code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Optional[int] = tempfile.mkdtemp() # fmt: off A: Tuple = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A: Tuple = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A: Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] A: List[Any] = {"unk_token": "<unk>"} A: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) A: List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } A: Tuple = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _snake_case ( self : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _snake_case ( self : Any ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A: List[str] = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : List[str] ) -> Dict: '''simple docstring''' A: Union[str, Any] = self.get_tokenizer() A: Union[str, Any] = self.get_rust_tokenizer() A: Dict = self.get_image_processor() A: int = CLIPSegProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) A: Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) A: List[Any] = CLIPSegProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) A: Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def _snake_case ( self : str ) -> int: '''simple docstring''' A: Any = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A: str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A: int = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) A: Optional[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def _snake_case ( self : Optional[int] ) -> int: '''simple docstring''' A: List[Any] = self.get_image_processor() A: Tuple = self.get_tokenizer() A: Any = CLIPSegProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) A: int = self.prepare_image_inputs() A: Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''np''' ) A: str = processor(images=_lowerCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' A: Union[str, Any] = self.get_image_processor() A: Tuple = self.get_tokenizer() A: Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) A: str = "lower newer" A: List[str] = processor(text=_lowerCAmelCase ) A: Tuple = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: int = self.get_image_processor() A: int = self.get_tokenizer() A: Optional[int] = CLIPSegProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) A: Optional[int] = "lower newer" A: List[Any] = self.prepare_image_inputs() A: str = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def _snake_case ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A: Optional[Any] = self.get_image_processor() A: Union[str, Any] = self.get_tokenizer() A: List[Any] = CLIPSegProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) A: Dict = self.prepare_image_inputs() A: Dict = self.prepare_image_inputs() A: Dict = processor(images=_lowerCAmelCase , visual_prompt=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def _snake_case ( self : str ) -> List[str]: '''simple docstring''' A: Dict = self.get_image_processor() A: Any = self.get_tokenizer() A: Tuple = CLIPSegProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) A: Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A: Optional[Any] = processor.batch_decode(_lowerCAmelCase ) A: List[Any] = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
319
import os from math import logaa def UpperCAmelCase__ ( lowerCamelCase = "base_exp.txt" ): lowercase :float = 0 lowercase :str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase ), lowerCamelCase ) ) ): lowercase , lowercase :str = list(map(lowerCamelCase, line.split("," ) ) ) if x * logaa(lowerCamelCase ) > largest: lowercase :Optional[Any] = x * logaa(lowerCamelCase ) lowercase :Any = i + 1 return result if __name__ == "__main__": print(solution())
236
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase__ ( snake_case__ ): def __init__( self : Tuple , snake_case__ : UNetaDModel , snake_case__ : UNetaDModel , snake_case__ : DDPMScheduler , snake_case__ : Any , ): super().__init__() lowerCamelCase_ : str =value_function lowerCamelCase_ : Tuple =unet lowerCamelCase_ : Dict =scheduler lowerCamelCase_ : List[Any] =env lowerCamelCase_ : Tuple =env.get_dataset() lowerCamelCase_ : List[Any] ={} for key in self.data.keys(): try: lowerCamelCase_ : str =self.data[key].mean() except: # noqa: E722 pass lowerCamelCase_ : Dict ={} for key in self.data.keys(): try: lowerCamelCase_ : Optional[Any] =self.data[key].std() except: # noqa: E722 pass lowerCamelCase_ : Tuple =env.observation_space.shape[0] lowerCamelCase_ : List[Any] =env.action_space.shape[0] def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[str] , snake_case__ : Tuple ): return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase__ ( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : str ): return x_in * self.stds[key] + self.means[key] def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : List[str] ): if type(snake_case__ ) is dict: return {k: self.to_torch(snake_case__ ) for k, v in x_in.items()} elif torch.is_tensor(snake_case__ ): return x_in.to(self.unet.device ) return torch.tensor(snake_case__ , device=self.unet.device ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : str ): for key, val in cond.items(): lowerCamelCase_ : Optional[int] =val.clone() return x_in def UpperCAmelCase__ ( self : int , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): lowerCamelCase_ : str =x.shape[0] lowerCamelCase_ : Optional[Any] =None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase_ : List[Any] =torch.full((batch_size,) , snake_case__ , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase_ : Optional[int] =self.value_function(x.permute(0 , 2 , 1 ) , snake_case__ ).sample lowerCamelCase_ : List[Any] =torch.autograd.grad([y.sum()] , [x] )[0] lowerCamelCase_ : List[Any] =self.scheduler._get_variance(snake_case__ ) lowerCamelCase_ : int =torch.exp(0.5 * posterior_variance ) lowerCamelCase_ : List[Any] =model_std * grad lowerCamelCase_ : str =0 lowerCamelCase_ : Optional[int] =x.detach() lowerCamelCase_ : Optional[int] =x + scale * grad lowerCamelCase_ : Dict =self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCamelCase_ : Tuple =self.unet(x.permute(0 , 2 , 1 ) , snake_case__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase_ : Optional[int] =self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , predict_epsilon=snake_case__ )["prev_sample"] # apply conditions to the trajectory (set the initial state) lowerCamelCase_ : Tuple =self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCamelCase_ : Optional[int] =self.to_torch(snake_case__ ) return x, y def __call__( self : Tuple , snake_case__ : Any , snake_case__ : Optional[int]=64 , snake_case__ : Any=32 , snake_case__ : List[Any]=2 , snake_case__ : Tuple=0.1 ): # normalize the observations and create batch dimension lowerCamelCase_ : Dict =self.normalize(snake_case__ , "observations" ) lowerCamelCase_ : int =obs[None].repeat(snake_case__ , axis=0 ) lowerCamelCase_ : int ={0: self.to_torch(snake_case__ )} lowerCamelCase_ : Union[str, Any] =(batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase_ : Tuple =randn_tensor(snake_case__ , device=self.unet.device ) lowerCamelCase_ : int =self.reset_xa(snake_case__ , snake_case__ , self.action_dim ) lowerCamelCase_ : List[str] =self.to_torch(snake_case__ ) # run the diffusion process lowerCamelCase_ , lowerCamelCase_ : List[str] =self.run_diffusion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # sort output trajectories by value lowerCamelCase_ : Optional[int] =y.argsort(0 , descending=snake_case__ ).squeeze() lowerCamelCase_ : Union[str, Any] =x[sorted_idx] lowerCamelCase_ : Dict =sorted_values[:, :, : self.action_dim] lowerCamelCase_ : str =actions.detach().cpu().numpy() lowerCamelCase_ : Optional[Any] =self.de_normalize(snake_case__ , key="actions" ) # select the action with the highest value if y is not None: lowerCamelCase_ : Union[str, Any] =0 else: # if we didn't run value guiding, select a random action lowerCamelCase_ : str =np.random.randint(0 , snake_case__ ) lowerCamelCase_ : List[str] =denorm_actions[selected_index, 0] return denorm_actions
209
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
1
import requests lowerCamelCase = '' # <-- Put your OpenWeatherMap appid here! lowerCamelCase = 'https://api.openweathermap.org/data/2.5/' def UpperCAmelCase__ ( _A : str = "Chicago" , _A : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def UpperCAmelCase__ ( _A : str = "Kolkata, India" , _A : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def UpperCAmelCase__ ( _A : float = 55.68 , _A : float = 12.57 , _A : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowerCamelCase = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
188
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 35 ): __a : set = set() __a : int __a : Fraction = Fraction(0 ) __a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __a : Union[str, Any] = x_num * y_den + x_den * y_num __a : Optional[Any] = x_den * y_den __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 __a : int = x_num * y_num __a : Optional[Any] = x_den * y_num + x_num * y_den __a : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 __a : List[Any] = x_num * x_num * y_num * y_num __a : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : Union[str, Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) __a : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : List[str] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
27
0
"""simple docstring""" from math import isqrt, loga def lowercase ( lowerCAmelCase__ : int ) -> Optional[int]: __a = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase__ , lowerCAmelCase__ ): __a = False return [i for i in range(2 , lowerCAmelCase__ ) if is_prime[i]] def lowercase ( lowerCAmelCase__ : int = 800800 , lowerCAmelCase__ : int = 800800 ) -> Optional[Any]: __a = degree * loga(lowerCAmelCase__ ) __a = int(lowerCAmelCase__ ) __a = calculate_prime_numbers(lowerCAmelCase__ ) __a = 0 __a = 0 __a = len(lowerCAmelCase__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
365
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=0.9_99 , lowerCAmelCase__ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __a = [] for i in range(lowerCAmelCase__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : str = 2 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_0085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = "linspace" , _a = 0 , ): if trained_betas is not None: __a = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __a = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __a = 1.0 - self.betas __a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCAmelCase ( self , _a , _a=None ): if schedule_timesteps is None: __a = self.timesteps __a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a = 1 if len(_a ) > 1 else 0 else: __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __a = self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCAmelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCAmelCase ( self , _a , _a , ): __a = self.index_for_timestep(_a ) if self.state_in_first_order: __a = self.sigmas[step_index] else: __a = self.sigmas_interpol[step_index] __a = sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCAmelCase ( self , _a , _a = None , _a = None , ): __a = num_inference_steps __a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a = torch.from_numpy(np.log(_a ) ).to(_a ) __a = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __a = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __a = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __a = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a = torch.cat([timesteps[:1], interleaved_timesteps] ) __a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a ): # get log sigma __a = sigma.log() # get distribution __a = log_sigma - self.log_sigmas[:, None] # get sigmas range __a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a = low_idx + 1 __a = self.log_sigmas[low_idx] __a = self.log_sigmas[high_idx] # interpolate sigmas __a = (low - log_sigma) / (low - high) __a = w.clamp(0 , 1 ) # transform interpolation to time range __a = (1 - w) * low_idx + w * high_idx __a = t.view(sigma.shape ) return t @property def __UpperCAmelCase ( self ): return self.sample is None def __UpperCAmelCase ( self , _a , _a , _a , _a = True , ): __a = self.index_for_timestep(_a ) # advance index counter by 1 __a = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a = self.sigmas[step_index] __a = self.sigmas_interpol[step_index + 1] __a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a = self.sigmas[step_index - 1] __a = self.sigmas_interpol[step_index] __a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a = 0 __a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a = sigma_hat if self.state_in_first_order else sigma_interpol __a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __a = sigma_interpol - sigma_hat # store for 2nd order step __a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a = sigma_next - sigma_hat __a = self.sample __a = None __a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCAmelCase ( self , _a , _a , _a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a = self.timesteps.to(original_samples.device ) __a = timesteps.to(original_samples.device ) __a = [self.index_for_timestep(_a , _a ) for t in timesteps] __a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a = sigma.unsqueeze(-1 ) __a = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
11
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __A : a__ : List[Any] = LEDConfig a__ : Optional[int] = {} a__ : Tuple = """gelu""" def __init__(self : List[Any] , __a : List[Any] , __a : Optional[int]=13 , __a : Optional[Any]=7 , __a : Dict=True , __a : Tuple=False , __a : Optional[Any]=99 , __a : Any=32 , __a : List[Any]=2 , __a : Optional[Any]=4 , __a : str=37 , __a : Any=0.1 , __a : Any=0.1 , __a : Dict=20 , __a : Union[str, Any]=2 , __a : Tuple=1 , __a : str=0 , __a : Tuple=4 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase_ = prepare_led_inputs_dict(__a , __a , __a ) UpperCAmelCase_ = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) UpperCAmelCase_ = global_attention_mask return config, inputs_dict def _lowercase (self : Optional[int] , __a : int , __a : int ): UpperCAmelCase_ = TFLEDModel(config=__a ).get_decoder() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(__a , attention_mask=__a , use_cache=__a ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(__a , attention_mask=__a )[0] UpperCAmelCase_ = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Dict , snake_case_ : int=None , snake_case_ : List[Any]=None , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None , ) -> int: '''simple docstring''' if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () a__ : Optional[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () a__ : Optional[Any] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) a__ : Optional[Any] = True a__ : Optional[Any] = False a__ : Tuple = False a__ : str = False def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFLEDModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a ) def _lowercase (self : str ): self.config_tester.run_common_tests() def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = tf.zeros_like(inputs_dict["attention_mask"] ) UpperCAmelCase_ = 2 UpperCAmelCase_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) UpperCAmelCase_ = True UpperCAmelCase_ = self.model_tester.seq_length UpperCAmelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Union[str, Any] ): UpperCAmelCase_ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : List[str] ): UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase_ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase (self : Union[str, Any] ): pass def _lowercase (self : Optional[Any] ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Optional[int]: '''simple docstring''' return tf.constant(snake_case_ , dtype=tf.intaa ) SCREAMING_SNAKE_CASE_: List[str] =1E-4 @slow @require_tf class __A ( unittest.TestCase ): def _lowercase (self : str ): UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , __a , __a ) UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , __a , __a ) UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 , rtol=1E-3 )
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ : Dict = logging.get_logger(__name__) A_ : Any = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'deberta-v2' def __init__( self : Any , __UpperCAmelCase : Optional[Any]=1_2_8_1_0_0 , __UpperCAmelCase : Optional[Any]=1_5_3_6 , __UpperCAmelCase : List[Any]=2_4 , __UpperCAmelCase : str=2_4 , __UpperCAmelCase : Optional[int]=6_1_4_4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-7 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]="gelu" , **__UpperCAmelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = max_relative_positions SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase ) == str: SCREAMING_SNAKE_CASE__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pooler_dropout SCREAMING_SNAKE_CASE__ = pooler_hidden_act class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 1_2 def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
165
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[2, 2, 3, 2] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> Tuple: _a = parent _a = batch_size _a = image_size _a = num_channels _a = num_stages _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = intermediate_size _a = hidden_act _a = type_sequence_label_size _a = initializer_range _a = out_features _a = num_labels _a = scope _a = num_stages def _UpperCAmelCase ( self ) -> str: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _UpperCAmelCase ( self ) -> Optional[int]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _a = UperNetForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = (UperNetForSemanticSegmentation,) if is_torch_available() else () A_ : Dict = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} A_ : Dict = False A_ : Optional[Any] = False A_ : List[str] = False A_ : Optional[int] = False A_ : List[str] = False A_ : int = False def _UpperCAmelCase ( self ) -> List[Any]: _a = UperNetModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> int: return def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__UpperCAmelCase ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> str: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _a = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__UpperCAmelCase ) _a = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _a = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def _UpperCAmelCase ( self ) -> Any: pass @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = UperNetForSemanticSegmentation.