCamelCase ) __snake_case : str = image_processor(images=__lowerCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) __snake_case : str = model(**__lowerCamelCase ) __snake_case : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __snake_case : Any = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: __snake_case : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: __snake_case : Any = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: __snake_case : Optional[int] = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: __snake_case : List[Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCamelCase , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
123
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
0
import argparse import json import subprocess def snake_case( __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Optional[int] = [] lowercase : List[Any] = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) lowercase : str = subprocess.run(__magic_name__ , shell=__magic_name__ , stdout=subprocess.PIPE ) lowercase : Optional[int] = output.stdout.decode('''utf-8''' ) lowercase : Tuple = json.loads(__magic_name__ ) lowercase : Optional[Any] = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__magic_name__ ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__magic_name__ ) ) if len(__magic_name__ ) > 0: lowercase : int = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' return values.split(''',''' ) lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) lowerCAmelCase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
354
import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase_ = os.path.join(git_repo_path, 'src', 'diffusers') class _A ( unittest.TestCase ): def __a ( self : Any ) -> str: """simple docstring""" lowercase : List[str] = find_backend(''' if not is_torch_available():''' ) self.assertEqual(_A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") lowercase : str = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(_A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") lowercase : str = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(_A , '''torch_and_transformers_and_onnx''' ) def __a ( self : Optional[int] ) -> Any: """simple docstring""" lowercase : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _A ) self.assertIn('''torch_and_transformers''' , _A ) self.assertIn('''flax_and_transformers''' , _A ) self.assertIn('''torch_and_transformers_and_onnx''' , _A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __a ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase : List[str] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_A , '''\nCONSTANT = None\n''' ) lowercase : List[Any] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase : Tuple = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' lowercase : List[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_A , _A ) def __a ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase : Optional[int] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' lowercase : int = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _A )
116
0
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=None , ): __a : int = parent __a : Dict = batch_size __a : Any = image_size __a : Dict = patch_size __a : Optional[Any] = num_channels __a : Optional[Any] = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Optional[int] = num_hidden_layers __a : List[str] = num_attention_heads __a : Optional[Any] = intermediate_size __a : Union[str, Any] = hidden_act __a : Tuple = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Tuple = type_sequence_label_size __a : Union[str, Any] = initializer_range __a : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a : List[Any] = (image_size // patch_size) ** 2 __a : Any = num_patches + 1 def _lowerCamelCase ( self ): __a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Any = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : str = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = ViTMSNModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = self.type_sequence_label_size __a : int = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a : Tuple = 1 __a : Tuple = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.prepare_config_and_inputs() __a , __a , __a : Dict = config_and_inputs __a : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : int = ViTMSNModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : int = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def _lowerCamelCase ( self ): __a , __a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_UpperCAmelCase ) __a : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = ViTMSNModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __A ( ) -> Union[str, Any]: __a : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): torch.manual_seed(2 ) __a : Union[str, Any] = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(_UpperCAmelCase ) __a : Union[str, Any] = self.default_image_processor __a : int = prepare_img() __a : str = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __a : Any = model(**_UpperCAmelCase ) # verify the logits __a : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __a : Tuple = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
160
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A = logging.get_logger(__name__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
160
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase : def __init__( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Dict=10 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Union[str, Any]=32 * 4 , UpperCAmelCase__ : Optional[Any]=32 * 6 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : Optional[int]=32 , ) -> Optional[Any]: _a : Optional[int] = parent _a : Optional[Any] = batch_size _a : Any = is_training _a : Tuple = use_auxiliary_loss _a : str = num_queries _a : Dict = num_channels _a : List[str] = min_size _a : Optional[Any] = max_size _a : str = num_labels _a : str = mask_feature_size def _lowercase ( self : int ) -> int: _a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) _a : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) _a : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() _a : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() _a : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowercase ( self : int ) -> List[str]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _lowercase ( self : str ) -> List[str]: _a : Tuple = self.prepare_config_and_inputs() _a : Optional[Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def _lowercase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ) -> int: _a : Optional[int] = output.encoder_hidden_states _a : List[str] = output.pixel_decoder_hidden_states _a : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_config.decoder_layers ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple=False ) -> Optional[int]: with torch.no_grad(): _a : List[Any] = MaskFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _a : Optional[Any] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) _a : Optional[int] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : int = MaskFormerForInstanceSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(UpperCAmelCase__ : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Optional[Any] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) _a : Union[str, Any] = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) _a : Union[str, Any] = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): UpperCamelCase : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase : str = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase : List[str] = False UpperCamelCase : List[Any] = False UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False def _lowercase ( self : Tuple ) -> Optional[int]: _a : int = MaskFormerModelTester(self ) _a : int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowercase ( self : List[Any] ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _lowercase ( self : List[str] ) -> Tuple: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def _lowercase ( self : List[Any] ) -> int: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def _lowercase ( self : Dict ) -> int: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def _lowercase ( self : Optional[int] ) -> str: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def _lowercase ( self : Dict ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self : List[Any] ) -> Tuple: pass def _lowercase ( self : int ) -> Optional[int]: _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(lowerCamelCase__ ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def _lowercase ( self : int ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _a : Any = MaskFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _lowercase ( self : List[str] ) -> Optional[int]: _a : Optional[Any] = (self.model_tester.min_size,) * 2 _a : Dict = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } _a : List[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase__ ) _a : List[str] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def _lowercase ( self : str ) -> List[Any]: _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _lowercase ( self : Any ) -> Optional[Any]: _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) _a : Tuple = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def _lowercase ( self : List[str] ) -> Optional[int]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _a : List[str] = self.all_model_classes[1] _a : Tuple = self.model_tester.prepare_config_and_inputs() _a : str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() _a : Optional[int] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def _lowercase ( self : Optional[Any] ) -> Any: _a : List[str] = self.all_model_classes[1] _a : Tuple = self.model_tester.prepare_config_and_inputs() _a : Optional[Any] = True _a : List[Any] = True _a : str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() _a : str = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) _a : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _a : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : int = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _snake_case = 1e-4 def lowerCAmelCase__ ( ): '''simple docstring''' _a : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase ( self : Any ) -> Tuple: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def _lowercase ( self : Dict ) -> str: _a : Union[str, Any] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(lowerCamelCase__ ) _a : Dict = self.default_image_processor _a : int = prepare_img() _a : Any = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) _a : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): _a : List[Any] = model(**lowerCamelCase__ ) _a : str = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) _a : Dict = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) _a : Tuple = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _lowercase ( self : str ) -> Tuple: _a : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase__ ) .eval() ) _a : int = self.default_image_processor _a : Union[str, Any] = prepare_img() _a : Optional[int] = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) _a : Optional[int] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): _a : List[Any] = model(**lowerCamelCase__ ) # masks_queries_logits _a : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _a : Union[str, Any] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] _a : str = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits _a : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _a : Optional[int] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(lowerCamelCase__ ) .eval() ) _a : Tuple = self.default_image_processor _a : str = prepare_img() _a : Optional[Any] = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) _a : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): _a : Optional[Any] = model(**lowerCamelCase__ ) # masks_queries_logits _a : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _a : int = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] _a : List[Any] = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits _a : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _a : List[Any] = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _lowercase ( self : Tuple ) -> List[Any]: _a : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase__ ) .eval() ) _a : str = self.default_image_processor _a : Dict = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _a : Optional[Any] = inputs['''pixel_values'''].to(lowerCamelCase__ ) _a : Optional[Any] = [el.to(lowerCamelCase__ ) for el in inputs['''mask_labels''']] _a : List[str] = [el.to(lowerCamelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): _a : Optional[Any] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Dict = ["""pixel_values"""] def __init__( self : List[str] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Optional[int] , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Tuple = size if size is not None else {"""shortest_edge""": 224} UpperCamelCase :Any = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) UpperCamelCase :Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCamelCase :int = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="""crop_size""" ) UpperCamelCase :Tuple = do_resize UpperCamelCase :Optional[int] = size UpperCamelCase :List[Any] = resample UpperCamelCase :Union[str, Any] = do_center_crop UpperCamelCase :Tuple = crop_size UpperCamelCase :Union[str, Any] = do_rescale UpperCamelCase :Dict = rescale_factor UpperCamelCase :Optional[Any] = do_normalize UpperCamelCase :Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase :str = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase :str = do_convert_rgb def _A ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ): UpperCamelCase :Tuple = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase :int = get_resize_output_image_size(__lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Tuple , ): UpperCamelCase :str = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ): return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ): return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : List[str] , ): UpperCamelCase :Dict = do_resize if do_resize is not None else self.do_resize UpperCamelCase :List[str] = size if size is not None else self.size UpperCamelCase :str = get_size_dict(__lowerCamelCase , param_name="""size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :Optional[Any] = resample if resample is not None else self.resample UpperCamelCase :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :List[str] = crop_size if crop_size is not None else self.crop_size UpperCamelCase :str = get_size_dict(__lowerCamelCase , param_name="""crop_size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :int = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :List[str] = image_mean if image_mean is not None else self.image_mean UpperCamelCase :Optional[Any] = image_std if image_std is not None else self.image_std UpperCamelCase :List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase :Dict = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase :Optional[int] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCamelCase :Dict = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: UpperCamelCase :Tuple = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase :str = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase :List[str] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase :str = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] UpperCamelCase :Optional[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCamelCase :str = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
38
"""simple docstring""" def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a =set() # Replace all the whitespace in our sentence a =input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase ) == 26 def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a =[False] * 26 for char in input_str: if char.islower(): a =True elif char.isupper(): a =True return all(lowercase ) def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _A ( ): """simple docstring""" from timeit import timeit a ='''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowercase ) ) print(timeit('''is_pangram_faster()''' , setup=lowercase ) ) print(timeit('''is_pangram_fastest()''' , setup=lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
81
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowercase ( _lowercase ): a = """Speech2TextFeatureExtractor""" a = """Speech2TextTokenizer""" def __init__( self: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Tuple ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : int = self.feature_extractor lowerCamelCase__ : str = False def __call__( self: Tuple , *UpperCamelCase__: Optional[int] , **UpperCamelCase__: Any ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCamelCase__ : Dict = kwargs.pop("""raw_speech""" ) else: lowerCamelCase__ : str = kwargs.pop("""audio""" , UpperCamelCase__ ) lowerCamelCase__ : Tuple = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) lowerCamelCase__ : List[str] = kwargs.pop("""text""" , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: lowerCamelCase__ : Union[str, Any] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase__ : Dict = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: lowerCamelCase__ : str = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Any = encodings["""input_ids"""] return inputs def lowerCamelCase_ ( self: Tuple , *UpperCamelCase__: Dict , **UpperCamelCase__: List[Any] ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: int , *UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @contextmanager def lowerCamelCase_ ( self: int ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCamelCase__ : str = True lowerCamelCase__ : Any = self.tokenizer yield lowerCamelCase__ : Tuple = self.feature_extractor lowerCamelCase__ : Any = False
368
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
129
0
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowercase = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' _lowercase = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' _lowercase = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[Any] ,A_ : Union[str, Any] ,A_ : Dict=None ,A_ : Union[str, Any]=None ,A_ : List[Any]=None ,A_ : List[Any]=None ,A_ : Optional[Any]="auto" ,A_ : Optional[int]=-1 ,A_ : Dict=0.9 ,A_ : Tuple=5 ,A_ : int=500 ,A_ : List[Any]="gpt2-large" ,A_ : Dict=-1 ,A_ : int=1024 ,A_ : Optional[Any]=25 ,A_ : str=5 ,A_ : Dict=True ,A_ : Optional[int]=25 ,) -> str: A = compute_mauve( p_text=A_ ,q_text=A_ ,p_features=A_ ,q_features=A_ ,p_tokens=A_ ,q_tokens=A_ ,num_buckets=A_ ,pca_max_data=A_ ,kmeans_explained_var=A_ ,kmeans_num_redo=A_ ,kmeans_max_iter=A_ ,featurize_model_name=A_ ,device_id=A_ ,max_text_length=A_ ,divergence_curve_discretization_size=A_ ,mauve_scaling_factor=A_ ,verbose=A_ ,seed=A_ ,) return out
74
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __UpperCAmelCase : Optional[int] = DetaConfig( backbone_config=_UpperCAmelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=_UpperCAmelCase , with_box_refine=_UpperCAmelCase , two_stage=_UpperCAmelCase , ) # set labels __UpperCAmelCase : Optional[int] = '''huggingface/label-files''' if "o365" in model_name: __UpperCAmelCase : Tuple = 3_66 __UpperCAmelCase : List[str] = '''object365-id2label.json''' else: __UpperCAmelCase : Any = 91 __UpperCAmelCase : int = '''coco-detection-id2label.json''' __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : List[str] = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __UpperCAmelCase : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def a ( _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = dct.pop(_UpperCAmelCase ) __UpperCAmelCase : List[Any] = val def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : List[str] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __UpperCAmelCase : List[Any] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Dict = in_proj_weight[:dim, :] __UpperCAmelCase : List[str] = in_proj_bias[: dim] __UpperCAmelCase : str = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Any = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : Tuple = in_proj_weight[ -dim :, : ] __UpperCAmelCase : int = in_proj_bias[-dim :] # fmt: on def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ): '''simple docstring''' __UpperCAmelCase : int = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : List[str] = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCAmelCase : Tuple = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Union[str, Any] = in_proj_weight[:hidden_size, :] __UpperCAmelCase : List[Any] = in_proj_bias[:hidden_size] __UpperCAmelCase : int = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : str = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : Tuple = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : Optional[Any] = in_proj_bias[-hidden_size:] def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def a ( _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : Tuple = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : Dict = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Any = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'Model name {model_name} not supported' ) __UpperCAmelCase : str = torch.load(_UpperCAmelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase , param.shape ) # rename keys __UpperCAmelCase : int = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : Optional[Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = val if "input_proj" in key: __UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : List[str] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : Union[str, Any] = state_dict.pop(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Union[str, Any] = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(_UpperCAmelCase ) # load image processor __UpperCAmelCase : str = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : Optional[int] = processor(images=_UpperCAmelCase , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = encoding['''pixel_values'''] __UpperCAmelCase : List[str] = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : str = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) __UpperCAmelCase : Union[str, Any] = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) __UpperCAmelCase : str = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCAmelCase ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger("""transformers.models.encodec""") SCREAMING_SNAKE_CASE_ = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } SCREAMING_SNAKE_CASE_ = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } SCREAMING_SNAKE_CASE_ = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } SCREAMING_SNAKE_CASE_ = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } SCREAMING_SNAKE_CASE_ = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } SCREAMING_SNAKE_CASE_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } SCREAMING_SNAKE_CASE_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' for attribute in key.split(""".""" ): SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_ih_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_hh_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_ih_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_hh_l0": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_ih_l1": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_hh_l1": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_ih_l1": SCREAMING_SNAKE_CASE = value elif weight_type == "bias_hh_l1": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [] if model_name == "encodec_24khz" or "encodec_32khz": SCREAMING_SNAKE_CASE = MAPPING_24K elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(F"""{name} was ignored""" ) continue SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): if "*" in key: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = key.split(""".*.""" ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE = """weight_v""" elif "weight_ih_l0" in name: SCREAMING_SNAKE_CASE = """weight_ih_l0""" elif "weight_hh_l0" in name: SCREAMING_SNAKE_CASE = """weight_hh_l0""" elif "bias_ih_l0" in name: SCREAMING_SNAKE_CASE = """bias_ih_l0""" elif "bias_hh_l0" in name: SCREAMING_SNAKE_CASE = """bias_hh_l0""" elif "weight_ih_l1" in name: SCREAMING_SNAKE_CASE = """weight_ih_l1""" elif "weight_hh_l1" in name: SCREAMING_SNAKE_CASE = """weight_hh_l1""" elif "bias_ih_l1" in name: SCREAMING_SNAKE_CASE = """bias_ih_l1""" elif "bias_hh_l1" in name: SCREAMING_SNAKE_CASE = """bias_hh_l1""" elif "bias" in name: SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: SCREAMING_SNAKE_CASE = """weight""" elif "running_mean" in name: SCREAMING_SNAKE_CASE = """running_mean""" elif "running_var" in name: SCREAMING_SNAKE_CASE = """running_var""" elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE = """num_batches_tracked""" else: SCREAMING_SNAKE_CASE = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": SCREAMING_SNAKE_CASE = [8, 5, 4, 4] SCREAMING_SNAKE_CASE = [2.2] SCREAMING_SNAKE_CASE = 64 SCREAMING_SNAKE_CASE = 3_20_00 SCREAMING_SNAKE_CASE = 20_48 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE = [8, 5, 4, 2] SCREAMING_SNAKE_CASE = [3.0, 6.0, 12.0, 24.0] SCREAMING_SNAKE_CASE = 4_80_00 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = """time_group_norm""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) SCREAMING_SNAKE_CASE = EncodecModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = torch.load(_SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights SCREAMING_SNAKE_CASE = original_checkpoint["""best_state"""] recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
193
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE_ = """\ Text data. Second line of data.""" SCREAMING_SNAKE_CASE_ = """file""" @pytest.fixture(scope="""session""" ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") SCREAMING_SNAKE_CASE = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} SCREAMING_SNAKE_CASE = input_paths[compression_format] SCREAMING_SNAKE_CASE = tmp_path / """cache""" SCREAMING_SNAKE_CASE = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """custom_cache""" SCREAMING_SNAKE_CASE = """custom_extracted_dir""" SCREAMING_SNAKE_CASE = tmp_path / """custom_extracted_path""" if default_extracted: SCREAMING_SNAKE_CASE = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE = xz_file SCREAMING_SNAKE_CASE = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path SCREAMING_SNAKE_CASE = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path SCREAMING_SNAKE_CASE = """./__missing_file__.txt""" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( ) -> Dict: '''simple docstring''' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head("""s3://huggingface.co""" )
193
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( _snake_case ): __UpperCAmelCase : UNetaDModel __UpperCAmelCase : ScoreSdeVeScheduler def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self , UpperCamelCase__ = 1 , UpperCamelCase__ = 2000 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' snake_case : List[Any] = self.unet.config.sample_size snake_case : Optional[Any] = (batch_size, 3, img_size, img_size) snake_case : Dict = self.unet snake_case : Optional[Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase ) * self.scheduler.init_noise_sigma snake_case : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(_UpperCamelCase ) self.scheduler.set_sigmas(_UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case : str = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): snake_case : str = self.unet(_UpperCamelCase , _UpperCamelCase ).sample snake_case : Tuple = self.scheduler.step_correct(_UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample # prediction step snake_case : str = model(_UpperCamelCase , _UpperCamelCase ).sample snake_case : List[Any] = self.scheduler.step_pred(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) snake_case : Any = output.prev_sample, output.prev_sample_mean snake_case : Any = sample_mean.clamp(0 , 1 ) snake_case : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Tuple = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_UpperCamelCase )
203
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
359
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a :Optional[Any] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[str]: # Recurse if needed if "." in tensor_name: SCREAMING_SNAKE_CASE__ : List[Any] = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_module SCREAMING_SNAKE_CASE__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[Any] = False else: SCREAMING_SNAKE_CASE__ : str = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : str = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Tuple = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to("""cpu""" ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : str = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor(__lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Optional[int] = new_value.T SCREAMING_SNAKE_CASE__ : Union[str, Any] = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : str = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: SCREAMING_SNAKE_CASE__ : Union[str, Any] = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : str = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : List[str] = value.to(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: SCREAMING_SNAKE_CASE__ : List[str] = new_value else: SCREAMING_SNAKE_CASE__ : List[Any] = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : Dict = new_value def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False ) -> List[Any]: for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = module.weight.shape else: SCREAMING_SNAKE_CASE__ : str = module.in_features SCREAMING_SNAKE_CASE__ : Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : Dict = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : int = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Dict = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> str: SCREAMING_SNAKE_CASE__ : int = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : List[str] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : List[Any] = sum(__lowerCAmelCase , [] ) SCREAMING_SNAKE_CASE__ : str = len(__lowerCAmelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : int = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : str = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Any = [""".weight""", """.bias"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
56
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: lowerCAmelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowerCAmelCase__ : Union[str, Any] = """segformer.encoder.""" + key if key.startswith("""backbone""" ): lowerCAmelCase__ : Dict = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase__ : Dict = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase__ : List[str] = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(snake_case__ )-1}""" ) if "norm" in key: lowerCAmelCase__ : str = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase__ : Union[str, Any] = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowerCAmelCase__ : Tuple = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(snake_case__ )-1}""" ) if "layer_norm1" in key: lowerCAmelCase__ : List[Any] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase__ : Optional[int] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase__ : Optional[Any] = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase__ : Dict = key.replace(f"""block{idx}""" , f"""block.{int(snake_case__ )-1}""" ) if "attn.q" in key: lowerCAmelCase__ : Dict = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase__ : Dict = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase__ : List[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase__ : Dict = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase__ : Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase__ : Optional[int] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase__ : Any = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase__ : List[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase__ : Any = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase__ : Dict = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(snake_case__ )-1}""" ) if key.startswith("""head""" ): lowerCAmelCase__ : Tuple = key.replace("""head""" , """classifier""" ) lowerCAmelCase__ : Optional[int] = value return new_state_dict def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase__ : Union[str, Any] = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCAmelCase__ : int = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCAmelCase__ : Any = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase__ : Any = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase__ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase__ : List[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ : Tuple = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return image @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowerCAmelCase__ : str = SegformerConfig() lowerCAmelCase__ : Optional[int] = False # set attributes based on model_name lowerCAmelCase__ : int = """huggingface/label-files""" if "segformer" in model_name: lowerCAmelCase__ : List[str] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowerCAmelCase__ : List[str] = 150 lowerCAmelCase__ : int = """ade20k-id2label.json""" lowerCAmelCase__ : str = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase__ : str = 19 lowerCAmelCase__ : Dict = """cityscapes-id2label.json""" lowerCAmelCase__ : int = (1, 19, 128, 128) else: raise ValueError(f"""Model {model_name} not supported""" ) elif "mit" in model_name: lowerCAmelCase__ : int = True lowerCAmelCase__ : Union[str, Any] = model_name[4:6] lowerCAmelCase__ : Dict = 1000 lowerCAmelCase__ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase__ : Union[str, Any] = (1, 1000) else: raise ValueError(f"""Model {model_name} not supported""" ) # set config attributes lowerCAmelCase__ : Tuple = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Optional[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : int = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase__ : Tuple = [64, 128, 320, 512] lowerCAmelCase__ : Optional[Any] = 256 elif size == "b2": lowerCAmelCase__ : Dict = [64, 128, 320, 512] lowerCAmelCase__ : Any = 768 lowerCAmelCase__ : List[Any] = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase__ : int = [64, 128, 320, 512] lowerCAmelCase__ : Optional[Any] = 768 lowerCAmelCase__ : Optional[int] = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase__ : Tuple = [64, 128, 320, 512] lowerCAmelCase__ : int = 768 lowerCAmelCase__ : str = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase__ : Optional[int] = [64, 128, 320, 512] lowerCAmelCase__ : List[Any] = 768 lowerCAmelCase__ : int = [3, 6, 40, 3] else: raise ValueError(f"""Size {size} not supported""" ) # load image processor (only resize + normalize) lowerCAmelCase__ : Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=snake_case__ , align=snake_case__ , do_random_crop=snake_case__ ) # prepare image lowerCAmelCase__ : Any = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict if encoder_only: lowerCAmelCase__ : Any = torch.load(snake_case__ , map_location=torch.device("""cpu""" ) ) else: lowerCAmelCase__ : Optional[int] = torch.load(snake_case__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys lowerCAmelCase__ : List[str] = rename_keys(snake_case__ , encoder_only=snake_case__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(snake_case__ , snake_case__ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Any = SegformerForImageClassification(snake_case__ ) else: lowerCAmelCase__ : List[Any] = SegformerForSemanticSegmentation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # forward pass lowerCAmelCase__ : List[Any] = model(snake_case__ ) lowerCAmelCase__ : Any = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase__ : str = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase__ : List[str] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase__ : Optional[int] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase__ : Tuple = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase__ : Any = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase__ : Optional[int] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase__ : Optional[Any] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase__ : List[str] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase__ : str = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase__ : Tuple = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase__ : List[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase__ : Tuple = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase__ : int = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase__ : int = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase__ : Optional[Any] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowerCAmelCase__ : List[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _A = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
242
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a = logging.get_logger(__name__) a = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'dpt' def __init__( self : int , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : str=0.02 , lowerCAmelCase : str=1e-12 , lowerCAmelCase : Optional[Any]=384 , lowerCAmelCase : str=16 , lowerCAmelCase : int=3 , lowerCAmelCase : Tuple=False , lowerCAmelCase : Any=True , lowerCAmelCase : Tuple=[2, 5, 8, 11] , lowerCAmelCase : Tuple="project" , lowerCAmelCase : Optional[int]=[4, 2, 1, 0.5] , lowerCAmelCase : Any=[96, 192, 384, 768] , lowerCAmelCase : int=256 , lowerCAmelCase : List[Any]=-1 , lowerCAmelCase : Any=False , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=0.4 , lowerCAmelCase : Dict=255 , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[Any]=[1, 1024, 24, 24] , lowerCAmelCase : str=[0, 1] , lowerCAmelCase : str=None , **lowerCAmelCase : Optional[Any] , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def __lowercase ( self : Any ): lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
155
0
def lowerCamelCase__ ( _lowercase = 1000000 ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) UpperCAmelCase_ : int = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
235
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : str = BlipImageProcessor() UpperCAmelCase_ : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCAmelCase_ : Optional[Any] = BlipaProcessor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).tokenizer def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).image_processor def a__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE ,0 ,-1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) UpperCAmelCase_ : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : str = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : int = processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> int: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = '''lower newer''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = tokenizer(_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Any = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
235
1
from sklearn.metrics import mean_squared_error import datasets a_ = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' a_ = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' a_ = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : int , snake_case : Dict , snake_case : Dict=None , snake_case : Optional[int]="uniform_average" , snake_case : Dict=True ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
175
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) UpperCamelCase_ : str = 'A painting of a squirrel eating a burger' UpperCamelCase_ : Any = jax.device_count() UpperCamelCase_ : List[str] = num_samples * [prompt] UpperCamelCase_ : List[Any] = sd_pipe.prepare_inputs(snake_case ) UpperCamelCase_ : Dict = replicate(snake_case ) UpperCamelCase_ : Optional[Any] = shard(snake_case ) UpperCamelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCamelCase_ : Tuple = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase_ : Optional[Any] = sd_pipe(snake_case , snake_case , snake_case , num_inference_steps=2_5 , jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) UpperCamelCase_ : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_ : List[str] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Tuple = 'stabilityai/stable-diffusion-2' UpperCamelCase_, UpperCamelCase_ : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case , subfolder='scheduler' ) UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( snake_case , scheduler=snake_case , revision='bf16' , dtype=jnp.bfloataa , ) UpperCamelCase_ : Optional[int] = scheduler_params UpperCamelCase_ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase_ : Union[str, Any] = jax.device_count() UpperCamelCase_ : Union[str, Any] = num_samples * [prompt] UpperCamelCase_ : Tuple = sd_pipe.prepare_inputs(snake_case ) UpperCamelCase_ : List[Any] = replicate(snake_case ) UpperCamelCase_ : Optional[Any] = shard(snake_case ) UpperCamelCase_ : Tuple = jax.random.PRNGKey(0 ) UpperCamelCase_ : str = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase_ : str = sd_pipe(snake_case , snake_case , snake_case , num_inference_steps=2_5 , jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) UpperCamelCase_ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_ : int = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_ : Union[str, Any] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
175
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCamelCase = get_logger() _lowerCamelCase = None class _snake_case (TensorFormatter[Mapping, "jax.Array", Mapping]): def __init__( self ,_snake_case=None ,_snake_case=None ,**_snake_case ): super().__init__(features=_snake_case ) import jax from jaxlib.xla_client import Device if isinstance(_snake_case ,_snake_case ): raise ValueError( f'''Expected {device} to be a `str` not {type(_snake_case )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCAmelCase_ : List[str] = device if isinstance(_snake_case ,_snake_case ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ : List[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase_ : List[str] = str(jax.devices()[0] ) UpperCAmelCase_ : Optional[int] = jnp_array_kwargs @staticmethod def UpperCamelCase__ ( ): import jax return {str(_snake_case ): device for device in jax.devices()} def UpperCamelCase__ ( self ,_snake_case ): import jax import jax.numpy as jnp if isinstance(_snake_case ,_snake_case ) and column: if all( isinstance(_snake_case ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_snake_case ,axis=0 ) return column def UpperCamelCase__ ( self ,_snake_case ): import jax import jax.numpy as jnp if isinstance(_snake_case ,(str, bytes, type(_snake_case )) ): return value elif isinstance(_snake_case ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() UpperCAmelCase_ : int = {} if isinstance(_snake_case ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ : Optional[Any] = {"dtype": jnp.intaa} else: UpperCAmelCase_ : Dict = {"dtype": jnp.intaa} elif isinstance(_snake_case ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): UpperCAmelCase_ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_snake_case ,PIL.Image.Image ): UpperCAmelCase_ : Any = np.asarray(_snake_case ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ : Any = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_snake_case ,**{**default_dtype, **self.jnp_array_kwargs} ) def UpperCamelCase__ ( self ,_snake_case ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_snake_case ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_snake_case ,"__array__" ) and not isinstance(_snake_case ,jax.Array ): UpperCAmelCase_ : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_snake_case ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) elif isinstance(_snake_case ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_snake_case ) for substruct in data_struct] ) return self._tensorize(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): return map_nested(self._recursive_tensorize ,_snake_case ,map_list=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.python_features_decoder.decode_row(_snake_case ) return self.recursive_tensorize(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[str] = self.numpy_arrow_extractor().extract_column(_snake_case ) UpperCAmelCase_ : str = self.python_features_decoder.decode_column(_snake_case ,pa_table.column_names[0] ) UpperCAmelCase_ : Optional[int] = self.recursive_tensorize(_snake_case ) UpperCAmelCase_ : int = self._consolidate(_snake_case ) return column def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[Any] = self.numpy_arrow_extractor().extract_batch(_snake_case ) UpperCAmelCase_ : Optional[Any] = self.python_features_decoder.decode_batch(_snake_case ) UpperCAmelCase_ : List[Any] = self.recursive_tensorize(_snake_case ) for column_name in batch: UpperCAmelCase_ : Tuple = self._consolidate(batch[column_name] ) return batch
67
'''simple docstring''' from __future__ import annotations _lowerCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" UpperCAmelCase_ : int = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid UpperCAmelCase_ : Tuple = init[0] UpperCAmelCase_ : List[Any] = init[1] UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[Any] = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase_ : List[str] = [[f, g, x, y]] UpperCAmelCase_ : Tuple = False # flag that is set when search is complete UpperCAmelCase_ : Union[str, Any] = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase_ : Dict = cell.pop() UpperCAmelCase_ : Tuple = next_cell[2] UpperCAmelCase_ : str = next_cell[3] UpperCAmelCase_ : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase_ : Optional[Any] = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions UpperCAmelCase_ : Union[str, Any] = x + DIRECTIONS[i][0] UpperCAmelCase_ : Optional[Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase_ : Any = g + cost UpperCAmelCase_ : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[str] = i UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = goal[0] UpperCAmelCase_ : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase_ : Optional[int] = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase_ : Optional[int] = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase_ : Optional[Any] = xa UpperCAmelCase_ : List[str] = ya invpath.append([x, y] ) UpperCAmelCase_ : Tuple = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": _lowerCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _lowerCamelCase = [0, 0] # all coordinates are given in format [y,x] _lowerCamelCase = [len(grid) - 1, len(grid[0]) - 1] _lowerCamelCase = 1 # the cost map which pushes the path closer to the goal _lowerCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _lowerCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _lowerCamelCase = 99 _lowerCamelCase , _lowerCamelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
67
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCAmelCase = False class A_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = "A painting of a squirrel eating a burger " lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = generator.manual_seed(0 ) lowercase = pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self ): lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = "A painting of a squirrel eating a burger " lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
195
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Union[str, Any] = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[str] = "canine" def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=768 , snake_case__ : Tuple=12 , snake_case__ : Optional[Any]=12 , snake_case__ : Union[str, Any]=3072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=1_6384 , snake_case__ : str=16 , snake_case__ : Tuple=0.02 , snake_case__ : Dict=1E-12 , snake_case__ : Any=0 , snake_case__ : Optional[int]=0xe_000 , snake_case__ : List[str]=0xe_001 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : List[Any]=8 , snake_case__ : List[str]=1_6384 , snake_case__ : Union[str, Any]=128 , **snake_case__ : Tuple , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCamelCase_ : Tuple =max_position_embeddings lowerCamelCase_ : Optional[int] =hidden_size lowerCamelCase_ : Tuple =num_hidden_layers lowerCamelCase_ : Dict =num_attention_heads lowerCamelCase_ : str =intermediate_size lowerCamelCase_ : Dict =hidden_act lowerCamelCase_ : List[Any] =hidden_dropout_prob lowerCamelCase_ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase_ : Dict =initializer_range lowerCamelCase_ : Tuple =type_vocab_size lowerCamelCase_ : Optional[Any] =layer_norm_eps # Character config: lowerCamelCase_ : List[str] =downsampling_rate lowerCamelCase_ : List[Any] =upsampling_kernel_size lowerCamelCase_ : Any =num_hash_functions lowerCamelCase_ : Optional[int] =num_hash_buckets lowerCamelCase_ : Union[str, Any] =local_transformer_stride
144
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
173
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : int = 0 @slow def __lowerCamelCase ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Check that tokenizer_type ≠ model_type lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase : Union[str, Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowercase : str = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __lowerCamelCase ( self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowercase : Any = TOKENIZER_MAPPING.values() lowercase : Tuple = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = '''Hello, world. How are you?''' lowercase : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : int = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Check we can load the tokenizer config of an online model. lowercase : Optional[Any] = get_tokenizer_config('''bert-base-cased''' ) lowercase : str = config.pop('''_commit_hash''' , SCREAMING_SNAKE_CASE__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE__ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase : Union[str, Any] = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) lowercase : int = CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __lowerCamelCase ( self ): class __SCREAMING_SNAKE_CASE ( A__ ): A : str = False class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = NewTokenizer A : Optional[int] = False try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): lowercase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''bert-base''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='''aaaaaa''' ) def __lowerCamelCase ( self ): # Make sure we have cached the tokenizer. lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
173
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _lowercase : int ={ "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _lowercase : Union[str, Any] =logging.WARNING def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" a__ : List[Any] = os.getenv("""DATASETS_VERBOSITY""" , _lowercase) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys()) }''') return _default_log_level def lowerCAmelCase_ ( ) -> str: """simple docstring""" return __name__.split(""".""")[0] def lowerCAmelCase_ ( ) -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name()) def lowerCAmelCase_ ( ) -> None: """simple docstring""" # Apply our default configuration to the library root logger. a__ : Any = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level()) def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : List[str] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def lowerCAmelCase_ ( _lowercase : Optional[str] = None) -> logging.Logger: """simple docstring""" if name is None: a__ : Union[str, Any] = _get_library_name() return logging.getLogger(_lowercase) def lowerCAmelCase_ ( ) -> int: """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( _lowercase : int) -> None: """simple docstring""" _get_library_root_logger().setLevel(_lowercase) def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" return set_verbosity(_lowercase) def lowerCAmelCase_ ( ) -> int: """simple docstring""" return set_verbosity(_lowercase) def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" return set_verbosity(_lowercase) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" return set_verbosity(_lowercase) def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : Tuple = False def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class snake_case__ : """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> Any: # pylint: disable=unused-argument """simple docstring""" a__ : Dict = args[0] if args else None def __iter__( self ) -> List[str]: """simple docstring""" return iter(self._iterator ) def __getattr__( self , __lowercase ) -> Dict: """simple docstring""" def empty_fn(*__lowercase , **__lowercase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Optional[Any]: """simple docstring""" return self def __exit__( self , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" return _lowercase : int =True class snake_case__ : """simple docstring""" def __call__( self , *__lowercase , __lowercase=False , **__lowercase ) -> int: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowercase , **__lowercase ) else: return EmptyTqdm(*__lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , *__lowercase , **__lowercase ) -> Optional[Any]: """simple docstring""" a__ : int = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowercase : List[str] =_tqdm_cls() def lowerCAmelCase_ ( ) -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active) def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" global _tqdm_active a__ : Optional[Any] = True def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" global _tqdm_active a__ : Optional[Any] = False
170
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _lowercase : List[str] =None _lowercase : Union[str, Any] =logging.get_logger(__name__) _lowercase : Optional[int] ={"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowercase : Dict ={ "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } _lowercase : str ={ "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _lowercase : Dict ="▁" class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase :Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :Any = ["input_ids", "attention_mask"] __lowerCAmelCase :Any = BarthezTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , **__lowercase , ) -> str: """simple docstring""" a__ : int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( __lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , **__lowercase , ) a__ : List[str] = vocab_file a__ : List[Any] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ : Tuple = [self.cls_token_id] a__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" a__ : List[Any] = [self.sep_token_id] a__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Tuple = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
170
1
'''simple docstring''' from __future__ import annotations def _a ( _lowercase : list , _lowercase : int ): '''simple docstring''' if len(_lowercase ) <= 1 or n <= 1: return insert_next(_lowercase , n - 1 ) rec_insertion_sort(_lowercase , n - 1 ) def _a ( _lowercase : list , _lowercase : int ): '''simple docstring''' if index >= len(_lowercase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase : int = ( collection[index], collection[index - 1], ) insert_next(_lowercase , index + 1 ) if __name__ == "__main__": __UpperCAmelCase :Any = input("Enter integers separated by spaces: ") __UpperCAmelCase :list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
240
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __UpperCAmelCase : Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(_lowercase ) # Let's go __UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(_lowercase , '''func''' ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : Any = args.func(_lowercase ) service.run() if __name__ == "__main__": main()
240
1
def __lowerCamelCase ( lowerCamelCase__ = 100 ): """simple docstring""" lowercase__ : List[Any] = n * (n + 1) * (2 * n + 1) / 6 lowercase__ : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
130
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf_8' ) as f: __UpperCamelCase =csv.reader(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] for dataset in encoded_datasets: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCamelCase =np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =mc_label __UpperCamelCase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE__ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE__ , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) __UpperCamelCase =parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCamelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCamelCase =['_start_', '_delimiter_', '_classify_'] __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : str ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info('Encoding dataset...' ) __UpperCamelCase =load_rocstories_dataset(args.train_dataset ) __UpperCamelCase =load_rocstories_dataset(args.eval_dataset ) __UpperCamelCase =(train_dataset, eval_dataset) __UpperCamelCase =tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer __UpperCamelCase =model.config.n_positions // 2 - 2 __UpperCamelCase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCamelCase =pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =tensor_datasets[0], tensor_datasets[1] __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =SequentialSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCamelCase =args.max_steps __UpperCamelCase =args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCamelCase =list(model.named_parameters() ) __UpperCamelCase =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __UpperCamelCase =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __UpperCamelCase =AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCamelCase =get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(SCREAMING_SNAKE_CASE__ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCamelCase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCamelCase ='Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCamelCase =model.module if hasattr(SCREAMING_SNAKE_CASE__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() __UpperCamelCase , __UpperCamelCase =0, 0 __UpperCamelCase , __UpperCamelCase =0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc='Evaluating' ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch with torch.no_grad(): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =mc_logits.detach().cpu().numpy() __UpperCamelCase =mc_labels.to('cpu' ).numpy() __UpperCamelCase =accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCamelCase =eval_loss / nb_eval_steps __UpperCamelCase =eval_accuracy / nb_eval_examples __UpperCamelCase =tr_loss / nb_tr_steps if args.do_train else None __UpperCamelCase ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __UpperCamelCase =os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
62
0
import pytest import datasets # Import fixture modules as plugins UpperCamelCase_ = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def lowerCamelCase_ ( _a : Dict , _a : str ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=_lowerCamelCase ) def lowerCamelCase_ ( _a : List[str] , _a : Any ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.getbasetemp() / "cache" UpperCAmelCase_ : Any = test_hf_cache_home / "datasets" UpperCAmelCase_ : int = test_hf_cache_home / "metrics" UpperCAmelCase_ : List[str] = test_hf_cache_home / "modules" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(_lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(_lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(_lowerCamelCase ) ) UpperCAmelCase_ : Dict = test_hf_datasets_cache / "downloads" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(_lowerCamelCase ) ) UpperCAmelCase_ : List[str] = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_lowerCamelCase ) ) @pytest.fixture(autouse=_lowerCamelCase , scope="""session""" ) def lowerCamelCase_ ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=_lowerCamelCase ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , _lowerCamelCase )
369