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A_ ( ): """simple docstring""" _a = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _a = Image.open(_lowerCAmelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: _a = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) _a = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(__UpperCAmelCase ) _a = prepare_img() _a = processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) with torch.no_grad(): _a = model(**__UpperCAmelCase ) _a = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _a = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) ) def _UpperCAmelCase ( self ) -> Tuple: _a = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) _a = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(__UpperCAmelCase ) _a = prepare_img() _a = processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) with torch.no_grad(): _a = model(**__UpperCAmelCase ) _a = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _a = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
153
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10_00 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) ) if __name__ == "__main__": print(solution())
153
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Any = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __lowerCAmelCase : Dict = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __lowerCAmelCase : Dict = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __lowerCAmelCase : Optional[Any] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
107
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase__ = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase_ ( __A, __A=None ) -> Dict: '''simple docstring''' require_version(deps[pkg], __A )
65
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase__ = ['''text''', '''image''', '''audio'''] def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Dict = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(A_, A_ ): inputs.append(create_inputs(A_ ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def snake_case_ ( A_ : List ): '''simple docstring''' _lowerCamelCase : List[Any] = [] for output in outputs: if isinstance(A_, (str, AgentText) ): output_types.append('''text''' ) elif isinstance(A_, (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(A_, (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __snake_case : def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) _lowerCamelCase : str = self.tool.inputs for _input in inputs: if isinstance(_input , __lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _lowerCamelCase : Tuple = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : int = create_inputs(self.tool.inputs ) _lowerCamelCase : Any = self.tool(*__lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: _lowerCamelCase : Optional[int] = [outputs] self.assertListEqual(output_types(__lowerCAmelCase ) , self.tool.outputs ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = create_inputs(self.tool.inputs ) _lowerCamelCase : str = self.tool(*__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Any = [outputs] self.assertEqual(len(__lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(__lowerCAmelCase , self.tool.outputs ): _lowerCamelCase : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Tuple = create_inputs(self.tool.inputs ) _lowerCamelCase : Optional[int] = [] for _input, input_type in zip(__lowerCAmelCase , self.tool.inputs ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _lowerCamelCase : Tuple = self.tool(*__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : List[Any] = [outputs] self.assertEqual(len(__lowerCAmelCase ) , len(self.tool.outputs ) )
175
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' def wrapper(*A_ : int, **A_ : List[str] ): _lowerCamelCase : Tuple = timeit.default_timer() _lowerCamelCase : Optional[Any] = func(*A_, **A_ ) _lowerCamelCase : Tuple = timeit.default_timer() - starttime return delta _lowerCamelCase : Optional[Any] = func.__name__ return wrapper def snake_case_ ( A_ : dict, A_ : List[str]=1_00, A_ : Optional[Any]=None ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[int] = seq_shapes or {} for i in range(A_ ): _lowerCamelCase : Any = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(A_, _ArrayXD ): _lowerCamelCase : str = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(A_, datasets.Value ): if v.dtype == "string": _lowerCamelCase : List[str] = '''The small grey turtle was surprisingly fast when challenged.''' else: _lowerCamelCase : int = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(A_, datasets.Sequence ): while isinstance(A_, datasets.Sequence ): _lowerCamelCase : Union[str, Any] = v.feature _lowerCamelCase : Dict = seq_shapes[k] _lowerCamelCase : int = np.random.rand(*A_ ).astype(v.dtype ) _lowerCamelCase : Optional[Any] = data dummy_data.append((i, example) ) return dummy_data def snake_case_ ( A_ : List[str], A_ : Optional[int], A_ : Optional[int]=1_00, A_ : Optional[Any]=None ): '''simple docstring''' _lowerCamelCase : Optional[int] = generate_examples(A_, num_examples=A_, seq_shapes=A_ ) with ArrowWriter(features=A_, path=A_ ) as writer: for key, record in dummy_data: _lowerCamelCase : Optional[Any] = features.encode_example(A_ ) writer.write(A_ ) _lowerCamelCase , _lowerCamelCase : Dict = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _lowerCamelCase : List[Any] = datasets.Dataset.from_file(filename=A_, info=datasets.DatasetInfo(features=A_ ) ) return dataset
175
1
def A__ ( SCREAMING_SNAKE_CASE__) -> str: return "".join(chr(ord(SCREAMING_SNAKE_CASE__) - 32) if """a""" <= char <= """z""" else char for char in word) if __name__ == "__main__": from doctest import testmod testmod()
111
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """token-classification""" def __init__( self : Union[str, Any] , A : List[Any] ): if type(A ) == dict: __snake_case: str = Namespace(**A ) __snake_case: str = import_module("""tasks""" ) try: __snake_case: Tuple = getattr(A , hparams.task_type ) __snake_case: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __snake_case: Optional[int] = self.token_classification_task.get_labels(hparams.labels ) __snake_case: str = CrossEntropyLoss().ignore_index super().__init__(A , len(self.labels ) , self.mode ) def UpperCAmelCase__ ( self : Union[str, Any] , **A : Union[str, Any] ): return self.model(**A ) def UpperCAmelCase__ ( self : Any , A : Optional[int] , A : str ): __snake_case: str = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: Any = self(**A ) __snake_case: Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCAmelCase__ ( self : List[str] ): __snake_case: Tuple = self.hparams for mode in ["train", "dev", "test"]: __snake_case: Union[str, Any] = self._feature_file(A ) if os.path.exists(A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , A ) __snake_case: Tuple = torch.load(A ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __snake_case: List[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , A ) __snake_case: Optional[int] = self.token_classification_task.convert_examples_to_features( A , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , A ) torch.save(A , A ) def UpperCAmelCase__ ( self : List[str] , A : int , A : int , A : bool = False ): __snake_case: List[str] = self._feature_file(A ) logger.info("""Loading features from cached file %s""" , A ) __snake_case: int = torch.load(A ) __snake_case: Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case: Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __snake_case: Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __snake_case: Tuple = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __snake_case: Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(A , A , A , A ) , batch_size=A ) def UpperCAmelCase__ ( self : Tuple , A : Optional[Any] , A : int ): """Compute validation""" "" __snake_case: List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __snake_case: Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __snake_case: List[str] = self(**A ) __snake_case , __snake_case: int = outputs[:2] __snake_case: List[str] = logits.detach().cpu().numpy() __snake_case: Any = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase__ ( self : Dict , A : Dict ): __snake_case: Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __snake_case: Tuple = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __snake_case: List[str] = np.argmax(A , axis=2 ) __snake_case: Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __snake_case: Tuple = dict(enumerate(self.labels ) ) __snake_case: Dict = [[] for _ in range(out_label_ids.shape[0] )] __snake_case: Tuple = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __snake_case: Dict = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(A , A ), """precision""": precision_score(A , A ), """recall""": recall_score(A , A ), """f1""": fa_score(A , A ), } __snake_case: Dict = dict(results.items() ) __snake_case: Dict = results return ret, preds_list, out_label_list def UpperCAmelCase__ ( self : Tuple , A : int ): # when stable __snake_case , __snake_case , __snake_case: List[str] = self._eval_end(A ) __snake_case: int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase__ ( self : Dict , A : Optional[int] ): # updating to test_epoch_end instead of deprecated test_end __snake_case , __snake_case , __snake_case: int = self._eval_end(A ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __snake_case: List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase__ ( A : Any , A : int ): # Add NER specific options BaseTransformer.add_model_specific_args(A , A ) parser.add_argument( """--task_type""" , default="""NER""" , type=A , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=A , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=A , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __UpperCAmelCase : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCAmelCase : Tuple = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase : List[str] = parser.parse_args() __UpperCAmelCase : Optional[int] = NERTransformer(args) __UpperCAmelCase : Tuple = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) __UpperCAmelCase : Any = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
111
1
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int = 10 ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or n < 0: raise ValueError('Invalid input' ) SCREAMING_SNAKE_CASE = 10**n SCREAMING_SNAKE_CASE = 2_84_33 * (pow(2 , 7_83_04_57 , SCREAMING_SNAKE_CASE_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
38
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""image"""] SCREAMING_SNAKE_CASE_ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Any = False @property def __A ( self ) -> Tuple: return 32 @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self ) -> Union[str, Any]: return 8 @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
38
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
'''simple docstring''' import os from collections.abc import Iterator def __lowerCamelCase ( __snake_case : str = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(__snake_case ): A__ : List[Any] =[d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__snake_case )[1] in (".py", ".ipynb"): yield os.path.join(__snake_case, __snake_case ).lstrip("""./""" ) def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return f"{i * ' '}*" if i else "\n##" def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str: """simple docstring""" A__ : Optional[Any] =old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__snake_case ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(__snake_case )} {new_part.replace('_', ' ' ).title()}" ) return new_path def __lowerCamelCase ( __snake_case : str = "." ) -> None: """simple docstring""" A__ : Any ="""""" for filepath in sorted(good_file_paths(__snake_case ) ): A__ , A__ : Optional[int] =os.path.split(__snake_case ) if filepath != old_path: A__ : Dict =print_path(__snake_case, __snake_case ) A__ : List[str] =(filepath.count(os.sep ) + 1) if filepath else 0 A__ : Union[str, Any] =f"{filepath}/{filename}".replace(""" """, """%20""" ) A__ : Optional[int] =os.path.splitext(filename.replace("""_""", """ """ ).title() )[0] print(f"{md_prefix(__snake_case )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md('.')