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "The name of the task to train on."} , ) A__ : Optional[List[str]] = dataclasses.field( default=__snake_case , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) A__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) A__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) A__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) A__ : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) A__ : Optional[int] = dataclasses.field( default=__snake_case , metadata={"help": "Random seed for initialization."} , ) def lowerCamelCase_ ( _a : str , _a : List[Any] , _a : List[Any] , _a : Dict , _a : int , _a : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCAmelCase_ : List[str] = dataset.filter(lambda _a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCAmelCase_ : List[str] = int(eval_result * len(_a ) ) print(_a ) UpperCAmelCase_ : int = dataset.sort("""probability""" , reverse=_a ) UpperCAmelCase_ : Optional[int] = dataset.select(range(_a ) ) UpperCAmelCase_ : List[str] = dataset.remove_columns(["""label""", """probability"""] ) UpperCAmelCase_ : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) UpperCAmelCase_ : Union[str, Any] = dataset.map(lambda _a : {"label": idalabel[example["label"]]} ) UpperCAmelCase_ : int = dataset.shuffle(seed=args.seed ) UpperCAmelCase_ : int = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(_a , index=_a ) else: dataset.to_json(_a ) def lowerCamelCase_ ( _a : Any , _a : int , _a : Dict , _a : List[Any] , **_a : int ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ : Tuple = STModelArguments(model_name_or_path=_a ) UpperCAmelCase_ : str = STDataArguments(train_file=_a , infer_file=_a ) UpperCAmelCase_ : Optional[Any] = STTrainingArguments(output_dir=_a ) UpperCAmelCase_ : Optional[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_a ).items(): setattr(_a , _a , _a ) for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) # Sanity checks UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : Any = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCAmelCase_ : List[Any] = args.train_file UpperCAmelCase_ : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCAmelCase_ : Dict = args.eval_file for key in data_files: UpperCAmelCase_ : List[str] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: UpperCAmelCase_ : int = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) UpperCAmelCase_ : int = F'''{args.output_dir}/self-train_iter-{{}}'''.format UpperCAmelCase_ : List[Any] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_a ) os.makedirs(_a , exist_ok=_a ) accelerator.wait_for_everyone() UpperCAmelCase_ : Any = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[Any] = False # Show the progress bar UpperCAmelCase_ : List[str] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCAmelCase_ : Any = data_dir_format(_a ) assert os.path.exists(_a ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCAmelCase_ : List[str] = os.path.join(_a , """stage-1""" ) UpperCAmelCase_ : Optional[int] = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_a , _a ): arguments_dict.update({key: value} ) UpperCAmelCase_ : Any = os.path.join(_a , """best-checkpoint""" , _a ) if os.path.exists(_a ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , _a , _a , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , _a ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCAmelCase_ : Dict = os.path.join(_a , """best-checkpoint""" ) UpperCAmelCase_ : str = os.path.join(_a , """stage-2""" ) # Update arguments_dict UpperCAmelCase_ : Union[str, Any] = model_path UpperCAmelCase_ : Dict = data_files["""train"""] UpperCAmelCase_ : List[str] = current_output_dir UpperCAmelCase_ : str = os.path.join(_a , """best-checkpoint""" , _a ) if os.path.exists(_a ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , _a , _a , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , _a ) UpperCAmelCase_ : Optional[Any] = iteration UpperCAmelCase_ : List[str] = data_dir_format(iteration + 1 ) UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(os.path.join(_a , """best-checkpoint""" ) ) UpperCAmelCase_ : str = config.idalabel UpperCAmelCase_ : Union[str, Any] = os.path.join(_a , """eval_results_best-checkpoint.json""" ) UpperCAmelCase_ : int = os.path.join(_a , """test_results_best-checkpoint.json""" ) assert os.path.exists(_a ) with open(_a , """r""" ) as f: UpperCAmelCase_ : Optional[int] = float(json.load(_a )[args.eval_metric] ) UpperCAmelCase_ : Dict = os.path.join(_a , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(_a ) # Loading the dataset from local csv or json files. UpperCAmelCase_ : Optional[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] UpperCAmelCase_ : List[str] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(_a , exist_ok=_a ) shutil.copy(_a , os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(_a ): shutil.copy(_a , os.path.join(_a , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(_a , _a , _a , _a , _a , _a ) accelerator.wait_for_everyone() UpperCAmelCase_ : Tuple = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCAmelCase_ : Optional[Any] = eval_result if best_iteration is None: UpperCAmelCase_ : Optional[int] = new_iteration UpperCAmelCase_ : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCAmelCase_ : List[str] = new_iteration UpperCAmelCase_ : Union[str, Any] = new_eval_result UpperCAmelCase_ : int = 0 else: if new_eval_result == best_eval_result: UpperCAmelCase_ : Dict = new_iteration UpperCAmelCase_ : Optional[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCAmelCase_ : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , _a ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(_a , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_a , """eval_results_best-iteration.json""" ) , )
59
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None SCREAMING_SNAKE_CASE : Any = namedtuple("""CoinsDistribResult""", """moves excess""") def lowercase ( _snake_case : TreeNode | None ) ->int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(_snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_snake_case ) != count_coins(_snake_case ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_snake_case : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __snake_case , __snake_case : int = get_distrib(node.left ) __snake_case , __snake_case : List[str] = get_distrib(node.right ) __snake_case : Any = 1 - left_distrib_excess __snake_case : Tuple = 1 - right_distrib_excess __snake_case : Any = ( left_distrib_moves + right_distrib_moves + abs(_snake_case ) + abs(_snake_case ) ) __snake_case : Dict = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_snake_case , _snake_case ) return get_distrib(_snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=32 , a_=3 , a_=4 , a_=[10, 20, 30, 40] , a_=[2, 2, 3, 2] , a_=True , a_=True , a_=37 , a_="gelu" , a_=10 , a_=0.02 , a_=["stage2", "stage3", "stage4"] , a_=[2, 3, 4] , a_=None , ): '''simple docstring''' __snake_case : List[str] = parent __snake_case : str = batch_size __snake_case : List[Any] = image_size __snake_case : List[Any] = num_channels __snake_case : str = num_stages __snake_case : Any = hidden_sizes __snake_case : Optional[int] = depths __snake_case : Dict = is_training __snake_case : Tuple = use_labels __snake_case : str = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Dict = num_labels __snake_case : Tuple = initializer_range __snake_case : Dict = out_features __snake_case : Optional[int] = out_indices __snake_case : str = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Dict = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : str = None __snake_case : Optional[Any] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Any = {'''pixel_values''': pixel_values} return config, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Optional[int] = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__ =( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ConvNextVaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : int = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue __snake_case : Dict = model_class(a_ ) model.to(a_ ) model.train() __snake_case : Tuple = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : List[str] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : Optional[Any] = False __snake_case : Tuple = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue __snake_case : Union[str, Any] = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case : str = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : Union[str, Any] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' def check_hidden_states_output(a_ , a_ , a_ ): __snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : List[Any] = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase ( ) ->Any: """simple docstring""" __snake_case : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(a_ ) __snake_case : Dict = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : Tuple = preprocessor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(**a_ ) # verify the logits __snake_case : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case : Any = torch.tensor([0.9996, 0.1966, -0.4386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1E-4 ) )
102
1
import enum import shutil import sys UpperCAmelCase_ , UpperCAmelCase_ : Tuple = shutil.get_terminal_size() UpperCAmelCase_ : List[Any] = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class _SCREAMING_SNAKE_CASE ( enum.Enum ): snake_case__ : Optional[int] = 0 snake_case__ : int = 1 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Tuple="" ) -> int: """simple docstring""" sys.stdout.write(str(__magic_name__ ) + end ) sys.stdout.flush() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Optional[Any]="" ) -> Dict: """simple docstring""" forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Dict: """simple docstring""" forceWrite("""\r""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : str ) -> str: """simple docstring""" forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: """simple docstring""" forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: """simple docstring""" reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
62
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : List[Any] = StableDiffusionLDMaDPipeline snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _A ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase :Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase :Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase :Optional[int] = CLIPTextModel(__lowerCamelCase ) UpperCamelCase :Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase :str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _A ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=0 ): if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :List[str] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :Any = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _A ( self : Union[str, Any] ): UpperCamelCase :str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Any = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1] UpperCamelCase :int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :int = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) UpperCamelCase :Dict = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _A ( self : str ): UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :int = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs["""prompt"""]] # forward UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :Tuple = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :List[Any] = depth_slice_a[0, -3:, -1] UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs.pop("""prompt""" )] UpperCamelCase :List[Any] = ldmad_pipe.tokenizer( __lowerCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="""pt""" , ) UpperCamelCase :List[str] = text_inputs["""input_ids"""].to(__lowerCamelCase ) UpperCamelCase :List[Any] = ldmad_pipe.text_encoder(__lowerCamelCase )[0] UpperCamelCase :Dict = prompt_embeds # forward UpperCamelCase :str = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = output.rgb, output.depth UpperCamelCase :Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _A ( self : List[Any] ): UpperCamelCase :int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Any = self.get_dummy_components() UpperCamelCase :Optional[int] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCamelCase :Tuple = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[int] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :str = """french fries""" UpperCamelCase :Optional[int] = ldmad_pipe(**__lowerCamelCase , negative_prompt=__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :List[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase :str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :Dict = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) UpperCamelCase :Any = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple="cpu" , __lowerCamelCase : str=torch.floataa , __lowerCamelCase : Tuple=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :str = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Tuple = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) UpperCamelCase :Any = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[int] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase :Optional[Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase :Tuple = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) UpperCamelCase :Optional[Any] = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Dict="cpu" , __lowerCamelCase : int=torch.floataa , __lowerCamelCase : Union[str, Any]=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Any = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Optional[Any] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : str ): UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Union[str, Any] = output.rgb, output.depth UpperCamelCase :Dict = 0.495586 UpperCamelCase :Dict = 0.33795515 UpperCamelCase :Union[str, Any] = 112.48518 UpperCamelCase :Any = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _A ( self : Union[str, Any] ): UpperCamelCase :List[str] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :int = output.rgb, output.depth UpperCamelCase :Optional[int] = 0.4194127 UpperCamelCase :str = 0.35375586 UpperCamelCase :Union[str, Any] = 0.5638502 UpperCamelCase :Union[str, Any] = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
62
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Optional[Any] = args.pruning_method _lowercase : Tuple = args.threshold _lowercase : int = args.model_name_or_path.rstrip('/' ) _lowercase : List[str] = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : Optional[int] = torch.load(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) _lowercase : Dict = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Union[str, Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : Optional[Any] = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Union[str, Any] = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : List[str] = MagnitudeBinarizer.apply(inputs=lowerCamelCase_ , threshold=lowerCamelCase_ ) _lowercase : str = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Dict = name[:-6] _lowercase : Optional[Any] = model[F'''{prefix_}mask_scores'''] _lowercase : Union[str, Any] = TopKBinarizer.apply(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Union[str, Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Dict = model[F'''{prefix_}mask_scores'''] _lowercase : List[Any] = ThresholdBinarizer.apply(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Tuple = model[F'''{prefix_}mask_scores'''] _lowercase , _lowercase : Any = -0.1, 1.1 _lowercase : Dict = torch.sigmoid(lowerCamelCase_ ) _lowercase : List[Any] = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0 , max=1.0 ) _lowercase : Optional[Any] = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : Tuple = os.path.join( os.path.dirname(lowerCamelCase_ ) , F'''bertarized_{os.path.basename(lowerCamelCase_ )}''' ) if not os.path.isdir(lowerCamelCase_ ): shutil.copytree(lowerCamelCase_ , lowerCamelCase_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() main(args)
21
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not numbers: return 0 if not isinstance(lowerCamelCase_ , (list, tuple) ) or not all( isinstance(lowerCamelCase_ , lowerCamelCase_ ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowercase : int = numbers[0] for i in range(1 , len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products _lowercase : Union[str, Any] = numbers[i] if number < 0: _lowercase , _lowercase : Any = min_till_now, max_till_now _lowercase : Union[str, Any] = max(lowerCamelCase_ , max_till_now * number ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , min_till_now * number ) # update the maximum product found till now _lowercase : Optional[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) return max_prod
21
1
from math import isqrt def lowerCamelCase__ ( snake_case_ : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case_ ) + 1 ) ) def lowerCamelCase__ ( snake_case_ : int = 10**6 ) -> int: __snake_case = 0 __snake_case = 1 __snake_case = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
238
from __future__ import annotations snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'MIT' snake_case_ = '1.0.0' snake_case_ = 'Muhammad Umer Farooq' snake_case_ = '[email protected]' snake_case_ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Dict , a__ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def a (self : Tuple , a__ : str , a__ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a__ ) self.urls.append(a__ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return ".".join(get_sub_domain_name(snake_case_ ).split('''.''' )[-2:] ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return parse.urlparse(snake_case_ ).netloc def lowerCamelCase__ ( snake_case_ : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(snake_case_ ) # Initialize the parser __snake_case = Parser(snake_case_ ) try: # Open URL __snake_case = requests.get(snake_case_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(snake_case_ ) # Get the valid email. __snake_case = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(snake_case_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(snake_case_ ) if __name__ == "__main__": snake_case_ = emails_from_url('https://github.com') print(F'{len(emails)} emails found:') print('\n'.join(sorted(emails)))
238
1
'''simple docstring''' import math def lowerCamelCase (): __a : Tuple = input('Enter message: ' ) __a : Optional[Any] = int(input(F"""Enter key [2-{len(SCREAMING_SNAKE_CASE_ ) - 1}]: """ ) ) __a : Any = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): __a : Dict = encrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif mode.lower().startswith('d' ): __a : Dict = decrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + "|"}""" ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): __a : str = [""] * key for col in range(SCREAMING_SNAKE_CASE_ ): __a : str = col while pointer < len(SCREAMING_SNAKE_CASE_ ): cipher_text[col] += message[pointer] pointer += key return "".join(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): __a : Any = math.ceil(len(SCREAMING_SNAKE_CASE_ ) / key ) __a : Union[str, Any] = key __a : Union[str, Any] = (num_cols * num_rows) - len(SCREAMING_SNAKE_CASE_ ) __a : List[Any] = [""] * num_cols __a : Optional[int] = 0 __a : Union[str, Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __a : Optional[int] = 0 row += 1 return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
0
'''simple docstring''' from math import pow, sqrt def UpperCamelCase_ ( *A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = len(A__ ) > 0 and all(value > 0.0 for value in values ) return result def UpperCamelCase_ ( A__ : Dict , A__ : Optional[int] ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def UpperCamelCase_ ( A__ : List[str] , A__ : Optional[Any] , A__ : Tuple ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def UpperCamelCase_ ( A__ : Dict , A__ : str , A__ : Optional[Any] ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : str , A__ : List[Any] ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def UpperCamelCase_ ( A__ : int , A__ : int , A__ : List[str] ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(A__ , A__ , A__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
358
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[Any] , A__ : str=False ): '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowerCAmelCase_ : str = """segformer.encoder.""" + key if key.startswith("""backbone""" ): lowerCAmelCase_ : str = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase_ : List[str] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase_ : List[Any] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(A__ )-1}' ) if "norm" in key: lowerCAmelCase_ : Any = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase_ : Tuple = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowerCAmelCase_ : int = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(A__ )-1}' ) if "layer_norm1" in key: lowerCAmelCase_ : str = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase_ : Union[str, Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase_ : Any = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase_ : str = key.replace(f'block{idx}' , f'block.{int(A__ )-1}' ) if "attn.q" in key: lowerCAmelCase_ : List[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase_ : Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase_ : str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase_ : List[Any] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase_ : Optional[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase_ : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase_ : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase_ : Dict = key.replace(f'linear_c{idx}' , f'linear_c.{int(A__ )-1}' ) if key.startswith("""head""" ): lowerCAmelCase_ : int = key.replace("""head""" , """classifier""" ) lowerCAmelCase_ : int = value return new_state_dict def UpperCamelCase_ ( A__ : int , A__ : Union[str, Any] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase_ : int = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase_ : Optional[int] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase_ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase_ : Optional[Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase_ : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase_ : str = kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : str = SegformerConfig() lowerCAmelCase_ : Optional[Any] = False # set attributes based on model_name lowerCAmelCase_ : int = """huggingface/label-files""" if "segformer" in model_name: lowerCAmelCase_ : Optional[int] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowerCAmelCase_ : List[Any] = 1_50 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Tuple = (1, 1_50, 1_28, 1_28) elif "city" in model_name: lowerCAmelCase_ : List[str] = 19 lowerCAmelCase_ : Dict = """cityscapes-id2label.json""" lowerCAmelCase_ : List[str] = (1, 19, 1_28, 1_28) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = model_name[4:6] lowerCAmelCase_ : Union[str, Any] = 10_00 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Optional[Any] = (1, 10_00) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes lowerCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : int = 2_56 elif size == "b2": lowerCAmelCase_ : Any = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : List[str] = 7_68 lowerCAmelCase_ : Any = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase_ : List[str] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Union[str, Any] = 7_68 lowerCAmelCase_ : Union[str, Any] = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : Tuple = 7_68 lowerCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] lowerCAmelCase_ : str = 7_68 lowerCAmelCase_ : Any = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) lowerCAmelCase_ : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=A__ , align=A__ , do_random_crop=A__ ) # prepare image lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=A__ , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: lowerCAmelCase_ : str = torch.load(A__ , map_location=torch.device("""cpu""" ) ) else: lowerCAmelCase_ : List[str] = torch.load(A__ , map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys lowerCAmelCase_ : Dict = rename_keys(A__ , encoder_only=A__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = SegformerForImageClassification(A__ ) else: lowerCAmelCase_ : str = SegformerForSemanticSegmentation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass lowerCAmelCase_ : Tuple = model(A__ ) lowerCAmelCase_ : Union[str, Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase_ : Tuple = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase_ : List[str] = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase_ : Dict = torch.tensor( [ [ [-1.13_72E01, -1.27_87E01, -1.34_77E01], [-1.25_36E01, -1.41_94E01, -1.44_09E01], [-1.32_17E01, -1.48_88E01, -1.53_27E01], ], [ [-1.47_91E01, -1.71_22E01, -1.82_77E01], [-1.71_63E01, -1.91_92E01, -1.95_33E01], [-1.78_97E01, -1.99_91E01, -2.03_15E01], ], [ [7.67_23E-01, 4.19_21E-01, -7.78_78E-02], [4.77_72E-01, 9.55_57E-03, -2.80_82E-01], [3.60_32E-01, -2.48_26E-01, -5.11_68E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase_ : str = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase_ : int = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowerCAmelCase_ : Optional[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : Tuple = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
89
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: str = "▁" , snake_case: bool = True , snake_case: Union[str, AddedToken] = "<unk>" , snake_case: Union[str, AddedToken] = "</s>" , snake_case: Union[str, AddedToken] = "<pad>" , ) -> Any: snake_case_ :Any = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } snake_case_ :Dict = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case_ :Tuple = token_dict["""token"""] snake_case_ :Union[str, Any] = Tokenizer(Unigram() ) snake_case_ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) snake_case_ :str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=snake_case , add_prefix_space=snake_case ), pre_tokenizers.Digits(individual_digits=snake_case ), pre_tokenizers.Punctuation(), ] ) snake_case_ :Dict = decoders.Metaspace(replacement=snake_case , add_prefix_space=snake_case ) snake_case_ :str = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) snake_case_ :Tuple = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(snake_case , snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: Union[str, List[str]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> int: snake_case_ :List[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) if isinstance(snake_case , snake_case ): snake_case_ :int = [files] self._tokenizer.train(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: Dict , snake_case: Union[Iterator[str], Iterator[Iterator[str]]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> List[str]: snake_case_ :Optional[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) self._tokenizer.train_from_iterator(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: List[Any] ) -> Tuple: snake_case_ :Dict = json.loads(self._tokenizer.to_str() ) snake_case_ :Optional[int] = self.special_tokens["""unk"""]["""id"""] snake_case_ :Optional[int] = Tokenizer.from_str(json.dumps(snake_case ) )
66
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __A ( lowerCAmelCase ): def __init__( self : List[str] , *UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Union[str, Any] ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Any = eval_examples lowerCAmelCase : List[Any] = post_process_function def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str = "eval" ): lowerCAmelCase : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase : Optional[Any] = self.get_eval_dataloader(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : Optional[int] = self.compute_metrics lowerCAmelCase : Any = None lowerCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase : str = time.time() try: lowerCAmelCase : List[str] = eval_loop( UpperCAmelCase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , metric_key_prefix=UpperCAmelCase_ , ) finally: lowerCAmelCase : Dict = compute_metrics lowerCAmelCase : List[str] = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( UpperCAmelCase_ , UpperCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCAmelCase : str = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions ) lowerCAmelCase : List[str] = self.compute_metrics(UpperCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): lowerCAmelCase : Tuple = metrics.pop(UpperCAmelCase_ ) metrics.update(output.metrics ) else: lowerCAmelCase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCAmelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase_ ) return metrics def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str = "test" ): lowerCAmelCase : int = self.get_test_dataloader(UpperCAmelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : int = self.compute_metrics lowerCAmelCase : Dict = None lowerCAmelCase : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase : Optional[Any] = time.time() try: lowerCAmelCase : Optional[Any] = eval_loop( UpperCAmelCase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , metric_key_prefix=UpperCAmelCase_ , ) finally: lowerCAmelCase : Optional[int] = compute_metrics lowerCAmelCase : Dict = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( UpperCAmelCase_ , UpperCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase : Dict = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions , 'predict' ) lowerCAmelCase : Optional[Any] = self.compute_metrics(UpperCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): lowerCAmelCase : int = metrics.pop(UpperCAmelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase_ )
323
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
1