134
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] ): # Load configuration defined in the metadata file with open(_lowerCamelCase ) as metadata_file: A__ = json.load(_lowerCamelCase ) A__ = LukeConfig(use_entity_aware_attention=_lowerCamelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A__ = torch.load(_lowerCamelCase , map_location="cpu" )["module"] # Load the entity vocab file A__ = load_original_entity_vocab(_lowerCamelCase ) # add an entry for [MASK2] A__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A__ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A__ = AddedToken("<ent>" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) A__ = AddedToken("<ent2>" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , "tokenizer_config.json" ) , "r" ) as f: A__ = json.load(_lowerCamelCase ) A__ = "MLukeTokenizer" with open(os.path.join(_lowerCamelCase , "tokenizer_config.json" ) , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) with open(os.path.join(_lowerCamelCase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) A__ = MLukeTokenizer.from_pretrained(_lowerCamelCase ) # Initialize the embeddings of the special tokens A__ = tokenizer.convert_tokens_to_ids(["@"] )[0] A__ = tokenizer.convert_tokens_to_ids(["#"] )[0] A__ = state_dict["embeddings.word_embeddings.weight"] A__ = word_emb[ent_init_index].unsqueeze(0 ) A__ = word_emb[enta_init_index].unsqueeze(0 ) A__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A__ = state_dict[bias_name] A__ = decoder_bias[ent_init_index].unsqueeze(0 ) A__ = decoder_bias[enta_init_index].unsqueeze(0 ) A__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A__ = F"encoder.layer.{layer_index}.attention.self." A__ = state_dict[prefix + matrix_name] A__ = state_dict[prefix + matrix_name] A__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A__ = state_dict["entity_embeddings.entity_embeddings.weight"] A__ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) A__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A__ = state_dict["entity_predictions.bias"] A__ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) A__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A__ = LukeForMaskedLM(config=_lowerCamelCase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) A__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): A__ = state_dict[key] else: A__ = state_dict[key] A__, A__ = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if set(_lowerCamelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(_lowerCamelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A__ = MLukeTokenizer.from_pretrained(_lowerCamelCase , task="entity_classification" ) A__ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." A__ = (0, 9) A__ = tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="pt" ) A__ = model(**_lowerCamelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A__ = torch.Size((1, 33, 7_68) ) A__ = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A__ = torch.Size((1, 1, 7_68) ) A__ = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A__ = MLukeTokenizer.from_pretrained(_lowerCamelCase ) A__ = "Tokyo is the capital of <mask>." A__ = (24, 30) A__ = tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="pt" ) A__ = model(**_lowerCamelCase ) A__ = encoding["input_ids"][0].tolist() A__ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) A__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowerCamelCase ) A__ = outputs.entity_logits[0][0].argmax().item() A__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_lowerCamelCase ) ) model.save_pretrained(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): A__ = ["[MASK]", "[PAD]", "[UNK]"] A__ = [json.loads(_lowerCamelCase ) for line in open(_lowerCamelCase )] A__ = {} for entry in data: A__ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A__ = entity_id break A__ = F"{language}:{entity_name}" A__ = entity_id return new_mapping if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __lowerCAmelCase : Union[str, Any] =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
123
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = (PNDMScheduler,) __lowercase = (("""num_inference_steps""", 50),) def UpperCAmelCase_ ( self :List[str] , **lowercase_ :Optional[int] )-> List[str]: A__ = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self :int , lowercase_ :Optional[int]=0 , **lowercase_ :Any )-> int: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :List[Any] )-> Tuple: pass def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Optional[Any]=0 , **lowercase_ :List[str] )-> str: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample A__ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :Optional[int] , **lowercase_ :Dict )-> Optional[int]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCAmelCase_ ( self :int )-> Union[str, Any]: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] A__ = dummy_past_residuals[:] A__ = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample A__ = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A__ = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample A__ = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self :Any )-> Dict: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1 ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def UpperCAmelCase_ ( self :Optional[Any] )-> Any: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self :Tuple )-> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> str: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 A__ = 27 for scheduler_class in self.scheduler_classes: A__ = self.dummy_sample A__ = 0.1 * sample A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A__ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCAmelCase_ ( self :List[str] )-> str: with self.assertRaises(lowercase_ ): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase_ ( self :int )-> str: A__ = self.full_loop() A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[Any] )-> List[Any]: A__ = self.full_loop(prediction_type="v_prediction" ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def UpperCAmelCase_ ( self :Tuple )-> Tuple: # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def UpperCAmelCase_ ( self :Dict )-> Any: # We specify different beta, so that the first alpha is 0.99 A__ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