import tensorflow as tf from ...tf_utils import shape_list class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=1 ,snake_case=False ,**snake_case ): '''simple docstring''' super().__init__(**snake_case_ ) lowercase : Union[str, Any] = vocab_size lowercase : List[Any] = d_embed lowercase : List[str] = d_proj lowercase : Any = cutoffs + [vocab_size] lowercase : List[str] = [0] + self.cutoffs lowercase : Optional[int] = div_val lowercase : Optional[Any] = self.cutoffs[0] lowercase : List[str] = len(self.cutoffs ) - 1 lowercase : Optional[int] = self.shortlist_size + self.n_clusters lowercase : Any = keep_order lowercase : List[Any] = [] lowercase : Optional[Any] = [] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.n_clusters > 0: lowercase : str = self.add_weight( shape=(self.n_clusters, self.d_embed) ,initializer="""zeros""" ,trainable=snake_case_ ,name="""cluster_weight""" ) lowercase : Dict = self.add_weight( shape=(self.n_clusters,) ,initializer="""zeros""" ,trainable=snake_case_ ,name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowercase : Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_projs_._{i}" ,) self.out_projs.append(snake_case_ ) else: self.out_projs.append(snake_case_ ) lowercase : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._weight" ,) lowercase : List[Any] = self.add_weight( shape=(self.vocab_size,) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._bias" ,) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowercase , lowercase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase : Optional[int] = self.d_embed // (self.div_val**i) lowercase : int = self.add_weight( shape=(d_emb_i, self.d_proj) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_projs_._{i}" ) self.out_projs.append(snake_case_ ) lowercase : Dict = self.add_weight( shape=(r_idx - l_idx, d_emb_i) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._weight" ,) lowercase : Any = self.add_weight( shape=(r_idx - l_idx,) ,initializer="""zeros""" ,trainable=snake_case_ ,name=f"out_layers_._{i}_._bias" ,) self.out_layers.append((weight, bias) ) super().build(snake_case_ ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = x if proj is not None: lowercase : Union[str, Any] = tf.einsum("""ibd,ed->ibe""" ,snake_case_ ,snake_case_ ) return tf.einsum("""ibd,nd->ibn""" ,snake_case_ ,snake_case_ ) + b @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = shape_list(snake_case_ ) lowercase : Optional[Any] = tf.range(lp_size[0] ,dtype=target.dtype ) lowercase : Optional[int] = tf.stack([r, target] ,1 ) return tf.gather_nd(snake_case_ ,snake_case_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case=True ,snake_case=False ): '''simple docstring''' lowercase : List[str] = 0 if self.n_clusters == 0: lowercase : Tuple = self._logit(snake_case_ ,self.out_layers[0][0] ,self.out_layers[0][1] ,self.out_projs[0] ) if target is not None: lowercase : Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case_ ,logits=snake_case_ ) lowercase : str = tf.nn.log_softmax(snake_case_ ,axis=-1 ) else: lowercase : Tuple = shape_list(snake_case_ ) lowercase : Optional[int] = [] lowercase : List[Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowercase , lowercase : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowercase : Optional[int] = (target >= l_idx) & (target < r_idx) lowercase : str = tf.where(snake_case_ ) lowercase : Union[str, Any] = tf.boolean_mask(snake_case_ ,snake_case_ ) - l_idx if self.div_val == 1: lowercase : Tuple = self.out_layers[0][0][l_idx:r_idx] lowercase : Dict = self.out_layers[0][1][l_idx:r_idx] else: lowercase : int = self.out_layers[i][0] lowercase : Any = self.out_layers[i][1] if i == 0: lowercase : str = tf.concat([cur_W, self.cluster_weight] ,0 ) lowercase : Optional[int] = tf.concat([cur_b, self.cluster_bias] ,0 ) lowercase : int = self._logit(snake_case_ ,snake_case_ ,snake_case_ ,self.out_projs[0] ) lowercase : Optional[int] = tf.nn.log_softmax(snake_case_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowercase : List[Any] = tf.boolean_mask(snake_case_ ,snake_case_ ) lowercase : Dict = self._gather_logprob(snake_case_ ,snake_case_ ) else: lowercase : Optional[int] = self._logit(snake_case_ ,snake_case_ ,snake_case_ ,self.out_projs[i] ) lowercase : Optional[int] = tf.nn.log_softmax(snake_case_ ) lowercase : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster lowercase : Union[str, Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(snake_case_ ) if target is not None: lowercase : Any = tf.boolean_mask(snake_case_ ,snake_case_ ) lowercase : Any = tf.boolean_mask(snake_case_ ,snake_case_ ) lowercase : List[Any] = self._gather_logprob(snake_case_ ,snake_case_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(snake_case_ ,-cur_logprob ,shape_list(snake_case_ ) ) lowercase : Union[str, Any] = tf.concat(snake_case_ ,axis=-1 ) if target is not None: if return_mean: lowercase : List[str] = tf.reduce_mean(snake_case_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(snake_case_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(snake_case_ ,name=self.name ,aggregation="""mean""" if return_mean else """""" ) return out
20
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : Optional[Any] = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case__ ( __lowercase ): A__ = '''unispeech''' def __init__( self : Any , __a : Tuple=32 , __a : Any=768 , __a : List[str]=12 , __a : Optional[Any]=12 , __a : Tuple=3072 , __a : Dict="gelu" , __a : Optional[Any]=0.1 , __a : int=0.1 , __a : List[str]=0.1 , __a : Any=0.0 , __a : Tuple=0.0 , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : Optional[int]=0.0_2 , __a : str=1e-5 , __a : List[Any]="group" , __a : Optional[Any]="gelu" , __a : str=(512, 512, 512, 512, 512, 512, 512) , __a : List[Any]=(5, 2, 2, 2, 2, 2, 2) , __a : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , __a : List[str]=False , __a : List[str]=128 , __a : Optional[Any]=16 , __a : Union[str, Any]=False , __a : Tuple=True , __a : Dict=0.0_5 , __a : int=10 , __a : Optional[int]=2 , __a : Any=0.0 , __a : str=10 , __a : Optional[Any]=0 , __a : Any=320 , __a : Any=2 , __a : str=0.1 , __a : List[str]=100 , __a : str=256 , __a : str=256 , __a : List[str]=0.1 , __a : str="mean" , __a : List[Any]=False , __a : Tuple=False , __a : Any=256 , __a : List[Any]=80 , __a : List[str]=0 , __a : List[Any]=1 , __a : Union[str, Any]=2 , __a : List[Any]=0.5 , **__a : Any , ) -> Dict: '''simple docstring''' super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) __snake_case : Optional[int] = hidden_size __snake_case : List[str] = feat_extract_norm __snake_case : Union[str, Any] = feat_extract_activation __snake_case : Any = list(_a ) __snake_case : Optional[int] = list(_a ) __snake_case : Dict = list(_a ) __snake_case : List[str] = conv_bias __snake_case : int = num_conv_pos_embeddings __snake_case : List[Any] = num_conv_pos_embedding_groups __snake_case : List[str] = len(self.conv_dim ) __snake_case : Tuple = num_hidden_layers __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_act __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[Any] = hidden_dropout __snake_case : Dict = attention_dropout __snake_case : Tuple = activation_dropout __snake_case : Any = feat_proj_dropout __snake_case : Union[str, Any] = final_dropout __snake_case : Dict = layerdrop __snake_case : Optional[int] = layer_norm_eps __snake_case : Union[str, Any] = initializer_range __snake_case : List[str] = num_ctc_classes __snake_case : int = vocab_size __snake_case : List[Any] = do_stable_layer_norm __snake_case : str = use_weighted_layer_sum __snake_case : Optional[int] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : Optional[Any] = apply_spec_augment __snake_case : Dict = mask_time_prob __snake_case : Tuple = mask_time_length __snake_case : Tuple = mask_time_min_masks __snake_case : List[Any] = mask_feature_prob __snake_case : Dict = mask_feature_length __snake_case : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __snake_case : int = num_codevectors_per_group __snake_case : Optional[Any] = num_codevector_groups __snake_case : str = contrastive_logits_temperature __snake_case : Tuple = feat_quantizer_dropout __snake_case : Optional[Any] = num_negatives __snake_case : str = codevector_dim __snake_case : Tuple = proj_codevector_dim __snake_case : Optional[Any] = diversity_loss_weight # ctc loss __snake_case : List[Any] = ctc_loss_reduction __snake_case : Any = ctc_zero_infinity # pretraining loss __snake_case : Any = replace_prob @property def A_ ( self : Optional[Any] ) -> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
371
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Optional[int] = {} class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''llama''' A__ = ['''past_key_values'''] def __init__( self : Any , __a : List[str]=32000 , __a : Union[str, Any]=4096 , __a : Optional[Any]=11008 , __a : Any=32 , __a : str=32 , __a : Optional[int]=None , __a : Dict="silu" , __a : Dict=2048 , __a : List[str]=0.0_2 , __a : Union[str, Any]=1e-6 , __a : Dict=True , __a : List[str]=0 , __a : Tuple=1 , __a : Tuple=2 , __a : Optional[Any]=1 , __a : Any=False , __a : Tuple=None , **__a : List[Any] , ) -> Optional[int]: '''simple docstring''' __snake_case : str = vocab_size __snake_case : List[str] = max_position_embeddings __snake_case : List[Any] = hidden_size __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[int] = num_hidden_layers __snake_case : List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[Any] = num_key_value_heads __snake_case : int = hidden_act __snake_case : Any = initializer_range __snake_case : Any = rms_norm_eps __snake_case : Union[str, Any] = pretraining_tp __snake_case : Optional[int] = use_cache __snake_case : Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) __snake_case : Optional[Any] = self.rope_scaling.get('type' , __a ) __snake_case : Tuple = self.rope_scaling.get('factor' , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
0
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int, UpperCAmelCase__ : Any, UpperCAmelCase__ : str=7, UpperCAmelCase__ : int=3, UpperCAmelCase__ : List[Any]=1_8, UpperCAmelCase__ : Optional[Any]=3_0, UpperCAmelCase__ : Optional[int]=4_0_0, UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Dict=True, UpperCAmelCase__ : List[str]=None, ): __lowercase = size if size is not None else {"height": 2_0, "width": 2_0} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = size __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] __lowercase = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowercase ( self : Tuple ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowercase ( self : Any ): __lowercase = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" __lowercase = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." ,) @require_torch @require_vision class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def _lowercase ( self : Union[str, Any] ): __lowercase = PixaStructImageProcessingTester(self ) @property def _lowercase ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : int ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__, "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "do_convert_rgb" ) ) def _lowercase ( self : int ): __lowercase = self.image_processor_tester.prepare_dummy_image() __lowercase = self.image_processing_class(**self.image_processor_dict ) __lowercase = 2_0_4_8 __lowercase = image_processor(UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_606 ), atol=1E-3, rtol=1E-3 ) ) def _lowercase ( self : Dict ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def _lowercase ( self : Tuple ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 __lowercase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCAmelCase__ ): __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches __lowercase = "Hello" __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__, header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__, header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def _lowercase ( self : Any ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, np.ndarray ) __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def _lowercase ( self : Dict ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, torch.Tensor ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 ,reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." ,) @require_torch @require_vision class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowercase ( self : str ): __lowercase = PixaStructImageProcessingTester(self, num_channels=4 ) __lowercase = 3 @property def _lowercase ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : str ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__, "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__, "do_convert_rgb" ) ) def _lowercase ( self : List[Any] ): # Initialize image_processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input __lowercase = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowercase = image_processor( image_inputs[0], return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched __lowercase = image_processor( UpperCAmelCase__, return_tensors="pt", max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
17
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations(snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations_with_dp_array( snake_case__ , snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __UpperCamelCase : Any = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __UpperCamelCase : List[str] = answer return answer __UpperCamelCase : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = [0] * (target + 1) __UpperCamelCase : Tuple = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = 3 _lowerCAmelCase = 5 _lowerCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
298
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Collection[float] | None = None ): if components is None: lowercase__ : List[Any] = [] lowercase__ : str = list(SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ): return len(self.__components ) def __str__( self : int ): return "(" + ",".join(map(SCREAMING_SNAKE_CASE , self.__components ) ) + ")" def __add__( self : List[Any] , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Optional[Any] = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : int = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: raise Exception("must have the same size" ) def __sub__( self : Any , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Any = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : Any = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : int , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , (float, int) ): lowercase__ : Dict = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(self ) == len(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = len(self ) lowercase__ : Union[str, Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return sum(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("invalid operand!" ) def snake_case ( self : Any ): return Vector(self.__components ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): assert -len(self.__components ) <= pos < len(self.__components ) lowercase__ : int = value def snake_case ( self : Any ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Vector , SCREAMING_SNAKE_CASE : bool = False ): lowercase__ : Optional[Any] = self * other lowercase__ : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) return Vector([0] * dimension ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , lowerCamelCase__ )) lowercase__ : Tuple = [0] * dimension lowercase__ : Union[str, Any] = 1 return Vector(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , (int, float) )) ) return x * scalar + y def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : Optional[Any] = [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : list[list[float]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[str] = matrix lowercase__ : int = w lowercase__ : str = h def __str__( self : int ): lowercase__ : int = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : str , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Union[str, Any] = [] for i in range(self.__height ): lowercase__ : int = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Dict , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Dict = [] for i in range(self.__height ): lowercase__ : Optional[Any] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Any , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Optional[Any] , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # matrix-vector if len(SCREAMING_SNAKE_CASE ) == self.__width: lowercase__ : Any = zero_vector(self.__height ) for i in range(self.__height ): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE , sum(SCREAMING_SNAKE_CASE ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(SCREAMING_SNAKE_CASE , (int, float) ): # matrix-scalar lowercase__ : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) return None def snake_case ( self : Union[str, Any] ): return self.__height def snake_case ( self : Optional[Any] ): return self.__width def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Union[str, Any] = value else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) lowercase__ : str = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE , self.__width - 1 , self.__height - 1 ).determinant() def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: raise Exception("Indices out of bounds" ) def snake_case ( self : List[str] ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : list[list[float]] = [[0] * n for _ in range(lowerCamelCase__ )] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : list[list[float]] = [ [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ ) ] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
371
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Collection[float] | None = None ): if components is None: lowercase__ : List[Any] = [] lowercase__ : str = list(SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ): return len(self.__components ) def __str__( self : int ): return "(" + ",".join(map(SCREAMING_SNAKE_CASE , self.__components ) ) + ")" def __add__( self : List[Any] , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Optional[Any] = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : int = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: raise Exception("must have the same size" ) def __sub__( self : Any , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Any = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : Any = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : int , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , (float, int) ): lowercase__ : Dict = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(self ) == len(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = len(self ) lowercase__ : Union[str, Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return sum(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("invalid operand!" ) def snake_case ( self : Any ): return Vector(self.__components ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): assert -len(self.__components ) <= pos < len(self.__components ) lowercase__ : int = value def snake_case ( self : Any ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Vector , SCREAMING_SNAKE_CASE : bool = False ): lowercase__ : Optional[Any] = self * other lowercase__ : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) return Vector([0] * dimension ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , lowerCamelCase__ )) lowercase__ : Tuple = [0] * dimension lowercase__ : Union[str, Any] = 1 return Vector(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , (int, float) )) ) return x * scalar + y def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : Optional[Any] = [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : list[list[float]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[str] = matrix lowercase__ : int = w lowercase__ : str = h def __str__( self : int ): lowercase__ : int = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : str , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Union[str, Any] = [] for i in range(self.__height ): lowercase__ : int = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Dict , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Dict = [] for i in range(self.__height ): lowercase__ : Optional[Any] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Any , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Optional[Any] , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # matrix-vector if len(SCREAMING_SNAKE_CASE ) == self.__width: lowercase__ : Any = zero_vector(self.__height ) for i in range(self.__height ): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE , sum(SCREAMING_SNAKE_CASE ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(SCREAMING_SNAKE_CASE , (int, float) ): # matrix-scalar lowercase__ : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) return None def snake_case ( self : Union[str, Any] ): return self.__height def snake_case ( self : Optional[Any] ): return self.__width def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Union[str, Any] = value else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) lowercase__ : str = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE , self.__width - 1 , self.__height - 1 ).determinant() def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: raise Exception("Indices out of bounds" ) def snake_case ( self : List[str] ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : list[list[float]] = [[0] * n for _ in range(lowerCamelCase__ )] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : list[list[float]] = [ [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ ) ] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
121
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase_ = "pt" elif is_tf_available(): lowerCamelCase_ = "tf" else: lowerCamelCase_ = "jax" class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = ByTaTokenizer SCREAMING_SNAKE_CASE_ : Dict = False def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE :Tuple = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self ,**SCREAMING_SNAKE_CASE__ ) -> ByTaTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=20 ,SCREAMING_SNAKE_CASE__=5 ) -> Tuple[str, list]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: __SCREAMING_SNAKE_CASE :str = tokenizer.decode([i] ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __SCREAMING_SNAKE_CASE :Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(R'''^[ a-zA-Z]+$''' ,t[1] ) ,SCREAMING_SNAKE_CASE__ ) ) __SCREAMING_SNAKE_CASE :List[Any] = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: __SCREAMING_SNAKE_CASE :Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: __SCREAMING_SNAKE_CASE :Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] __SCREAMING_SNAKE_CASE :str = [t[0] for t in toks] # Ensure consistency __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: __SCREAMING_SNAKE_CASE :Optional[int] = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: __SCREAMING_SNAKE_CASE :List[str] = ''' ''' + output_txt __SCREAMING_SNAKE_CASE :int = tokenizer.encode(SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.ta_base_tokenizer __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) __SCREAMING_SNAKE_CASE :List[Any] = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] ,batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.ta_base_tokenizer __SCREAMING_SNAKE_CASE :Optional[int] = '''Unicode €.''' __SCREAMING_SNAKE_CASE :List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['''input_ids'''] ,SCREAMING_SNAKE_CASE__ ) # decoding __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,'''Unicode €.</s>''' ) __SCREAMING_SNAKE_CASE :Dict = tokenizer('''e è é ê ë''' ) __SCREAMING_SNAKE_CASE :str = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['''input_ids'''] ,SCREAMING_SNAKE_CASE__ ) # decoding __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,'''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) ,'''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.ta_base_tokenizer __SCREAMING_SNAKE_CASE :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __SCREAMING_SNAKE_CASE :int = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __SCREAMING_SNAKE_CASE :int = tokenizer(SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": __SCREAMING_SNAKE_CASE :Optional[int] = list(batch.input_ids.numpy()[0] ) else: __SCREAMING_SNAKE_CASE :int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) ,batch.input_ids.shape ) self.assertEqual((2, 37) ,batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.ta_base_tokenizer __SCREAMING_SNAKE_CASE :Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __SCREAMING_SNAKE_CASE :List[str] = tokenizer(SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' ,SCREAMING_SNAKE_CASE__ ) self.assertIn('''attention_mask''' ,SCREAMING_SNAKE_CASE__ ) self.assertNotIn('''decoder_input_ids''' ,SCREAMING_SNAKE_CASE__ ) self.assertNotIn('''decoder_attention_mask''' ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.ta_base_tokenizer __SCREAMING_SNAKE_CASE :int = [ '''Summary of the text.''', '''Another summary.''', ] __SCREAMING_SNAKE_CASE :Tuple = tokenizer( text_target=SCREAMING_SNAKE_CASE__ ,max_length=32 ,padding='''max_length''' ,truncation=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.ta_base_tokenizer __SCREAMING_SNAKE_CASE :Optional[int] = ['''A long paragraph for summarization. </s>'''] __SCREAMING_SNAKE_CASE :Any = ['''Summary of the text. </s>'''] # fmt: off __SCREAMING_SNAKE_CASE :Tuple = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __SCREAMING_SNAKE_CASE :int = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __SCREAMING_SNAKE_CASE :str = tokenizer(SCREAMING_SNAKE_CASE__ ,text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,batch['''input_ids'''][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test __SCREAMING_SNAKE_CASE :Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE :Tuple = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE :Tuple = ''' He is very happy, UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE :Tuple = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE :Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __SCREAMING_SNAKE_CASE :Any = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertIn('''new_additional_special_token''' ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) __SCREAMING_SNAKE_CASE :str = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: __SCREAMING_SNAKE_CASE :Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: __SCREAMING_SNAKE_CASE :Optional[Any] = json.load(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = [f'''<extra_id_{i}>''' for i in range(1_25 )] __SCREAMING_SNAKE_CASE :Tuple = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __SCREAMING_SNAKE_CASE :int = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __SCREAMING_SNAKE_CASE :Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ ,) self.assertIn( '''an_additional_special_token''' ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __SCREAMING_SNAKE_CASE :Optional[Any] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' ,lstrip=SCREAMING_SNAKE_CASE__ )] __SCREAMING_SNAKE_CASE :str = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ ,additional_special_tokens=SCREAMING_SNAKE_CASE__ ,) self.assertIn('''a_new_additional_special_token''' ,tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) ,) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '''''' ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" pass def _UpperCamelCase ( self ) -> int: """simple docstring""" pass def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ ,do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE :Any = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] __SCREAMING_SNAKE_CASE :int = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __SCREAMING_SNAKE_CASE :Any = 0 __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ ,attr + '''_id''' ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ ,attr + '''_id''' ) ,SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ ,attr + '''_id''' ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ ,attr + '''_id''' ) ,SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ ,'''additional_special_tokens_ids''' ) ,[] ) setattr(SCREAMING_SNAKE_CASE__ ,'''additional_special_tokens_ids''' ,[token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ ,'''additional_special_tokens''' ) ,[token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ ,'''additional_special_tokens_ids''' ) ,[token_id_to_test_setters] )
191
"""simple docstring""" def __lowerCamelCase ( a_ : int , a_ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Optional[int] = [1] for i in range(2 , a_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE :List[str] = [] __SCREAMING_SNAKE_CASE :Optional[Any] = list(range(a_ ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE :Optional[int] = factorials.pop() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = divmod(a_ , a_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
191
1
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> int: """simple docstring""" super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) SCREAMING_SNAKE_CASE__ : int = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Tuple = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits SCREAMING_SNAKE_CASE__ : int = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __a : '''simple docstring''' def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> List[str]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE__ : str = dataset SCREAMING_SNAKE_CASE__ : Any = name SCREAMING_SNAKE_CASE__ : Dict = con SCREAMING_SNAKE_CASE__ : Dict = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__ : List[str] = num_proc SCREAMING_SNAKE_CASE__ : Union[str, Any] = to_sql_kwargs def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.to_sql_kwargs.pop("""sql""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.to_sql_kwargs.pop("""con""" , _a ) SCREAMING_SNAKE_CASE__ : List[str] = self.to_sql_kwargs.pop("""index""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs ) return written def _a ( self , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = args SCREAMING_SNAKE_CASE__ : List[Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE__ : Union[str, Any] = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__ : Any = batch.to_pandas() SCREAMING_SNAKE_CASE__ : Any = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def _a ( self , _a , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: while b: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = b, a % b return a def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: return a if b == 0 else euclidean_gcd_recursive(__lowerCAmelCase , a % b ) def _lowercase ( ) -> Union[str, Any]: print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
56
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : int=99 , __lowerCamelCase : int=16 , __lowerCamelCase : int=36 , __lowerCamelCase : Any=6 , __lowerCamelCase : int=6 , __lowerCamelCase : Dict=6 , __lowerCamelCase : Tuple=37 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Optional[Any]=None , ): UpperCamelCase :List[Any] = parent UpperCamelCase :Optional[int] = batch_size UpperCamelCase :Optional[Any] = seq_length UpperCamelCase :Optional[int] = is_training UpperCamelCase :str = use_input_mask UpperCamelCase :List[str] = use_token_type_ids UpperCamelCase :List[str] = use_labels UpperCamelCase :Union[str, Any] = vocab_size UpperCamelCase :Optional[Any] = embedding_size UpperCamelCase :str = hidden_size UpperCamelCase :Union[str, Any] = num_hidden_layers UpperCamelCase :Union[str, Any] = num_hidden_groups UpperCamelCase :Dict = num_attention_heads UpperCamelCase :int = intermediate_size UpperCamelCase :List[Any] = hidden_act UpperCamelCase :Any = hidden_dropout_prob UpperCamelCase :str = attention_probs_dropout_prob UpperCamelCase :Optional[int] = max_position_embeddings UpperCamelCase :Any = type_vocab_size UpperCamelCase :List[str] = type_sequence_label_size UpperCamelCase :int = initializer_range UpperCamelCase :List[Any] = num_labels UpperCamelCase :List[Any] = num_choices UpperCamelCase :List[Any] = scope def _A ( self : int ): UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Dict = None if self.use_input_mask: UpperCamelCase :Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :Optional[Any] = None if self.use_token_type_ids: UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase :str = None UpperCamelCase :Union[str, Any] = None UpperCamelCase :List[str] = None if self.use_labels: UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : int ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _A ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : str ): UpperCamelCase :Dict = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) UpperCamelCase :str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) UpperCamelCase :Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Tuple = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _A ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ): UpperCamelCase :List[Any] = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): UpperCamelCase :Optional[Any] = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[str] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int ): UpperCamelCase :int = self.num_labels UpperCamelCase :int = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): UpperCamelCase :Union[str, Any] = self.num_labels UpperCamelCase :Any = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): UpperCamelCase :Dict = self.num_choices UpperCamelCase :List[Any] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase :int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : int ): UpperCamelCase :Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Optional[int] = config_and_inputs UpperCamelCase :Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : List[Any] = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Dict = True def _A ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Dict=False ): UpperCamelCase :Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): UpperCamelCase :Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) UpperCamelCase :Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _A ( self : Any ): UpperCamelCase :Optional[int] = AlbertModelTester(self ) UpperCamelCase :Tuple = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _A ( self : Dict ): self.config_tester.run_common_tests() def _A ( self : Dict ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _A ( self : Union[str, Any] ): UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def _A ( self : str ): UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _A ( self : Dict ): UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _A ( self : Any ): UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase :Optional[Any] = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def _A ( self : Dict ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :List[Any] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _A ( self : Union[str, Any] ): UpperCamelCase :int = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase :str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCamelCase :Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase :List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] UpperCamelCase :Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
38
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
221
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) class a ( __UpperCamelCase ): def __init__( self , __magic_name__ ) -> Optional[int]: super().__init__() _a = nn.ModuleList(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__magic_name__ , __magic_name__ , self.nets ) ): _a = controlnet( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) # merge samples if i == 0: _a = down_samples, mid_sample else: _a = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__magic_name__ , __magic_name__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = False , __magic_name__ = None , ) -> List[str]: _a = 0 _a = save_directory for controlnet in self.nets: controlnet.save_pretrained( __magic_name__ , is_main_process=__magic_name__ , save_function=__magic_name__ , safe_serialization=__magic_name__ , variant=__magic_name__ , ) idx += 1 _a = model_path_to_save + f'_{idx}' @classmethod def __UpperCAmelCase ( cls , __magic_name__ , **__magic_name__ ) -> Optional[Any]: _a = 0 _a = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _a = pretrained_model_path while os.path.isdir(__magic_name__ ): _a = ControlNetModel.from_pretrained(__magic_name__ , **__magic_name__ ) controlnets.append(__magic_name__ ) idx += 1 _a = pretrained_model_path + f'_{idx}' logger.info(f'{len(__magic_name__ )} controlnets loaded from {pretrained_model_path}.' ) if len(__magic_name__ ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(__magic_name__ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(__magic_name__ )
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : str = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str ): '''simple docstring''' __UpperCAmelCase : str = LxmertConfig.from_json_file(UpperCAmelCase_ ) print(f'Building PyTorch model from configuration: {config}' ) __UpperCAmelCase : List[Any] = LxmertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
226
"""simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = tuple[float, float, float] SCREAMING_SNAKE_CASE_ : Optional[int] = tuple[float, float, float] def _snake_case ( UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad ): A__ = end_pointa[0] - end_pointa[0] A__ = end_pointa[1] - end_pointa[1] A__ = end_pointa[2] - end_pointa[2] return (x, y, z) def _snake_case ( UpperCAmelCase_ : Vectorad , UpperCAmelCase_ : Vectorad ): A__ = ab[1] * ac[2] - ab[2] * ac[1] # *i A__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j A__ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _snake_case ( UpperCAmelCase_ : Vectorad , UpperCAmelCase_ : int ): return tuple(round(UpperCAmelCase_ , UpperCAmelCase_ ) for x in vector ) == (0, 0, 0) def _snake_case ( UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad , UpperCAmelCase_ : Pointad , UpperCAmelCase_ : int = 10 ): A__ = create_vector(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = create_vector(UpperCAmelCase_ , UpperCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ )
335
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[Any] = '''ibert''' def __init__( self , _UpperCamelCase=3_0_5_2_2 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase="absolute" , _UpperCamelCase=False , _UpperCamelCase="none" , **_UpperCamelCase , ) -> List[Any]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : List[Any] = type_vocab_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : Tuple = position_embedding_type UpperCAmelCase_ : str = quant_mode UpperCAmelCase_ : Tuple = force_dequant class lowerCamelCase (_snake_case ): '''simple docstring''' @property def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase_ : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
145
from collections import defaultdict from math import ceil, sqrt def lowercase__ ( __snake_case : int = 1_000_000 , __snake_case : int = 10 ): '''simple docstring''' UpperCAmelCase_ : defaultdict = defaultdict(__snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase_ : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase_ : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
145
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> int: """simple docstring""" if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False def lowerCamelCase_ ( UpperCamelCase__ : str ) -> List[Any]: """simple docstring""" for char in word: __lowerCamelCase = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" __lowerCamelCase = set() for token in tokens: __lowerCamelCase = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) __lowerCamelCase = list(UpperCamelCase__ ) return word_list def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : set() ) -> str: """simple docstring""" if not chinese_word_set: return bert_tokens __lowerCamelCase = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) __lowerCamelCase = bert_tokens __lowerCamelCase , __lowerCamelCase = 0, len(UpperCamelCase__ ) while start < end: __lowerCamelCase = True if is_chinese(bert_word[start] ): __lowerCamelCase = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): __lowerCamelCase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __lowerCamelCase = '##' + bert_word[j] __lowerCamelCase = start + i __lowerCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : LTP , UpperCamelCase__ : BertTokenizer ) -> int: """simple docstring""" __lowerCamelCase = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): __lowerCamelCase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws __lowerCamelCase = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __lowerCamelCase = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): __lowerCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __lowerCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = [] for id in input_ids: __lowerCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) __lowerCamelCase = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": __lowerCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowerCamelCase = LTP(args.ltp ) # faster in GPU device __lowerCamelCase = BertTokenizer.from_pretrained(args.bert ) __lowerCamelCase = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: __lowerCamelCase = [json.dumps(UpperCamelCase__ ) + '\n' for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __A = parser.parse_args() main(args)
90
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=[32, 64, 128] , lowerCamelCase__=[1, 2, 1] , lowerCamelCase__=[2, 2, 4] , lowerCamelCase__=2 , lowerCamelCase__=2.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=8 , lowerCamelCase__=["stage1", "stage2"] , lowerCamelCase__=[1, 2] , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = patch_norm __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = is_training __lowerCamelCase = scope __lowerCamelCase = use_labels __lowerCamelCase = type_sequence_label_size __lowerCamelCase = encoder_stride __lowerCamelCase = out_features __lowerCamelCase = out_indices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> str: '''simple docstring''' return def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reshaped_hidden_states[0].shape __lowerCamelCase = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FocalNetBackbone,) if is_torch_available() else () snake_case_ = FocalNetConfig snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self )
90
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : List[str] , *_A : List[str] , _A : List[str]=None , _A : int=None , **_A : str ) -> Any: """simple docstring""" super().__init__(*_A , **_A ) snake_case_ : Optional[Any] = eval_examples snake_case_ : Tuple = post_process_function def UpperCAmelCase_ ( self : Optional[int] , _A : Tuple=None , _A : Optional[int]=None , _A : Tuple=None , _A : str = "eval" ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ : Optional[Any] = self.get_eval_dataloader(_A ) snake_case_ : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : List[str] = self.compute_metrics snake_case_ : List[str] = None snake_case_ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ : Optional[Any] = time.time() try: snake_case_ : Any = eval_loop( _A , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: snake_case_ : int = compute_metrics snake_case_ : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default snake_case_ : Dict = self.post_process_function(_A , _A , output.predictions ) snake_case_ : Optional[int] = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case_ : Any = metrics.pop(_A ) metrics.update(output.metrics ) else: snake_case_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case_ : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def UpperCAmelCase_ ( self : Optional[int] , _A : Tuple , _A : Union[str, Any] , _A : List[Any]=None , _A : str = "test" ) -> Optional[Any]: """simple docstring""" snake_case_ : Any = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : Tuple = self.compute_metrics snake_case_ : List[str] = None snake_case_ : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ : Optional[int] = time.time() try: snake_case_ : Union[str, Any] = eval_loop( _A , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: snake_case_ : Optional[Any] = compute_metrics snake_case_ : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ : Dict = self.post_process_function(_A , _A , output.predictions , 'predict' ) snake_case_ : Any = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case_ : Dict = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
88
def SCREAMING_SNAKE_CASE__ ( __a , __a = False ): if not isinstance(__a , __a ): snake_case_ : str = f"""Expected string as input, found {type(__a )}""" raise ValueError(__a ) if not isinstance(__a , __a ): snake_case_ : int = f"""Expected boolean as use_pascal parameter, found {type(__a )}""" raise ValueError(__a ) snake_case_ : Union[str, Any] = input_str.split('_' ) snake_case_ : int = 0 if use_pascal else 1 snake_case_ : List[Any] = words[start_index:] snake_case_ : str = [word[0].upper() + word[1:] for word in words_to_capitalize] snake_case_ : Optional[Any] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
88
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """open-llama""" def __init__( self , A_=10_0000 , A_=4096 , A_=1_1008 , A_=32 , A_=32 , A_="silu" , A_=2048 , A_=0.02 , A_=1e-6 , A_=True , A_=0 , A_=1 , A_=2 , A_=False , A_=True , A_=0.1 , A_=0.1 , A_=True , A_=True , A_=None , **A_ , ) ->str: '''simple docstring''' __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[Any] = max_position_embeddings __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : int = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : List[Any] = rms_norm_eps __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : List[str] = kwargs.pop( '''use_memorry_efficient_attention''' , A_ ) __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_dropout_prob __lowerCAmelCase : Optional[Any] = use_stable_embedding __lowerCAmelCase : str = shared_input_output_embedding __lowerCAmelCase : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ , ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __lowerCAmelCase : Optional[int] = self.rope_scaling.get('''type''' , A_ ) __lowerCAmelCase : Optional[int] = self.rope_scaling.get('''factor''' , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
275
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _UpperCamelCase = random.Random() def _lowercase ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): if rng is None: __lowerCAmelCase : Any = global_rng __lowerCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase (unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : str = min_seq_length __lowerCAmelCase : int = max_seq_length __lowerCAmelCase : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase : Any = padding_value __lowerCAmelCase : str = sampling_rate __lowerCAmelCase : Optional[Any] = return_attention_mask __lowerCAmelCase : Optional[Any] = do_normalize __lowerCAmelCase : Optional[Any] = feature_size __lowerCAmelCase : Optional[int] = chunk_length __lowerCAmelCase : Optional[Any] = hop_length def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , A_=False , A_=False ) ->Optional[Any]: '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __lowerCAmelCase : str = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCAmelCase : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCAmelCase : Optional[Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = WhisperFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : List[str] = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __lowerCAmelCase : int = self.feature_extraction_class.from_pretrained(A_ ) __lowerCAmelCase : Dict = feat_extract_first.to_dict() __lowerCAmelCase : Union[str, Any] = feat_extract_second.to_dict() __lowerCAmelCase : Union[str, Any] = feat_extract_first.mel_filters __lowerCAmelCase : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Union[str, Any] = os.path.join(A_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A_ ) __lowerCAmelCase : List[str] = self.feature_extraction_class.from_json_file(A_ ) __lowerCAmelCase : List[str] = feat_extract_first.to_dict() __lowerCAmelCase : Tuple = feat_extract_second.to_dict() __lowerCAmelCase : Any = feat_extract_first.mel_filters __lowerCAmelCase : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __lowerCAmelCase : Tuple = feature_extractor(A_ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowerCAmelCase : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features __lowerCAmelCase : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched __lowerCAmelCase : Union[str, Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : List[Any] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowerCAmelCase : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowerCAmelCase : Optional[int] = np.asarray(A_ ) __lowerCAmelCase : Dict = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : Any = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test truncation required __lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __lowerCAmelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] __lowerCAmelCase : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowerCAmelCase : Optional[int] = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] __lowerCAmelCase : Any = feature_extractor(A_ , return_tensors='''np''' ).input_features __lowerCAmelCase : List[str] = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' import torch __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : List[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) __lowerCAmelCase : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase : Tuple = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowerCAmelCase : int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : Any = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __lowerCAmelCase : Union[str, Any] = ds.sort('''id''' ).select(range(A_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on __lowerCAmelCase : int = self._load_datasamples(1 ) __lowerCAmelCase : Any = WhisperFeatureExtractor() __lowerCAmelCase : Optional[Any] = feature_extractor(A_ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : str = self._load_datasamples(1 )[0] __lowerCAmelCase : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue __lowerCAmelCase : Union[str, Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1e-3 ) )
275
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _SCREAMING_SNAKE_CASE : List[Any] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _lowerCAmelCase ( UpperCAmelCase : List[Any] , UpperCAmelCase : Any ): '''simple docstring''' warnings.warn(UpperCAmelCase , UpperCAmelCase ) requires_backends(UpperCAmelCase , '''sklearn''' ) return (preds == labels).mean() def _lowerCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): '''simple docstring''' warnings.warn(UpperCAmelCase , UpperCAmelCase ) requires_backends(UpperCAmelCase , '''sklearn''' ) UpperCamelCase__ : List[Any] =simple_accuracy(UpperCAmelCase , UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] =fa_score(y_true=UpperCAmelCase , y_pred=UpperCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _lowerCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : str ): '''simple docstring''' warnings.warn(UpperCAmelCase , UpperCAmelCase ) requires_backends(UpperCAmelCase , '''sklearn''' ) UpperCamelCase__ : List[str] =pearsonr(UpperCAmelCase , UpperCAmelCase )[0] UpperCamelCase__ : str =spearmanr(UpperCAmelCase , UpperCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _lowerCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ): '''simple docstring''' warnings.warn(UpperCAmelCase , UpperCAmelCase ) requires_backends(UpperCAmelCase , '''sklearn''' ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ), F'''Predictions and labels have mismatched lengths {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(UpperCAmelCase , UpperCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} elif task_name == "mrpc": return acc_and_fa(UpperCAmelCase , UpperCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(UpperCAmelCase , UpperCAmelCase ) elif task_name == "qqp": return acc_and_fa(UpperCAmelCase , UpperCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} else: raise KeyError(UpperCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ): '''simple docstring''' warnings.warn(UpperCAmelCase , UpperCAmelCase ) requires_backends(UpperCAmelCase , '''sklearn''' ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} else: raise KeyError(UpperCAmelCase )
361
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Tuple , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , **lowercase_ : Union[str, Any] ): UpperCamelCase__ : List[str] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) UpperCamelCase__ : List[str] =kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : List[Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.image_processor def __call__( self : Optional[int] , lowercase_ : int=None , lowercase_ : Optional[int]=None , lowercase_ : int=None , **lowercase_ : Union[str, Any] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCamelCase__ : Optional[int] =self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: UpperCamelCase__ : str =self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: UpperCamelCase__ : Optional[int] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def _lowerCAmelCase ( self : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _lowerCAmelCase ( self : str , *lowercase_ : Dict , **lowercase_ : Union[str, Any] ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[str] =self.tokenizer.model_input_names UpperCamelCase__ : List[str] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self : Any ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class
157
0
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __snake_case =0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __snake_case =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class UpperCAmelCase_ : def __init__( self : List[str] ) -> str: lowerCAmelCase = WATERMARK_BITS lowerCAmelCase = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : torch.FloatTensor ) -> str: # can't encode images that are smaller than 256 if images.shape[-1] < 2_5_6: return images lowerCAmelCase = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase = [self.encoder.encode(UpperCAmelCase__ , 'dwtDct' ) for image in images] lowerCAmelCase = torch.from_numpy(np.array(UpperCAmelCase__ ) ).permute(0 , 3 , 1 , 2 ) lowerCAmelCase = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
4
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """spiece.model"""} UpperCAmelCase = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } UpperCAmelCase = {"""bert_for_seq_generation""": 512} class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = [] snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[int]="<s>" , __UpperCamelCase : Optional[Any]="</s>" , __UpperCamelCase : Optional[Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : int="<::::>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Any , ) -> None: _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sep_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[int] ) -> Tuple: return self.sp_model.get_piece_size() def _UpperCamelCase ( self : int ) -> Optional[int]: _UpperCamelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : str , __UpperCamelCase : Any ) -> Tuple: _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Any ) -> Optional[int]: return self.sp_model.piece_to_id(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[int] ) -> Optional[Any]: _UpperCamelCase = self.sp_model.IdToPiece(__UpperCamelCase ) return token def _UpperCamelCase ( self : str , __UpperCamelCase : Dict ) -> Optional[Any]: _UpperCamelCase = [] _UpperCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCamelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
256
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
30
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
1
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
58
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCamelCase_ ( _a ): """simple docstring""" return EnvironmentCommand() def lowerCamelCase_ ( _a ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class _a ( A__): @staticmethod def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[Any] )-> str: lowerCAmelCase__ : int = parser.add_parser('''env''' ) download_parser.set_defaults(func=lowerCamelCase__ ) download_parser.add_argument( '''--accelerate-config_file''' , default=lowerCamelCase__ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , *_SCREAMING_SNAKE_CASE : Any )-> Optional[int]: lowerCAmelCase__ : List[str] = accelerate_config_file def UpperCAmelCase__( self : Dict )-> Dict: lowerCAmelCase__ : Optional[int] = '''not installed''' if is_safetensors_available(): import safetensors lowerCAmelCase__ : str = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors lowerCAmelCase__ : Any = F'{safetensors.__version__} but is ignored because of PyTorch version too old.' lowerCAmelCase__ : Dict = '''not installed''' lowerCAmelCase__ : List[Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase__ : Tuple = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCamelCase__ ): lowerCAmelCase__ : Any = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCAmelCase__ : Any = ( '''\n'''.join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else F'\t{accelerate_config}' ) lowerCAmelCase__ : Any = '''not installed''' lowerCAmelCase__ : Optional[int] = '''NA''' if is_torch_available(): import torch lowerCAmelCase__ : Optional[Any] = torch.__version__ lowerCAmelCase__ : Any = torch.cuda.is_available() lowerCAmelCase__ : Optional[Any] = '''not installed''' lowerCAmelCase__ : List[str] = '''NA''' if is_tf_available(): import tensorflow as tf lowerCAmelCase__ : Any = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase__ : Optional[Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase__ : str = bool(tf.config.list_physical_devices('''GPU''' ) ) lowerCAmelCase__ : Optional[Any] = '''not installed''' lowerCAmelCase__ : Any = '''not installed''' lowerCAmelCase__ : str = '''not installed''' lowerCAmelCase__ : List[Any] = '''NA''' if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase__ : Union[str, Any] = flax.__version__ lowerCAmelCase__ : int = jax.__version__ lowerCAmelCase__ : Union[str, Any] = jaxlib.__version__ lowerCAmelCase__ : int = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase__ : Optional[int] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'{safetensors_version}', '''Accelerate version''': F'{accelerate_version}', '''Accelerate config''': F'{accelerate_config_str}', '''PyTorch version (GPU?)''': F'{pt_version} ({pt_cuda_available})', '''Tensorflow version (GPU?)''': F'{tf_version} ({tf_cuda_available})', '''Flax version (CPU?/GPU?/TPU?)''': F'{flax_version} ({jax_backend})', '''Jax version''': F'{jax_version}', '''JaxLib version''': F'{jaxlib_version}', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(lowerCamelCase__ ) ) return info @staticmethod def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[Any] )-> Any: return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''BeitFeatureExtractor'''] lowerCamelCase = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
211
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def __UpperCAmelCase ( A : Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = torch.load(A , map_location='''cpu''' ) if "model" in sd.keys(): UpperCAmelCase_ : Union[str, Any] = torch.load(A , map_location='''cpu''' )['''model'''] # pop unnecessary weights UpperCAmelCase_ : Tuple = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(A ) UpperCAmelCase_ : str = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ : Union[str, Any] = sd.pop(A ) UpperCAmelCase_ : Dict = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ : Any = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ : Optional[int] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) UpperCAmelCase_ : List[str] = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) UpperCAmelCase_ : Optional[int] = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) UpperCAmelCase_ : Tuple = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.split(A , depth // 3 , dim=0 ) UpperCAmelCase_ : Dict = q UpperCAmelCase_ : Optional[int] = k UpperCAmelCase_ : Optional[Any] = v del sd[key] return sd @torch.no_grad() def __UpperCAmelCase ( A : Dict , A : Union[str, Any] , A : Any=None ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = load_checkpoint(A ) if config is not None: UpperCAmelCase_ : Any = OPTConfig.from_pretrained(A ) else: UpperCAmelCase_ : Dict = OPTConfig() UpperCAmelCase_ : Union[str, Any] = OPTModel(A ).half().eval() model.load_state_dict(A ) # Check results Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) if __name__ == "__main__": _UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') _UpperCamelCase : List[str] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = XLMRobertaTokenizer __lowerCAmelCase = XLMRobertaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def lowerCamelCase_ ( self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """<pad>""" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCamelCase_ ) , 1002 ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase_ ( self : int ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCamelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def lowerCamelCase_ ( self : Any ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) UpperCamelCase = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) UpperCamelCase = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = """I was born in 92000, and this is falsé.""" UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """Hello World!""" UpperCamelCase = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCamelCase = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
165
1
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ : int = position UpperCAmelCase__ : List[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase__ : List[str] = [] for position in positions: UpperCAmelCase__ , UpperCAmelCase__ : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCamelCase__ ) return permissible_positions def _UpperCamelCase ( UpperCamelCase__ ): return not any(elem == 0 for row in board for elem in row ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if is_complete(UpperCamelCase__ ): return True for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ): UpperCAmelCase__ , UpperCAmelCase__ : str = position if board[y][x] == 0: UpperCAmelCase__ : Optional[int] = curr + 1 if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ): return True UpperCAmelCase__ : List[Any] = 0 return False def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Dict = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = 1 if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ): return board UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Dict = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
163
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''pegasus''' lowerCAmelCase :Optional[int] = ['''past_key_values'''] lowerCAmelCase :str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=1024 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=1024 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=False , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=1 , **_lowerCamelCase , ): UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : List[Any] = d_model UpperCAmelCase__ : Union[str, Any] = encoder_ffn_dim UpperCAmelCase__ : Any = encoder_layers UpperCAmelCase__ : List[str] = encoder_attention_heads UpperCAmelCase__ : int = decoder_ffn_dim UpperCAmelCase__ : Any = decoder_layers UpperCAmelCase__ : Tuple = decoder_attention_heads UpperCAmelCase__ : Optional[int] = dropout UpperCAmelCase__ : Dict = attention_dropout UpperCAmelCase__ : Optional[int] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : str = use_cache UpperCAmelCase__ : Any = encoder_layers UpperCAmelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) @property def snake_case__ ( self): return self.encoder_attention_heads @property def snake_case__ ( self): return self.d_model