123
1
from __future__ import annotations def lowerCAmelCase_ ( A_ ,A_): if partitions <= 0: raise ValueError("partitions must be a positive number!") if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!") UpperCamelCase__: Tuple = number_of_bytes // partitions UpperCamelCase__: int = [] for i in range(A_): UpperCamelCase__: str = i * bytes_per_partition + 1 UpperCamelCase__: str = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"{start_bytes}-{end_bytes}") return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
149
import os from datetime import datetime as dt from github import Github A__: int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def lowerCAmelCase_ ( ): UpperCamelCase__: Dict = Github(os.environ["GITHUB_TOKEN"]) UpperCamelCase__: Union[str, Any] = g.get_repo("huggingface/diffusers") UpperCamelCase__: str = repo.get_issues(state="open") for issue in open_issues: UpperCamelCase__: Union[str, Any] = sorted(issue.get_comments() ,key=lambda A_: i.created_at ,reverse=A_) UpperCamelCase__: Tuple = comments[0] if len(A_) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed") elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open") issue.remove_from_labels("stale") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") issue.add_to_labels("stale") if __name__ == "__main__": main()
149
1
from typing import Any class _snake_case : def __init__( self : Dict, __lowercase : Any ): lowercase__ = data lowercase__ = None class _snake_case : def __init__( self : Any ): lowercase__ = None def A__ ( self : int ): lowercase__ = self.head while temp is not None: print(temp.data, end=" " ) lowercase__ = temp.next print() def A__ ( self : List[Any], __lowercase : Any ): lowercase__ = Node(__lowercase ) lowercase__ = self.head lowercase__ = new_node def A__ ( self : Tuple, __lowercase : int, __lowercase : Optional[int] ): if node_data_a == node_data_a: return else: lowercase__ = self.head while node_a is not None and node_a.data != node_data_a: lowercase__ = node_a.next lowercase__ = self.head while node_a is not None and node_a.data != node_data_a: lowercase__ = node_a.next if node_a is None or node_a is None: return lowercase__ , lowercase__ = node_a.data, node_a.data if __name__ == "__main__": lowercase_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
359
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _snake_case ( lowercase__): UpperCamelCase__ : Optional[int] ="""whisper""" UpperCamelCase__ : Optional[int] =["""past_key_values"""] UpperCamelCase__ : Optional[Any] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any], __lowercase : List[str]=5_1865, __lowercase : Dict=80, __lowercase : List[Any]=6, __lowercase : Union[str, Any]=4, __lowercase : Tuple=6, __lowercase : Dict=4, __lowercase : List[Any]=1536, __lowercase : Tuple=1536, __lowercase : Any=0.0, __lowercase : List[str]=0.0, __lowercase : List[Any]=5_0257, __lowercase : List[str]=True, __lowercase : str=True, __lowercase : int="gelu", __lowercase : Tuple=256, __lowercase : Tuple=0.0, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=0.0, __lowercase : List[Any]=0.02, __lowercase : Union[str, Any]=False, __lowercase : str=1500, __lowercase : Optional[int]=448, __lowercase : Optional[Any]=5_0256, __lowercase : Tuple=5_0256, __lowercase : Any=5_0256, __lowercase : Union[str, Any]=None, __lowercase : Any=[220, 5_0256], __lowercase : List[Any]=False, __lowercase : int=256, __lowercase : int=False, __lowercase : Tuple=0.05, __lowercase : int=10, __lowercase : Dict=2, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=10, __lowercase : Union[str, Any]=0, __lowercase : Tuple=7, **__lowercase : Union[str, Any], ): lowercase__ = vocab_size lowercase__ = num_mel_bins lowercase__ = d_model lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = encoder_ffn_dim lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase__ = classifier_proj_size lowercase__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks lowercase__ = median_filter_width super().__init__( pad_token_id=__lowercase, bos_token_id=__lowercase, eos_token_id=__lowercase, is_encoder_decoder=__lowercase, decoder_start_token_id=__lowercase, suppress_tokens=__lowercase, begin_suppress_tokens=__lowercase, **__lowercase, ) class _snake_case ( lowercase__): @property def A__ ( self : str ): lowercase__ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase__ = {0: "batch"} else: lowercase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowercase, direction="inputs" ) return common_inputs def A__ ( self : int, __lowercase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], __lowercase : int = -1, __lowercase : int = -1, __lowercase : bool = False, __lowercase : Optional["TensorType"] = None, __lowercase : int = 2_2050, __lowercase : float = 5.0, __lowercase : int = 220, ): lowercase__ = OrderedDict() lowercase__ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=__lowercase, framework=__lowercase, sampling_rate=__lowercase, time_duration=__lowercase, frequency=__lowercase, ) lowercase__ = encoder_inputs["input_features"].shape[2] lowercase__ = encoder_sequence_length // 2 if self.use_past else seq_length lowercase__ = super().generate_dummy_inputs( preprocessor.tokenizer, __lowercase, __lowercase, __lowercase, __lowercase ) lowercase__ = encoder_inputs.pop("input_features" ) lowercase__ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase__ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def A__ ( self : int ): return 1e-3
224
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase_ = logging.get_logger(__name__) @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : str = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__(self , **A ) -> Union[str, Any]: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _a = deprecated_arg[3:] setattr(self , A , not kwargs.pop(A ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) _a = kwargs.pop('''torchscript''' , self.torchscript ) _a = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) _a = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**A ) __lowerCamelCase : bool = field(default=A , metadata={'help': 'Trace the models using torchscript'} ) __lowerCamelCase : bool = field(default=A , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) __lowerCamelCase : str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def a__ (self ) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: _a = torch.device('''cpu''' ) _a = 0 elif is_torch_tpu_available(): _a = xm.xla_device() _a = 0 else: _a = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _a = torch.cuda.device_count() return device, n_gpu @property def a__ (self ) -> Tuple: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def a__ (self ) -> int: """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def a__ (self ) -> "torch.device": """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def a__ (self ) -> int: """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def a__ (self ) -> Optional[int]: """simple docstring""" return self.n_gpu > 0