163
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase : Any = 25_00_04 UpperCAmelCase : Union[str, Any] = 25_00_20 @require_sentencepiece @require_tokenizers class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[int] = MBartTokenizer UpperCamelCase : List[str] = MBartTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Any = True def __A ( self ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase = MBartTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = MBartTokenizer(A , keep_accents=A ) lowerCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained(A , **A ) lowerCamelCase = self.tokenizer_class.from_pretrained(A , **A ) lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = tokenizer_r.save_pretrained(A ) lowerCamelCase = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCamelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase = tokenizer_r.from_pretrained(A ) lowerCamelCase = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase = tokenizer_r.from_pretrained(A ) lowerCamelCase = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase = tokenizer_r.from_pretrained(A ) lowerCamelCase = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = "facebook/mbart-large-en-ro" UpperCamelCase : Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCamelCase : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCamelCase : Optional[int] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __A ( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCamelCase = 1 return cls def __A ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def __A ( self ) -> List[str]: '''simple docstring''' self.assertIn(A , self.tokenizer.all_special_ids ) lowerCamelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] lowerCamelCase = self.tokenizer.decode(A , skip_special_tokens=A ) lowerCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A ) lowerCamelCase = 10 lowerCamelCase = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A ) self.assertEqual(len(A ) , A ) def __A ( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) lowerCamelCase = MBartTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors="""pt""" ) lowerCamelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCamelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="""pt""" ) lowerCamelCase = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="""pt""" ) lowerCamelCase = targets["""input_ids"""] lowerCamelCase = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A ) , { # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
66
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Dict = StableDiffusionPanoramaPipeline UpperCamelCase : List[Any] = TEXT_TO_IMAGE_PARAMS UpperCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __A ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCamelCase = DDIMScheduler() torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCamelCase = CLIPTextModel(A ) lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , A , A=0 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = """french fries""" lowerCamelCase = sd_pipe(**A , negative_prompt=A ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A , view_batch_size=2 ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=A ) lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , A=0 ) -> Dict: '''simple docstring''' lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = """stabilityai/stable-diffusion-2-base""" lowerCamelCase = DDIMScheduler.from_pretrained(A , subfolder="""scheduler""" ) lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A , scheduler=A , safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = self.get_inputs() lowerCamelCase = pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCamelCase = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = self.get_inputs() lowerCamelCase = pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = 0 def callback_fn(A , A , A ) -> None: lowerCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCamelCase = latents[0, -3:, -3:, -1] lowerCamelCase = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCamelCase = latents[0, -3:, -3:, -1] lowerCamelCase = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCamelCase = False lowerCamelCase = """stabilityai/stable-diffusion-2-base""" lowerCamelCase = DDIMScheduler.from_pretrained(A , subfolder="""scheduler""" ) lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A , scheduler=A , safety_checker=A ) lowerCamelCase = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = self.get_inputs() pipe(**A , callback=A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __A ( self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase = """stabilityai/stable-diffusion-2-base""" lowerCamelCase = DDIMScheduler.from_pretrained(A , subfolder="""scheduler""" ) lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A , scheduler=A , safety_checker=A ) lowerCamelCase = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase = self.get_inputs() lowerCamelCase = pipe(**A ) lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
66
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. a :Tuple = [[1, 2, 4], [1, 2, 3, 4]] a :str = DisjunctiveConstraint(_lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCamelCase ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def SCREAMING_SNAKE_CASE__ ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). a :Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(_lowerCamelCase ) # fails here def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = [[1, 2, 3], [1, 2, 4]] a :Dict = DisjunctiveConstraint(_lowerCamelCase ) a , a , a :Union[str, Any] = dc.update(1 ) a :Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a , a , a :Optional[Any] = dc.update(2 ) a :Union[str, Any] = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a , a , a :Union[str, Any] = dc.update(3 ) a :Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] a :List[str] = DisjunctiveConstraint(_lowerCamelCase ) a , a , a :Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a , a , a :Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a , a , a :Dict = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) a , a , a :Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() a , a , a :List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) a , a , a :Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) a , a , a :List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
94
import math class _snake_case : def __init__( self , _lowerCamelCase=0 ): # a graph with Node 0,1,...,N-1 a :Optional[int] = n a :Union[str, Any] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # adjacency matrix for weight a :List[Any] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Tuple = w def SCREAMING_SNAKE_CASE__ ( self ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): a :Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return self.dp[u][v] if __name__ == "__main__": snake_case : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
94
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : Union[str, Any] = """ResNetConfig""" # Base docstring _SCREAMING_SNAKE_CASE : str = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : List[Any] = [1, 2_0_4_8, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """tiger cat""" _SCREAMING_SNAKE_CASE : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , bias=lowercase_ ) UpperCamelCase__ : Tuple =nn.BatchNormad(lowercase_ ) UpperCamelCase__ : int =ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor ): UpperCamelCase__ : List[Any] =self.convolution(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.normalization(lowercase_ ) UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Any =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase__ : Tuple =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase__ : Any =config.num_channels def _lowerCAmelCase ( self : str , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCamelCase__ : Dict =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.pooler(lowercase_ ) return embedding class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 ): super().__init__() UpperCamelCase__ : int =nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ ) UpperCamelCase__ : Optional[int] =nn.BatchNormad(lowercase_ ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Dict =self.convolution(lowercase_ ) UpperCamelCase__ : Dict =self.normalization(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : List[str] =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , activation=lowercase_ ) , ) UpperCamelCase__ : Any =ACTaFN[activation] def _lowerCAmelCase ( self : str , lowercase_ : Tuple ): UpperCamelCase__ : Any =hidden_state UpperCamelCase__ : Union[str, Any] =self.layer(lowercase_ ) UpperCamelCase__ : str =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : str =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" , lowercase_ : int = 4 ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : Union[str, Any] =out_channels // reduction UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : int =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 ) , ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) UpperCamelCase__ : List[Any] =ACTaFN[activation] def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): UpperCamelCase__ : Dict =hidden_state UpperCamelCase__ : str =self.layer(lowercase_ ) UpperCamelCase__ : Tuple =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowercase_ : ResNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , ): super().__init__() UpperCamelCase__ : Dict =ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer UpperCamelCase__ : Union[str, Any] =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase_ , lowercase_ , stride=lowercase_ , activation=config.hidden_act ) , *[layer(lowercase_ , lowercase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =input for layer in self.layers: UpperCamelCase__ : Tuple =layer(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase__ : int =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor , lowercase_ : bool = False , lowercase_ : bool = True ): UpperCamelCase__ : int =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : Union[str, Any] =hidden_states + (hidden_state,) UpperCamelCase__ : List[str] =stage_module(lowercase_ ) if output_hidden_states: UpperCamelCase__ : Optional[Any] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ , hidden_states=lowercase_ , ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ResNetConfig SCREAMING_SNAKE_CASE_ = 'resnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' SCREAMING_SNAKE_CASE_ = True def _lowerCAmelCase ( self : str , lowercase_ : Optional[int] ): if isinstance(lowercase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCAmelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Dict=False ): if isinstance(lowercase_ , lowercase_ ): UpperCamelCase__ : str =value _SCREAMING_SNAKE_CASE : int = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _SCREAMING_SNAKE_CASE : Optional[int] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Union[str, Any] , lowercase_ : List[Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Dict =config UpperCamelCase__ : str =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : str =ResNetEncoder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : int =encoder_outputs[0] UpperCamelCase__ : List[Any] =self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Dict , lowercase_ : Union[str, Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Any =config.num_labels UpperCamelCase__ : Dict =ResNetModel(lowercase_ ) # classification head UpperCamelCase__ : Any =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ): UpperCamelCase__ : Dict =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : List[Any] =self.resnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : Tuple =outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Union[str, Any] =self.classifier(lowercase_ ) UpperCamelCase__ : int =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : List[str] ='''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : Dict ='''single_label_classification''' else: UpperCamelCase__ : str ='''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ : Union[str, Any] =MSELoss() if self.num_labels == 1: UpperCamelCase__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ : Dict =loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[Any] =CrossEntropyLoss() UpperCamelCase__ : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[Any] =BCEWithLogitsLoss() UpperCamelCase__ : List[str] =loss_fct(lowercase_ , lowercase_ ) if not return_dict: UpperCamelCase__ : Tuple =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ', snake_case__, ) class __a ( snake_case__, snake_case__ ): """simple docstring""" def __init__( self : str , lowercase_ : List[Any] ): super().__init__(lowercase_ ) super()._init_backbone(lowercase_ ) UpperCamelCase__ : str =[config.embedding_size] + config.hidden_sizes UpperCamelCase__ : Optional[int] =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : Dict =ResNetEncoder(lowercase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @replace_return_docstrings(output_type=lowercase_ , config_class=_CONFIG_FOR_DOC ) def _lowerCAmelCase ( self : int , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Any =self.embedder(lowercase_ ) UpperCamelCase__ : Optional[Any] =self.encoder(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : str =outputs.hidden_states UpperCamelCase__ : Optional[int] =() for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase__ : int =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase_ , )
357
"""simple docstring""" import argparse import os import re _SCREAMING_SNAKE_CASE : List[str] = """src/diffusers""" # Pattern that looks at the indentation in a line. _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _SCREAMING_SNAKE_CASE : Any = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : List[str] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : str = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r"""\[([^\]]+)\]""") def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str =_re_indent.search(UpperCAmelCase ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]="" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None ): '''simple docstring''' UpperCamelCase__ : int =0 UpperCamelCase__ : Union[str, Any] =code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase ): index += 1 UpperCamelCase__ : Optional[int] =['''\n'''.join(lines[:index] )] else: UpperCamelCase__ : List[Any] =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ : Dict =[lines[index]] index += 1 while index < len(UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(UpperCAmelCase ) ) if index < len(UpperCAmelCase ) - 1: UpperCamelCase__ : Optional[Any] =[lines[index + 1]] index += 1 else: UpperCamelCase__ : List[str] =[] else: blocks.append('''\n'''.join(UpperCAmelCase ) ) UpperCamelCase__ : List[Any] =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase ) > 0: blocks.append('''\n'''.join(UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( UpperCAmelCase : str ): '''simple docstring''' def _inner(UpperCAmelCase : Dict ): return key(UpperCAmelCase ).lower().replace('''_''' , '''''' ) return _inner def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Dict=None ): '''simple docstring''' def noop(UpperCAmelCase : Optional[Any] ): return x if key is None: UpperCamelCase__ : int =noop # Constants are all uppercase, they go first. UpperCamelCase__ : List[str] =[obj for obj in objects if key(UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ : Dict =[obj for obj in objects if key(UpperCAmelCase )[0].isupper() and not key(UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ : int =[obj for obj in objects if not key(UpperCAmelCase )[0].isupper()] UpperCamelCase__ : Optional[int] =ignore_underscore(UpperCAmelCase ) return sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' def _replace(UpperCAmelCase : Union[str, Any] ): UpperCamelCase__ : List[str] =match.groups()[0] if "," not in imports: return F'''[{imports}]''' UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) + "]" UpperCamelCase__ : List[Any] =import_statement.split('''\n''' ) if len(UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ : List[str] =2 if lines[1].strip() == '''[''' else 1 UpperCamelCase__ : List[str] =[(i, _re_strip_line.search(UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ : List[str] =sort_objects(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] ) UpperCamelCase__ : Tuple =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ : Dict =_re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] UpperCamelCase__ : Optional[Any] =get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) return "\n".join(UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ : List[str] =_re_bracket_content.sub(_replace , UpperCAmelCase ) return import_statement def _lowerCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=True ): '''simple docstring''' with open(UpperCAmelCase , '''r''' ) as f: UpperCamelCase__ : int =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ : Optional[int] =split_code_in_indented_blocks( UpperCAmelCase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ : Dict =main_blocks[block_idx] UpperCamelCase__ : List[str] =block.split('''\n''' ) # Get to the start of the imports. UpperCamelCase__ : str =0 while line_idx < len(UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ : Optional[int] =len(UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[line_idx:-1] ) UpperCamelCase__ : Tuple =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ : str =split_code_in_indented_blocks(UpperCAmelCase , indent_level=UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ : str =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ : Tuple =[(pattern.search(UpperCAmelCase ).groups()[0] if pattern.search(UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ : List[Any] =[(i, key) for i, key in enumerate(UpperCAmelCase ) if key is not None] UpperCamelCase__ : Optional[Any] =[x[0] for x in sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ : Union[str, Any] =0 UpperCamelCase__ : str =[] for i in range(len(UpperCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write('''\n'''.join(UpperCAmelCase ) ) def _lowerCAmelCase ( UpperCAmelCase : Dict=True ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] =[] for root, _, files in os.walk(UpperCAmelCase ): if "__init__.py" in files: UpperCamelCase__ : List[Any] =sort_imports(os.path.join(UpperCAmelCase , '''__init__.py''' ) , check_only=UpperCAmelCase ) if result: UpperCamelCase__ : int =[os.path.join(UpperCAmelCase , '''__init__.py''' )] if len(UpperCAmelCase ) > 0: raise ValueError(F'''Would overwrite {len(UpperCAmelCase )} files, run `make style`.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
157
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: return EnvironmentCommand() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: return EnvironmentCommand(args.accelerate_config_file ) class A_ ( SCREAMING_SNAKE_CASE ): @staticmethod def lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : ArgumentParser): __lowerCamelCase : List[str] = parser.add_parser('env') download_parser.set_defaults(func=SCREAMING_SNAKE_CASE__) download_parser.add_argument( '--accelerate-config_file' ,default=SCREAMING_SNAKE_CASE__ ,help='The accelerate config file to use for the default values in the launching script.' ,) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE__) def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ,*SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : Union[str, Any] = accelerate_config_file def lowerCAmelCase ( self : Any): __lowerCamelCase : Union[str, Any] = 'not installed' if is_safetensors_available(): import safetensors __lowerCamelCase : Tuple = safetensors.__version__ elif importlib.util.find_spec('safetensors') is not None: import safetensors __lowerCamelCase : Union[str, Any] = F"{safetensors.__version__} but is ignored because of PyTorch version too old." __lowerCamelCase : str = 'not installed' __lowerCamelCase : Optional[int] = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __lowerCamelCase : Optional[Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[Any] = load_config_from_file(self._accelerate_config_file).to_dict() __lowerCamelCase : Optional[int] = ( '\n'.join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()]) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else F"\t{accelerate_config}" ) __lowerCamelCase : Dict = 'not installed' __lowerCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch __lowerCamelCase : str = torch.__version__ __lowerCamelCase : str = torch.cuda.is_available() __lowerCamelCase : Any = 'not installed' __lowerCamelCase : Tuple = 'NA' if is_tf_available(): import tensorflow as tf __lowerCamelCase : Optional[Any] = tf.__version__ try: # deprecated in v2.1 __lowerCamelCase : int = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __lowerCamelCase : Tuple = bool(tf.config.list_physical_devices('GPU')) __lowerCamelCase : Union[str, Any] = 'not installed' __lowerCamelCase : int = 'not installed' __lowerCamelCase : Optional[Any] = 'not installed' __lowerCamelCase : Any = 'NA' if is_flax_available(): import flax import jax import jaxlib __lowerCamelCase : Any = flax.__version__ __lowerCamelCase : Optional[Any] = jax.__version__ __lowerCamelCase : Union[str, Any] = jaxlib.__version__ __lowerCamelCase : Any = jax.lib.xla_bridge.get_backend().platform __lowerCamelCase : List[Any] = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': F"{safetensors_version}", 'Accelerate version': F"{accelerate_version}", 'Accelerate config': F"{accelerate_config_str}", 'PyTorch version (GPU?)': F"{pt_version} ({pt_cuda_available})", 'Tensorflow version (GPU?)': F"{tf_version} ({tf_cuda_available})", 'Flax version (CPU?/GPU?/TPU?)': F"{flax_version} ({jax_backend})", 'Jax version': F"{jax_version}", 'JaxLib version': F"{jaxlib_version}", 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n') print(self.format_dict(SCREAMING_SNAKE_CASE__)) return info @staticmethod def lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Any): return "\n".join([F"- {prop}: {val}" for prop, val in d.items()]) + "\n"
73
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase : Any = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , _UpperCAmelCase ).groups()[0] class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Tuple=None, lowerCAmelCase : List[Any]=None ) -> Optional[Any]: lowercase : str = file_names lowercase : Optional[Any] = image_transform lowercase : int = label_to_id def __len__( self : List[Any] ) -> Any: return len(self.file_names ) def __getitem__( self : str, lowerCAmelCase : Optional[int] ) -> Optional[Any]: lowercase : List[Any] = self.file_names[idx] lowercase : Tuple = PIL.Image.open(lowerCAmelCase ) lowercase : Tuple = raw_image.convert('RGB' ) if self.image_transform is not None: lowercase : Optional[Any] = self.image_transform(lowerCAmelCase ) lowercase : Any = extract_label(lowerCAmelCase ) if self.label_to_id is not None: lowercase : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' if args.with_tracking: lowercase : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowercase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Union[str, Any] = config['lr'] lowercase : Any = int(config['num_epochs'] ) lowercase : Union[str, Any] = int(config['seed'] ) lowercase : List[Any] = int(config['batch_size'] ) lowercase : str = config['image_size'] if not isinstance(_UpperCAmelCase , (list, tuple) ): lowercase : Dict = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowercase : Dict = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowercase : Dict = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: lowercase : Tuple = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowercase : Optional[int] = os.path.split(_UpperCAmelCase )[-1].split('.' )[0] accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase ) # Grab all the image filenames lowercase : Optional[Any] = [os.path.join(args.data_dir , _UpperCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowercase : str = [extract_label(_UpperCAmelCase ) for fname in file_names] lowercase : List[Any] = list(set(_UpperCAmelCase ) ) id_to_label.sort() lowercase : Optional[Any] = {lbl: i for i, lbl in enumerate(_UpperCAmelCase )} # Set the seed before splitting the data. np.random.seed(_UpperCAmelCase ) torch.manual_seed(_UpperCAmelCase ) torch.cuda.manual_seed_all(_UpperCAmelCase ) # Split our filenames between train and validation lowercase : List[Any] = np.random.permutation(len(_UpperCAmelCase ) ) lowercase : Optional[Any] = int(0.8 * len(_UpperCAmelCase ) ) lowercase : int = random_perm[:cut] lowercase : Any = random_perm[cut:] # For training we use a simple RandomResizedCrop lowercase : Dict = Compose([RandomResizedCrop(_UpperCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) lowercase : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # For evaluation, we use a deterministic Resize lowercase : List[Any] = Compose([Resize(_UpperCAmelCase ), ToTensor()] ) lowercase : List[str] = PetsDataset([file_names[i] for i in eval_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # Instantiate dataloaders. lowercase : Dict = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) lowercase : Any = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : List[Any] = create_model('resnet50d' , pretrained=_UpperCAmelCase , num_classes=len(_UpperCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : Union[str, Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowercase : Dict = False for param in model.get_classifier().parameters(): lowercase : Dict = True # We normalize the batches of images to be a bit faster. lowercase : int = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowercase : Dict = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowercase : Any = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowercase : List[Any] = OneCycleLR(optimizer=_UpperCAmelCase , max_lr=_UpperCAmelCase , epochs=_UpperCAmelCase , steps_per_epoch=len(_UpperCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase : Tuple = 0 # We also need to keep track of the starting epoch so files are named properly lowercase : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) lowercase : Any = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowercase : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowercase : Dict = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowercase : Any = os.path.splitext(_UpperCAmelCase )[0] if "epoch" in training_difference: lowercase : List[Any] = int(training_difference.replace('epoch_' , '' ) ) + 1 lowercase : List[Any] = None else: lowercase : Optional[Any] = int(training_difference.replace('step_' , '' ) ) lowercase : int = resume_step // len(_UpperCAmelCase ) resume_step -= starting_epoch * len(_UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() if args.with_tracking: lowercase : str = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowercase : Any = accelerator.skip_first_batches(_UpperCAmelCase , _UpperCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowercase : Union[str, Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : List[str] = (batch['image'] - mean) / std lowercase : Union[str, Any] = model(_UpperCAmelCase ) lowercase : Optional[int] = torch.nn.functional.cross_entropy(_UpperCAmelCase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Union[str, Any] = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowercase : Optional[Any] = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) model.eval() lowercase : int = 0 lowercase : List[Any] = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : Optional[Any] = (batch['image'] - mean) / std with torch.no_grad(): lowercase : int = model(_UpperCAmelCase ) lowercase : Tuple = outputs.argmax(dim=-1 ) lowercase , lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['label']) ) lowercase : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowercase : List[str] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_UpperCAmelCase ), 'epoch': epoch, } , step=_UpperCAmelCase , ) if checkpointing_steps == "epoch": lowercase : str = f'''epoch_{epoch}''' if args.output_dir is not None: lowercase : Any = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) if args.with_tracking: accelerator.end_training() def lowercase__ ( ) -> Tuple: '''simple docstring''' lowercase : str = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_UpperCAmelCase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_UpperCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_UpperCAmelCase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowercase : int = parser.parse_args() lowercase : List[Any] = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
255
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : list )-> list: _lowerCamelCase = len(snake_case ) for i in range(1 , snake_case ): _lowerCamelCase = collection[i] _lowerCamelCase = 0 _lowerCamelCase = i - 1 while low <= high: _lowerCamelCase = (low + high) // 2 if val < collection[mid]: _lowerCamelCase = mid - 1 else: _lowerCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): _lowerCamelCase = collection[j - 1] _lowerCamelCase = val return collection if __name__ == "__main__": A_ : List[Any] =input("""Enter numbers separated by a comma:\n""").strip() A_ : Optional[int] =[int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
80
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A_ : Any =None A_ : Optional[int] =logging.get_logger(__name__) A_ : List[str] ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A_ : List[Any] ={ """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } A_ : Any ={ """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } A_ : Union[str, Any] ="""▁""" class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : int = BarthezTokenizer def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , **a__ , ) _lowerCamelCase = vocab_file _lowerCamelCase = False if not self.vocab_file else True def snake_case_ ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase = os.path.join( a__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
80
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowerCAmelCase__ , unittest.TestCase): UpperCAmelCase__ : Dict = XLNetTokenizer UpperCAmelCase__ : List[str] = XLNetTokenizerFast UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Union[str, Any] = True def lowercase_ ( self :Any ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A = XLNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' __A = '<s>' __A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowercase_ ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' __A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1_006 ) def lowercase_ ( self :Dict ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase_ ( self :Any ) -> Dict: '''simple docstring''' __A = XLNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) __A = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] ) __A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __A = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __A = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowercase_ ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' __A = XLNetTokenizer(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE ) __A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def lowercase_ ( self :List[str] ) -> Optional[int]: '''simple docstring''' __A = XLNetTokenizer(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE ) __A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def lowercase_ ( self :str ) -> Dict: '''simple docstring''' __A = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) __A = tokenizer.encode('sequence builders' , add_special_tokens=_SCREAMING_SNAKE_CASE ) __A = tokenizer.encode('multi-sequence build' , add_special_tokens=_SCREAMING_SNAKE_CASE ) __A = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) __A = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowercase_ ( self :List[Any] ) -> List[Any]: '''simple docstring''' __A = {'input_ids': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
161
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __UpperCamelCase ( _A : Dict=None ) ->Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""tpu-config""" , description=_description ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments lowerCamelCase_ =parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_A , default=_A , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_A , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_A , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) lowerCamelCase_ =parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_A , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Tuple ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): lowerCamelCase_ =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase_ =defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase_ =defaults.commands if not args.tpu_name: lowerCamelCase_ =defaults.tpu_name if not args.tpu_zone: lowerCamelCase_ =defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase_ ="""git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": lowerCamelCase_ ="""accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _A ): lowerCamelCase_ =f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: lowerCamelCase_ =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): lowerCamelCase_ =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase_ =["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowerCamelCase_ ="""; """.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase_ =["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print("""Successfully setup pod.""" ) def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =tpu_command_parser() lowerCamelCase_ =parser.parse_args() tpu_command_launcher(_A )
154
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase__( ): lowercase_ : List[Any] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__SCREAMING_SNAKE_CASE , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def lowercase__( ): lowercase_ : str = parse_args() # Import training_script as a module. lowercase_ : Union[str, Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ : List[str] = script_fpath.stem lowercase_ : Dict = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase_ : Tuple = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
358
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
0
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Tuple = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class A__ ( A__ ): A__ = 'autoformer' A__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Dict , _a : Optional[int] = None , _a : Optional[int] = None , _a : str = "student_t" , _a : str = "nll" , _a : int = 1 , _a : List[int] = [1, 2, 3, 4, 5, 6, 7] , _a : bool = True , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : Optional[List[int]] = None , _a : Optional[List[int]] = None , _a : int = 64 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : int = 32 , _a : int = 32 , _a : str = "gelu" , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : int = 100 , _a : float = 0.02 , _a : bool = True , _a : Dict=True , _a : int = 10 , _a : int = 25 , _a : int = 3 , **_a : str , ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =prediction_length _SCREAMING_SNAKE_CASE =context_length if context_length is not None else prediction_length _SCREAMING_SNAKE_CASE =distribution_output _SCREAMING_SNAKE_CASE =loss _SCREAMING_SNAKE_CASE =input_size _SCREAMING_SNAKE_CASE =num_time_features _SCREAMING_SNAKE_CASE =lags_sequence _SCREAMING_SNAKE_CASE =scaling _SCREAMING_SNAKE_CASE =num_dynamic_real_features _SCREAMING_SNAKE_CASE =num_static_real_features _SCREAMING_SNAKE_CASE =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE =cardinality else: _SCREAMING_SNAKE_CASE =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE =embedding_dimension else: _SCREAMING_SNAKE_CASE =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _SCREAMING_SNAKE_CASE =num_parallel_samples # Transformer architecture configuration _SCREAMING_SNAKE_CASE =input_size * len(self.lags_sequence ) + self._number_of_features _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =encoder_attention_heads _SCREAMING_SNAKE_CASE =decoder_attention_heads _SCREAMING_SNAKE_CASE =encoder_ffn_dim _SCREAMING_SNAKE_CASE =decoder_ffn_dim _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =decoder_layers _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =encoder_layerdrop _SCREAMING_SNAKE_CASE =decoder_layerdrop _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =use_cache # Autoformer _SCREAMING_SNAKE_CASE =label_length _SCREAMING_SNAKE_CASE =moving_average _SCREAMING_SNAKE_CASE =autocorrelation_factor super().__init__(is_encoder_decoder=_a , **_a ) @property def A ( self : Any ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : str = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( A__ ): A__ = 'time_series_transformer' A__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] , _a : Optional[int] = None , _a : Optional[int] = None , _a : str = "student_t" , _a : str = "nll" , _a : int = 1 , _a : List[int] = [1, 2, 3, 4, 5, 6, 7] , _a : Optional[Union[str, bool]] = "mean" , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : Optional[List[int]] = None , _a : Optional[List[int]] = None , _a : int = 32 , _a : int = 32 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : bool = True , _a : str = "gelu" , _a : int = 64 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : int = 100 , _a : float = 0.02 , _a : Union[str, Any]=True , **_a : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =prediction_length _SCREAMING_SNAKE_CASE =context_length or prediction_length _SCREAMING_SNAKE_CASE =distribution_output _SCREAMING_SNAKE_CASE =loss _SCREAMING_SNAKE_CASE =input_size _SCREAMING_SNAKE_CASE =num_time_features _SCREAMING_SNAKE_CASE =lags_sequence _SCREAMING_SNAKE_CASE =scaling _SCREAMING_SNAKE_CASE =num_dynamic_real_features _SCREAMING_SNAKE_CASE =num_static_real_features _SCREAMING_SNAKE_CASE =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE =cardinality else: _SCREAMING_SNAKE_CASE =[0] if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE =embedding_dimension else: _SCREAMING_SNAKE_CASE =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _SCREAMING_SNAKE_CASE =num_parallel_samples # Transformer architecture configuration _SCREAMING_SNAKE_CASE =input_size * len(_a ) + self._number_of_features _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =encoder_attention_heads _SCREAMING_SNAKE_CASE =decoder_attention_heads _SCREAMING_SNAKE_CASE =encoder_ffn_dim _SCREAMING_SNAKE_CASE =decoder_ffn_dim _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =decoder_layers _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =encoder_layerdrop _SCREAMING_SNAKE_CASE =decoder_layerdrop _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =use_cache super().__init__(is_encoder_decoder=_a , **_a ) @property def A ( self : List[Any] ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowerCamelCase : Optional[Any] =["speech"] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" requires_backends(self , ["""speech"""] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowerCamelCase : List[Any] =["speech"] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple ) -> str: """simple docstring""" requires_backends(self , ["""speech"""] )
358
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : str=2 , lowerCAmelCase : Optional[Any]=56 , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=2 , lowerCAmelCase : str=7 , lowerCAmelCase : List[Any]="gelu_new" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[Any]=5_12 , lowerCAmelCase : Dict=16 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Union[str, Any]="block_sparse" , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : List[Any]=3 , ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = parent __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : List[Any] = seq_length __lowerCAmelCase : int = is_training __lowerCAmelCase : Union[str, Any] = use_attention_mask __lowerCAmelCase : Tuple = use_token_type_ids __lowerCAmelCase : Union[str, Any] = use_labels __lowerCAmelCase : List[str] = vocab_size __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Tuple = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : str = type_vocab_size __lowerCAmelCase : List[Any] = type_sequence_label_size __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : str = num_choices __lowerCAmelCase : Any = rescale_embeddings __lowerCAmelCase : str = attention_type __lowerCAmelCase : List[Any] = use_bias __lowerCAmelCase : List[str] = block_size __lowerCAmelCase : Union[str, Any] = num_random_blocks def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: """simple docstring""" __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[Any] = None if self.use_attention_mask: __lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Any = None if self.use_token_type_ids: __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase : List[str] =False lowerCamelCase : Union[str, Any] =False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : str = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase : List[str] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase : List[str] = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Union[str, Any] ): return model(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase : str = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase : List[Any] = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any]=1e-5 , lowerCAmelCase : Union[str, Any]="outputs" , lowerCAmelCase : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
139
0
def __UpperCamelCase ( _A : list[int] , _A : str ) ->list[int]: """simple docstring""" lowerCamelCase_ =int(_A ) # Initialize Result lowerCamelCase_ =[] # Traverse through all denomination for denomination in reversed(_A ): # Find denominations while int(_A ) >= int(_A ): total_value -= int(_A ) answer.append(_A ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __A : Any = [] __A : Union[str, Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): __A : Any = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) __A : Any = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter __A : Tuple = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __A : Dict = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F"""Following is minimal change for {value}: """) __A : Dict = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
154
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : int = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Any = ["""vqvae"""] def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ , mel=snake_case__ , vqvae=snake_case__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , snake_case__ ) else 1000 @torch.no_grad() def __call__( self , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' UpperCAmelCase : str =steps or self.get_default_steps() self.scheduler.set_timesteps(snake_case__ ) UpperCAmelCase : int =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase : List[Any] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase : int =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=snake_case__ , device=self.device , ) UpperCAmelCase : int =noise UpperCAmelCase : Optional[int] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(snake_case__ , snake_case__ ) UpperCAmelCase : Tuple =self.mel.audio_slice_to_image(snake_case__ ) UpperCAmelCase : Any =np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase : Optional[int] =(input_image / 255) * 2 - 1 UpperCAmelCase : int =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase : Optional[Any] =self.vqvae.encode(torch.unsqueeze(snake_case__ , 0 ) ).latent_dist.sample( generator=snake_case__ )[0] UpperCAmelCase : int =self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase : Union[str, Any] =self.scheduler.add_noise(snake_case__ , snake_case__ , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase : List[str] =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase : Tuple =int(mask_start_secs * pixels_per_second ) UpperCAmelCase : List[str] =int(mask_end_secs * pixels_per_second ) UpperCAmelCase : Tuple =self.scheduler.add_noise(snake_case__ , snake_case__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , snake_case__ ): UpperCAmelCase : Dict =self.unet(snake_case__ , snake_case__ , snake_case__ )['''sample'''] else: UpperCAmelCase : str =self.unet(snake_case__ , snake_case__ )['''sample'''] if isinstance(self.scheduler , snake_case__ ): UpperCAmelCase : Optional[int] =self.scheduler.step( model_output=snake_case__ , timestep=snake_case__ , sample=snake_case__ , eta=snake_case__ , generator=snake_case__ , )['''prev_sample'''] else: UpperCAmelCase : str =self.scheduler.step( model_output=snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCAmelCase : int =mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase : Tuple =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase : List[str] =1 / self.vqvae.config.scaling_factor * images UpperCAmelCase : Any =self.vqvae.decode(snake_case__ )['''sample'''] UpperCAmelCase : Optional[Any] =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Optional[int] =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase : Dict =(images * 255).round().astype('''uint8''' ) UpperCAmelCase : Optional[Any] =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(snake_case__ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) UpperCAmelCase : List[Any] =[self.mel.image_to_audio(snake_case__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(snake_case__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(snake_case__ ) ) @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , snake_case__ ) self.scheduler.set_timesteps(snake_case__ ) UpperCAmelCase : List[Any] =np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase : Dict =(sample / 255) * 2 - 1 UpperCAmelCase : List[str] =torch.Tensor(snake_case__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase : str =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase : int =self.scheduler.alphas_cumprod[t] UpperCAmelCase : List[Any] =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase : List[str] =1 - alpha_prod_t UpperCAmelCase : List[Any] =self.unet(snake_case__ , snake_case__ )['''sample'''] UpperCAmelCase : Union[str, Any] =(1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase : Union[str, Any] =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase : List[str] =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( snake_case__ , snake_case__ , snake_case__ ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase : Dict =acos(torch.dot(torch.flatten(snake_case__ ) , torch.flatten(snake_case__ ) ) / torch.norm(snake_case__ ) / torch.norm(snake_case__ ) ) return sin((1 - alpha) * theta ) * xa / sin(snake_case__ ) + sin(alpha * theta ) * xa / sin(snake_case__ )
369
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] __lowerCamelCase : Union[str, Any] = """CLIPImageProcessor""" __lowerCamelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case__ , ) UpperCAmelCase : int =kwargs.pop('''feature_extractor''' ) UpperCAmelCase : Tuple =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase : List[Any] =self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: UpperCAmelCase : Tuple =self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: UpperCAmelCase : List[Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.tokenizer.model_input_names UpperCAmelCase : Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case__ , ) return self.image_processor
78
0
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : str=1_3 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]=9_9 , UpperCAmelCase__ : Union[str, Any]=3_2 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Optional[Any]=5_1_2 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]="None" , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Any=None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Dict ) -> List[Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = DebertaVaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> str: __SCREAMING_SNAKE_CASE = DebertaVaForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ) -> List[str]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaVaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaVaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = DebertaVaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = DebertaVaForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : Dict = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Any = True snake_case__ : Any = False snake_case__ : Union[str, Any] = False snake_case__ : List[Any] = False snake_case__ : Any = False def UpperCAmelCase_ ( self : List[str] ) -> Dict: __SCREAMING_SNAKE_CASE = DebertaVaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> str: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Dict ) -> List[Any]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: pass @slow def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
54
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase =5_0_0_0_0_0 _lowerCamelCase , _lowerCamelCase =os.path.split(__file__) _lowerCamelCase =os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _a ( lowerCamelCase, **lowerCamelCase ): lowerCamelCase : Optional[Any] = dataset.map(**lowerCamelCase ) @get_duration def _a ( lowerCamelCase, **lowerCamelCase ): lowerCamelCase : Optional[Any] = dataset.filter(**lowerCamelCase ) def _a ( ): lowerCamelCase : Optional[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase : Any = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowerCamelCase : Tuple = generate_example_dataset( os.path.join(lowerCamelCase, """dataset.arrow""" ), lowerCamelCase, num_examples=lowerCamelCase ) lowerCamelCase : Tuple = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""", use_fast=lowerCamelCase ) def tokenize(lowerCamelCase ): return tokenizer(examples["""text"""] ) lowerCamelCase : List[str] = map(lowerCamelCase ) lowerCamelCase : int = map(lowerCamelCase, batched=lowerCamelCase ) lowerCamelCase : int = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""numpy""" ): lowerCamelCase : Optional[int] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""pandas""" ): lowerCamelCase : List[str] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""torch""", columns="""numbers""" ): lowerCamelCase : List[str] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) with dataset.formatted_as(type="""tensorflow""", columns="""numbers""" ): lowerCamelCase : Optional[int] = map(lowerCamelCase, function=lambda lowerCamelCase : None, batched=lowerCamelCase ) lowerCamelCase : int = map(lowerCamelCase, function=lowerCamelCase, batched=lowerCamelCase ) lowerCamelCase : Union[str, Any] = filter(lowerCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase, """wb""" ) as f: f.write(json.dumps(lowerCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
287
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = LlamaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = True UpperCamelCase = LlamaModel(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) UpperCamelCase = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> str: """simple docstring""" UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = True UpperCamelCase = True UpperCamelCase = LlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] UpperCamelCase = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowercase : str = (LlamaForCausalLM,) if is_torch_available() else () __lowercase : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : int = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = LlamaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'single_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = 'multi_label_classification' UpperCamelCase = input_dict['input_ids'] UpperCamelCase = input_ids.ne(1 ).to(A_ ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = LlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = LlamaModel(A_ ) original_model.to(A_ ) original_model.eval() UpperCamelCase = original_model(A_ ).last_hidden_state UpperCamelCase = original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = {'type': scaling_type, 'factor': 10.0} UpperCamelCase = LlamaModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() UpperCamelCase = scaled_model(A_ ).last_hidden_state UpperCamelCase = scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ , A_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ , A_ , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) # Expected mean on dim = -1 UpperCamelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) UpperCamelCase = model(torch.tensor(A_ ) ) UpperCamelCase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A_ , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCamelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , A_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' UpperCamelCase = 'Simply put, the theory of relativity states that ' UpperCamelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) UpperCamelCase = tokenizer.encode(A_ , return_tensors='pt' ) UpperCamelCase = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=A_ ) # greedy generation outputs UpperCamelCase = model.generate(A_ , max_new_tokens=64 , top_p=A_ , temperature=1 , do_sample=A_ ) UpperCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ )
110
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = CTRLTokenizer __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
110
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''CLIPFeatureExtractor'''] _snake_case = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ) -> int: super().__init__() self.register_modules(transformer=lowerCAmelCase__ , vae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) # create a imagenet -> id dictionary for easier use a : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): a : int = int(lowerCAmelCase__ ) a : Any = dict(sorted(self.labels.items() ) ) def __a ( self , lowerCAmelCase__ ) -> List[int]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[Any] = list(lowerCAmelCase__ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 50 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: a : Dict = len(lowerCAmelCase__ ) a : Tuple = self.transformer.config.sample_size a : Tuple = self.transformer.config.in_channels a : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase__ , device=self.device , dtype=self.transformer.dtype , ) a : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a : List[str] = torch.tensor(lowerCAmelCase__ , device=self.device ).reshape(-1 ) a : str = torch.tensor([1000] * batch_size , device=self.device ) a : Dict = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a : Any = latent_model_input[: len(lowerCAmelCase__ ) // 2] a : Tuple = torch.cat([half, half] , dim=0 ) a : List[str] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = t if not torch.is_tensor(lowerCAmelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a : Optional[int] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Union[str, Any] = torch.floataa if is_mps else torch.floataa else: a : str = torch.intaa if is_mps else torch.intaa a : List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a : Union[str, Any] = self.transformer( lowerCAmelCase__ , timestep=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).sample # perform guidance if guidance_scale > 1: a, a : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a, a : Union[str, Any] = torch.split(lowerCAmelCase__ , len(lowerCAmelCase__ ) // 2 , dim=0 ) a : Dict = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 ) a : Optional[int] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a, a : str = torch.split(lowerCAmelCase__ , lowerCAmelCase__ , dim=1 ) else: a : Any = noise_pred # compute previous image: x_t -> x_t-1 a : Optional[int] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample if guidance_scale > 1: a, a : Tuple = latent_model_input.chunk(2 , dim=0 ) else: a : Tuple = latent_model_input a : Optional[Any] = 1 / self.vae.config.scaling_factor * latents a : Any = self.vae.decode(lowerCAmelCase__ ).sample a : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a : int = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase__ )
105
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowercase = logging.getLogger(__name__) @dataclass class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[float] = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) a__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Whether to SortishSamler or not."""} ) a__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) a__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """whether to use adafactor"""} ) a__ : Optional[float] = field( default=UpperCAmelCase_ , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) a__ : Optional[float] = field( default=UpperCAmelCase_ , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) a__ : Optional[float] = field(default=UpperCAmelCase_ , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) a__ : Optional[float] = field( default=UpperCAmelCase_ , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) a__ : Optional[str] = field( default="""linear""" , metadata={"""help""": F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
43
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowercase = (720, 1280) # Height, Width __lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowercase = 1 / 100 __lowercase = '''''' __lowercase = '''''' __lowercase = '''''' __lowercase = 250 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[Any] = get_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for index in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 4 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :str = update_image_and_anno( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , filter_scale=SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase :List[Any] = random_chars(32 ) __UpperCamelCase :List[str] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCamelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __UpperCamelCase :Optional[Any] = [] for anno in new_annos: __UpperCamelCase :int = anno[3] - anno[1] __UpperCamelCase :Optional[int] = anno[4] - anno[2] __UpperCamelCase :int = anno[1] + width / 2 __UpperCamelCase :List[str] = anno[2] + height / 2 __UpperCamelCase :str = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(SCREAMING_SNAKE_CASE ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = [] __UpperCamelCase :str = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '''*.txt''' ) ): __UpperCamelCase :Any = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE ) as in_file: __UpperCamelCase :str = in_file.readlines() __UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , f"""{label_name}.jpg""" ) __UpperCamelCase :int = [] for obj_list in obj_lists: __UpperCamelCase :Optional[int] = obj_list.rstrip('''\n''' ).split(''' ''' ) __UpperCamelCase :Any = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase :Dict = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE ) labels.append(SCREAMING_SNAKE_CASE ) return img_paths, labels def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , ): '''simple docstring''' __UpperCamelCase :List[str] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase :List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase :Optional[int] = int(scale_x * output_size[1] ) __UpperCamelCase :Any = int(scale_y * output_size[0] ) __UpperCamelCase :List[str] = [] __UpperCamelCase :Dict = [] for i, index in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Any = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = all_annos[index] __UpperCamelCase :Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE ) if i == 0: # top-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) __UpperCamelCase :Union[str, Any] = img for bbox in img_annos: __UpperCamelCase :Union[str, Any] = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = bbox[2] * scale_y __UpperCamelCase :int = bbox[3] * scale_x __UpperCamelCase :Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase :List[str] = img for bbox in img_annos: __UpperCamelCase :str = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Dict = bbox[2] * scale_y __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase :str = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Tuple = bbox[1] * scale_x __UpperCamelCase :Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Tuple = bbox[3] * scale_x __UpperCamelCase :Dict = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase :Optional[int] = cva.resize( SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase :Optional[int] = img for bbox in img_annos: __UpperCamelCase :Optional[Any] = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase :Optional[int] = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase :Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase :int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase :List[Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase :Optional[Any] = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print('''DONE ✅''')
43
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ : Dict = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
37
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ): """simple docstring""" super().__init__() __UpperCAmelCase : str = sample_size # time if time_embedding_type == "fourier": __UpperCAmelCase : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ ) __UpperCAmelCase : str = 2 * block_out_channels[0] elif time_embedding_type == "positional": __UpperCAmelCase : str = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ ) __UpperCAmelCase : Dict = block_out_channels[0] if use_timestep_embedding: __UpperCAmelCase : Union[str, Any] = block_out_channels[0] * 4 __UpperCAmelCase : str = TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) __UpperCAmelCase : Tuple = nn.ModuleList([] ) __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = nn.ModuleList([] ) __UpperCAmelCase : Dict = None # down __UpperCAmelCase : str = in_channels for i, down_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = output_channel __UpperCAmelCase : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : List[str] = get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_ ) # mid __UpperCAmelCase : Optional[Any] = get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up __UpperCAmelCase : Tuple = list(reversed(UpperCAmelCase_ ) ) __UpperCAmelCase : Any = reversed_block_out_channels[0] if out_block_type is None: __UpperCAmelCase : Union[str, Any] = out_channels else: __UpperCAmelCase : Dict = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): __UpperCAmelCase : int = output_channel __UpperCAmelCase : str = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels ) __UpperCAmelCase : Tuple = i == len(UpperCAmelCase_ ) - 1 __UpperCAmelCase : Dict = get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = output_channel # out __UpperCAmelCase : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __UpperCAmelCase : List[Any] = get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ): """simple docstring""" __UpperCAmelCase : Dict = timestep if not torch.is_tensor(UpperCAmelCase_ ): __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(sample.device ) __UpperCAmelCase : List[str] = self.time_proj(UpperCAmelCase_ ) if self.config.use_timestep_embedding: __UpperCAmelCase : Any = self.time_mlp(UpperCAmelCase_ ) else: __UpperCAmelCase : Any = timestep_embed[..., None] __UpperCAmelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __UpperCAmelCase : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __UpperCAmelCase : int = () for downsample_block in self.down_blocks: __UpperCAmelCase , __UpperCAmelCase : int = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __UpperCAmelCase : List[str] = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __UpperCAmelCase : Any = down_block_res_samples[-1:] __UpperCAmelCase : List[Any] = down_block_res_samples[:-1] __UpperCAmelCase : str = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ ) # 5. post-process if self.out_block: __UpperCAmelCase : Tuple = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_ )
37
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_text_model' def __init__( self , lowercase=250002 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=514 , lowercase=1 , lowercase=0.02 , lowercase=0.02 , lowercase=1e-05 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=768 , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = initializer_factor A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = project_dim class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_vision_model' def __init__( self , lowercase=768 , lowercase=3072 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=3 , lowercase=224 , lowercase=32 , lowercase="quick_gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) A__ = hidden_size A__ = intermediate_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = initializer_factor A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def UpperCamelCase ( cls , lowercase , **lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase ) A__ , A__ = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase , **lowercase ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip' __lowerCamelCase = True def __init__( self , lowercase=None , lowercase=None , lowercase=768 , lowercase=2.6592 , **lowercase ) -> List[str]: '''simple docstring''' A__ = kwargs.pop("text_config_dict" , lowercase ) A__ = kwargs.pop("vision_config_dict" , lowercase ) super().__init__(**lowercase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A__ = {} # This is the complete result when using `text_config_dict`. A__ = AltCLIPTextConfig(**lowercase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A__ = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A__ = {} # This is the complete result when using `vision_config_dict`. A__ = AltCLIPVisionConfig(**lowercase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A__ = { str(lowercase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A__ = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A__ = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: A__ = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) A__ = AltCLIPTextConfig(**lowercase ) A__ = AltCLIPVisionConfig(**lowercase ) A__ = projection_dim A__ = logit_scale_init_value A__ = 1.0 @classmethod def UpperCamelCase ( cls , lowercase , lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
68
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCAmelCase__ = logging.getLogger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase=-1 ) -> Optional[Any]: '''simple docstring''' A__ = label_idx def UpperCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = mode.value A__ = os.path.join(lowercase , F'{mode}.txt' ) A__ = 1 A__ = [] with open(lowercase , encoding="utf-8" ) as f: A__ = [] A__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) guid_index += 1 A__ = [] A__ = [] else: A__ = line.split(" " ) words.append(splits[0] ) if len(lowercase ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) return examples def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(lowercase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(lowercase ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class a__ ( snake_case ): """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' super().__init__(label_idx=-2 ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class a__ ( snake_case ): """simple docstring""" def UpperCamelCase ( self , lowercase , lowercase ) -> List[InputExample]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = mode.value A__ = os.path.join(lowercase , F'{mode}.txt' ) A__ = 1 A__ = [] with open(lowercase , encoding="utf-8" ) as f: for sentence in parse_incr(lowercase ): A__ = [] A__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(lowercase ) == len(lowercase ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase , labels=lowercase ) ) guid_index += 1 return examples def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' A__ = 0 for sentence in parse_incr(lowercase ): A__ = preds_list[example_id] A__ = "" for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase ) example_id += 1 def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if path: with open(lowercase , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
68
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=99 ,_SCREAMING_SNAKE_CASE=36 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=6 ,_SCREAMING_SNAKE_CASE=6 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=1_000 ,) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : Dict = patch_size UpperCAmelCase_ : Any = text_seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Optional[Any] = use_token_type_ids UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : int = coordinate_size UpperCAmelCase_ : Union[str, Any] = shape_size UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase_ : List[Any] = text_seq_length UpperCAmelCase_ : Optional[Any] = (image_size // patch_size) ** 2 + 1 UpperCAmelCase_ : Optional[int] = self.text_seq_length + self.image_seq_length def a__ ( self ) -> Dict: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : int = bbox[i, j, 3] UpperCAmelCase_ : List[Any] = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : Any = bbox[i, j, 2] UpperCAmelCase_ : Dict = bbox[i, j, 0] UpperCAmelCase_ : Dict = t UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Dict = None if self.use_input_mask: UpperCAmelCase_ : int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase_ : List[Any] = None if self.use_token_type_ids: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) UpperCAmelCase_ : int = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : str = LayoutLMvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # text + image UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ,pixel_values=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model( _SCREAMING_SNAKE_CASE ,bbox=_SCREAMING_SNAKE_CASE ,pixel_values=_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ,bbox=_SCREAMING_SNAKE_CASE ,pixel_values=_SCREAMING_SNAKE_CASE ,token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ,bbox=_SCREAMING_SNAKE_CASE ,pixel_values=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase_ : Dict = model(pixel_values=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.num_labels UpperCAmelCase_ : List[Any] = LayoutLMvaForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : Tuple = model( _SCREAMING_SNAKE_CASE ,bbox=_SCREAMING_SNAKE_CASE ,pixel_values=_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,token_type_ids=_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Optional[int] = self.num_labels UpperCAmelCase_ : List[str] = LayoutLMvaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : str = model( _SCREAMING_SNAKE_CASE ,bbox=_SCREAMING_SNAKE_CASE ,pixel_values=_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,token_type_ids=_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : int = LayoutLMvaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : Dict = model( _SCREAMING_SNAKE_CASE ,bbox=_SCREAMING_SNAKE_CASE ,pixel_values=_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,token_type_ids=_SCREAMING_SNAKE_CASE ,start_positions=_SCREAMING_SNAKE_CASE ,end_positions=_SCREAMING_SNAKE_CASE ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Optional[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = LayoutLMvaModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: UpperCAmelCase_ : Dict = copy.deepcopy(_SCREAMING_SNAKE_CASE ) if model_class in get_values(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=_SCREAMING_SNAKE_CASE ) elif model_class in get_values(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_SCREAMING_SNAKE_CASE ) elif model_class in [ *get_values(_SCREAMING_SNAKE_CASE ), ]: UpperCAmelCase_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_SCREAMING_SNAKE_CASE ) elif model_class in [ *get_values(_SCREAMING_SNAKE_CASE ), ]: UpperCAmelCase_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=_SCREAMING_SNAKE_CASE ,) return inputs_dict def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Dict = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = LayoutLMvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __a( unittest.TestCase ): """simple docstring""" @cached_property def a__ ( self ) -> int: return LayoutLMvaImageProcessor(apply_ocr=_SCREAMING_SNAKE_CASE ) if is_vision_available() else None @slow def a__ ( self ) -> Tuple: UpperCAmelCase_ : Optional[int] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = torch.tensor([[1, 2]] ) UpperCAmelCase_ : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase_ : Optional[int] = model( input_ids=input_ids.to(_SCREAMING_SNAKE_CASE ) ,bbox=bbox.to(_SCREAMING_SNAKE_CASE ) ,pixel_values=pixel_values.to(_SCREAMING_SNAKE_CASE ) ,) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
352
from dataclasses import dataclass, field from typing import Optional @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) lowerCAmelCase = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) lowerCAmelCase = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) lowerCAmelCase = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) lowerCAmelCase = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) lowerCAmelCase = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) lowerCAmelCase = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) lowerCAmelCase = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) lowerCAmelCase = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Training seed.'''} ) lowerCAmelCase = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) lowerCAmelCase = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) lowerCAmelCase = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) lowerCAmelCase = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) lowerCAmelCase = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) lowerCAmelCase = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) lowerCAmelCase = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) lowerCAmelCase = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default=_a , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) lowerCAmelCase = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) lowerCAmelCase = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) lowerCAmelCase = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) lowerCAmelCase = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) lowerCAmelCase = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) lowerCAmelCase = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) lowerCAmelCase = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
235
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( a_ , unittest.TestCase ): A__ : Any =None A__ : str =BloomTokenizerFast A__ : str =BloomTokenizerFast A__ : Dict =True A__ : str =False A__ : List[Any] ="tokenizer_file" A__ : Optional[Any] ={"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def A_ ( self : Dict ): super().setUp() SCREAMING_SNAKE_CASE__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Tuple , **UpperCAmelCase_ : Any ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] SCREAMING_SNAKE_CASE__ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] SCREAMING_SNAKE_CASE__ = tokenizer.batch_encode_plus(UpperCAmelCase_ )["""input_ids"""] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int , UpperCAmelCase_ : Optional[Any]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE__ = """This is a simple input""" SCREAMING_SNAKE_CASE__ = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.encode_plus(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.batch_encode_plus(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.encode(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) tokenizer_r.batch_encode_plus(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) SCREAMING_SNAKE_CASE__ = None # Hotfixing padding = None self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = next(iter(UpperCAmelCase_ ) )["""premise"""] # pick up one data SCREAMING_SNAKE_CASE__ = list(sample_data.values() ) SCREAMING_SNAKE_CASE__ = list(map(tokenizer.encode , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = [tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) for x in output_tokens] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int ): self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
176
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _A = getLogger(__name__) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 8 , __UpperCAmelCase = 1024 , __UpperCAmelCase="val" , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase="summarization" , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase = None , __UpperCAmelCase="" , **__UpperCAmelCase , ) -> Dict: lowerCAmelCase__ : Any = str(__UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = Path(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ).cuda() if fpaa: lowerCAmelCase__ : Optional[int] = model.half() # determine if we need to increase num_beams use_task_specific_params(__UpperCAmelCase , __UpperCAmelCase ) # update config with task specific params lowerCAmelCase__ : Any = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCAmelCase__ : Tuple = num_return_sequences lowerCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCAmelCase__ : List[str] = tokenizer.model_max_length if prefix is None: lowerCAmelCase__ : Optional[int] = prefix or getattr(model.config , """prefix""" , """""" ) or """""" lowerCAmelCase__ : Tuple = SeqaSeqDataset( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_target_length=1024 , type_path=__UpperCAmelCase , n_obs=__UpperCAmelCase , prefix=__UpperCAmelCase , **__UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCAmelCase__ : List[str] = ds.make_sortish_sampler(__UpperCAmelCase , distributed=__UpperCAmelCase , add_extra_examples=__UpperCAmelCase , shuffle=__UpperCAmelCase ) lowerCAmelCase__ : int = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn ) lowerCAmelCase__ : Optional[int] = [] for batch in tqdm(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=__UpperCAmelCase , num_beams=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ : List[str] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) lowerCAmelCase__ : Any = batch["""ids"""] if num_return_sequences > 1: lowerCAmelCase__ : Dict = chunks(__UpperCAmelCase , __UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__UpperCAmelCase ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return results, sampler.num_replicas def lowercase_ ( ) -> str: lowerCAmelCase__ : Tuple = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=__UpperCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=__UpperCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=__UpperCAmelCase , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) parser.add_argument( """--type_path""" , type=__UpperCAmelCase , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=__UpperCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=__UpperCAmelCase , default=8 , required=__UpperCAmelCase , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=__UpperCAmelCase , default=1 , required=__UpperCAmelCase , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=__UpperCAmelCase , default=600 , required=__UpperCAmelCase , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument("""--tgt_lang""" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument( """--prefix""" , type=__UpperCAmelCase , required=__UpperCAmelCase , default=__UpperCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) lowerCAmelCase__ : Union[str, Any] = time.time() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = parser.parse_known_args() lowerCAmelCase__ : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(__UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) lowerCAmelCase__ : Tuple = Path(args.save_dir + """_tmp""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) # this handles locking. lowerCAmelCase__ : Dict = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCAmelCase__ : Optional[int] = {} if args.src_lang is not None: lowerCAmelCase__ : Optional[int] = args.src_lang if args.tgt_lang is not None: lowerCAmelCase__ : Tuple = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : int = eval_data_dir( args.data_dir , __UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) if args.local_rank <= 0: lowerCAmelCase__ : Tuple = Path(args.save_dir ) save_dir.mkdir(exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : Dict = gather_results_from_each_node(__UpperCAmelCase , __UpperCAmelCase , args.sync_timeout ) lowerCAmelCase__ : List[str] = combine_partial_results(__UpperCAmelCase ) if args.num_return_sequences > 1: lowerCAmelCase__ : List[Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return lowerCAmelCase__ : str = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(__UpperCAmelCase ) as f: lowerCAmelCase__ : Dict = [x.rstrip() for x in f.readlines()][: len(__UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt lowerCAmelCase__ : Dict = """translation""" in args.task lowerCAmelCase__ : List[Any] = calculate_bleu if calc_bleu else calculate_rouge lowerCAmelCase__ : List[str] = """bleu""" if calc_bleu else """rouge""" lowerCAmelCase__ : Dict = score_fn(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : int = len(__UpperCAmelCase ) lowerCAmelCase__ : int = time.time() - start_time lowerCAmelCase__ : Optional[int] = round(runtime / metrics["""n_obs"""] , 4 ) lowerCAmelCase__ : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCAmelCase__ : int = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase ) print(__UpperCAmelCase ) write_txt_file(__UpperCAmelCase , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(__UpperCAmelCase , save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase ) -> List: lowerCAmelCase__ : List[str] = [] for partial_result in partial_results: records.extend(__UpperCAmelCase ) lowerCAmelCase__ : Dict = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["id"] ) lowerCAmelCase__ : Optional[int] = [x["""pred"""] for x in records] return preds def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files lowerCAmelCase__ : Dict = time.time() logger.info("""waiting for all nodes to finish""" ) lowerCAmelCase__ : Tuple = None while (time.time() - start_wait) < timeout: lowerCAmelCase__ : Optional[Any] = list(save_dir.glob("""rank_*.json""" ) ) if len(__UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved lowerCAmelCase__ : Dict = lmap(__UpperCAmelCase , __UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
242
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __snake_case : Optional[int] = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def __lowerCamelCase ( __snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ : Any =test_results.split(""" """ ) A__ : List[Any] =0 A__ : Optional[int] =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A__ : Dict =expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(__snake_case ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __lowerCamelCase ( __snake_case : str ) -> Optional[int]: """simple docstring""" A__ : Dict ={} A__ : List[Any] =None A__ : Any =False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""", __snake_case ): A__ : List[str] =True A__ : Optional[int] =line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): A__ : List[str] =line A__ : int =False return failures class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : Any =title A__ : List[Any] =doc_test_results["""time_spent"""].split(""",""" )[0] A__ : str =doc_test_results["""success"""] A__ : str =doc_test_results["""failures"""] A__ : Optional[int] =self.n_success + self.n_failures # Failures and success of the modeling tests A__ : List[Any] =doc_test_results @property def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ : List[str] =[self._time_spent] A__ : str =0 for time in time_spent: A__ : Union[str, Any] =time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase_ ) == 1: A__ : str =[0, 0, time_parts[0]] A__ , A__ , A__ : int =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A__ , A__ , A__ : Optional[int] =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f"{int(lowerCAmelCase_ )}h{int(lowerCAmelCase_ )}m{int(lowerCAmelCase_ )}s" @property def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A__ : Optional[Any] =40 A__ : List[Any] ={k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase_ , lowerCAmelCase_ )} A__ : Union[str, Any] ="""""" for category, failures in category_failures.items(): if len(lowerCAmelCase_ ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Tuple =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCAmelCase_ ) @staticmethod def lowercase__ ( ) -> Any: '''simple docstring''' A__ : Dict =[ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(lowerCAmelCase_ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=lowerCAmelCase_ , ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) A__ : Tuple =f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else """All tests passed.""" A__ : Optional[int] =client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=lowerCAmelCase_ , ) def lowercase__ ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' A__ : int ="""""" for key, value in failures.items(): A__ : Optional[int] =value[:2_00] + """ [Truncated]""" if len(lowerCAmelCase_ ) > 2_50 else value failures_text += f"*{key}*\n_{value}_\n\n" A__ : List[Any] =job_name A__ : Dict ={"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: A__ : Dict ={ """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowercase__ ( self : str ) -> str: '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) A__ : Optional[Any] =self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) A__ : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): A__ : Optional[Any] =f"*Num failures* :{len(job_result['failed'] )} \n" A__ : Tuple =job_result["""failures"""] A__ : Optional[Any] =self.get_reply_blocks(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text=lowerCAmelCase_ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"Results for {job}" , blocks=lowerCAmelCase_ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[Any] =os.environ["""GITHUB_RUN_ID"""] A__ : Tuple =f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" A__ : List[str] =requests.get(__snake_case ).json() A__ : List[str] ={} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A__ : Optional[int] =math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__snake_case ): A__ : List[Any] =requests.get(url + f"&page={i + 2}" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""", __snake_case ) return {} def __lowerCamelCase ( __snake_case : str ) -> Union[str, Any]: """simple docstring""" A__ : Any ={} if os.path.exists(__snake_case ): A__ : str =os.listdir(__snake_case ) for file in files: try: with open(os.path.join(__snake_case, __snake_case ), encoding="""utf-8""" ) as f: A__ : Tuple =f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(__snake_case, __snake_case )}." ) from e return _artifact def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" class lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : List[Any] =name A__ : str =[] def __str__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return self.name def lowercase__ ( self : Any , lowerCAmelCase_ : str ) -> Tuple: '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) A__ : Dict[str, Artifact] ={} A__ : int =filter(os.path.isdir, os.listdir() ) for directory in directories: A__ : List[Any] =directory if artifact_name not in _available_artifacts: A__ : str =Artifact(__snake_case ) _available_artifacts[artifact_name].add_path(__snake_case ) return _available_artifacts if __name__ == "__main__": __snake_case : List[str] = get_job_links() __snake_case : int = retrieve_available_artifacts() __snake_case : Union[str, Any] = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __snake_case : Dict = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job __snake_case : List[Any] = github_actions_job_links.get('run_doctests') __snake_case : Tuple = available_artifacts['doc_tests_gpu_test_reports'].paths[0] __snake_case : Optional[int] = retrieve_artifact(artifact_path['name']) if "stats" in artifact: __snake_case , __snake_case , __snake_case : Optional[Any] = handle_test_results(artifact['stats']) __snake_case : Optional[Any] = failed __snake_case : Union[str, Any] = success __snake_case : Union[str, Any] = time_spent[1:-1] + ', ' __snake_case : int = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): __snake_case : Optional[int] = line.replace('FAILED ', '') __snake_case : str = line.split()[0].replace('\n', '') if "::" in line: __snake_case , __snake_case : Optional[Any] = line.split('::') else: __snake_case , __snake_case : Any = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __snake_case : List[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) __snake_case : List[str] = all_failures[test] if test in all_failures else 'N/A' __snake_case : Optional[Any] = failure break __snake_case : int = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
136
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCamelCase : '''simple docstring''' def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A__ : str =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : int =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : Union[str, Any] =UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : Dict =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A__ : Union[str, Any] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) A__ : List[Any] =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : str =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A__ : Dict =UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : Optional[int] =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A__ : int =DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) A__ : List[str] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Tuple =self.get_dummy_components() A__ : str =self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[int] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : str =inputs["""prompt"""] A__ : Optional[int] =inputs["""generator"""] A__ : Optional[Any] =inputs["""num_inference_steps"""] A__ : Union[str, Any] =inputs["""output_type"""] if "image" in inputs: A__ : Union[str, Any] =inputs["""image"""] else: A__ : List[Any] =None if "mask_image" in inputs: A__ : Union[str, Any] =inputs["""mask_image"""] else: A__ : Tuple =None if "original_image" in inputs: A__ : Optional[Any] =inputs["""original_image"""] else: A__ : Tuple =None A__ , A__ : Optional[Any] =pipe.encode_prompt(lowerCAmelCase_ ) # inputs with prompt converted to embeddings A__ : Optional[int] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A__ : int =image if mask_image is not None: A__ : Tuple =mask_image if original_image is not None: A__ : Optional[int] =original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) A__ : int =self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) is None , f"`{optional_component}` did not stay set to None after loading." , ) A__ : Dict =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : int =inputs["""generator"""] A__ : str =inputs["""num_inference_steps"""] A__ : Optional[Any] =inputs["""output_type"""] # inputs with prompt converted to embeddings A__ : List[Any] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A__ : int =image if mask_image is not None: A__ : int =mask_image if original_image is not None: A__ : Optional[int] =original_image A__ : List[str] =pipe_loaded(**lowerCAmelCase_ )[0] A__ : Union[str, Any] =np.abs(to_np(lowerCAmelCase_ ) - to_np(lowerCAmelCase_ ) ).max() self.assertLess(lowerCAmelCase_ , 1e-4 ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Union[str, Any] =self.get_dummy_components() A__ : int =self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : List[Any] =pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) A__ : List[Any] =self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A__ : int =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Tuple =pipe_loaded(**lowerCAmelCase_ )[0] A__ : Tuple =np.abs(to_np(lowerCAmelCase_ ) - to_np(lowerCAmelCase_ ) ).max() self.assertLess(lowerCAmelCase_ , 1e-4 )
136
1