211
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'xmod' def __init__(self , A=30_522 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1E-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , A=False , A=2 , A=False , A=True , A=True , A=("en_XX",) , A=None , **A , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout _a = pre_norm _a = adapter_reduction_factor _a = adapter_layer_norm _a = adapter_reuse_layer_norm _a = ln_before_adapter _a = list(A ) _a = default_language class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
211
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : int=None , A : List[Any]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=A ) @dataclass class UpperCamelCase__: __magic_name__ : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __magic_name__ : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __magic_name__ : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Use FP16 to accelerate inference."} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Benchmark training of model"} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Verbose memory tracing"} ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Trace memory line by line"} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Save result to a CSV file"} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Save all print statements in a log file"} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Whether to print environment information"} ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __magic_name__ : str = field( default=f'inference_time_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving time results to csv."} , ) __magic_name__ : str = field( default=f'inference_memory_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __magic_name__ : str = field( default=f'train_time_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __magic_name__ : str = field( default=f'train_memory_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __magic_name__ : str = field( default=f'env_info_{round(time() )}.csv' , metadata={"help": "CSV filename used if saving environment information."} , ) __magic_name__ : str = field( default=f'log_{round(time() )}.csv' , metadata={"help": "Log filename used if print statements are saved in log."} , ) __magic_name__ : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def a__( self : List[Any] )-> Tuple: """simple docstring""" warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , lowerCAmelCase , ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def a__( self : List[str] )-> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
370
'''simple docstring''' _lowercase : Any = range(2, 20 + 1) _lowercase : str = [10**k for k in range(ks[-1] + 1)] _lowercase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase__ ( A : int , A : str , A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = sum(a_i[j] for j in range(A , len(A ) ) ) UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) UpperCAmelCase , UpperCAmelCase = 0, 0 UpperCAmelCase = n - i UpperCAmelCase = memo.get(A ) if sub_memo is not None: UpperCAmelCase = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over UpperCAmelCase = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase = _k break if max_jump >= 0: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase = diff + c for j in range(min(A , len(A ) ) ): UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: UpperCAmelCase = [] else: UpperCAmelCase = {c: []} UpperCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase , UpperCAmelCase = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase , UpperCAmelCase = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped UpperCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : List[Any] , A : int ): '''simple docstring''' if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase = i UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase = ds_c + ds_b diff += addend UpperCAmelCase = 0 for j in range(A ): UpperCAmelCase = a_i[j] + addend UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def lowerCamelCase__ ( A : List[str] , A : Optional[int] , A : Optional[Any] ): '''simple docstring''' for j in range(A , len(A ) ): UpperCAmelCase = digits[j] + addend if s >= 10: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) UpperCAmelCase = addend // 10 + quotient else: UpperCAmelCase = s UpperCAmelCase = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) digits.append(A ) def lowerCamelCase__ ( A : int = 10**15 ): '''simple docstring''' UpperCAmelCase = [1] UpperCAmelCase = 1 UpperCAmelCase = 0 while True: UpperCAmelCase , UpperCAmelCase = next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break UpperCAmelCase = 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
91
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : Tuple = logging.get_logger(__name__) lowercase : Optional[int] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """deformable_detr""" __lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=3_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=6 , lowerCAmelCase_=10_24 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=10_24 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_="resnet50" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=False , lowerCAmelCase_=3_00 , lowerCAmelCase_=False , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.25 , lowerCAmelCase_=False , **lowerCAmelCase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = backbone_config.get('model_type' ) _snake_case = CONFIG_MAPPING[backbone_model_type] _snake_case = config_class.from_dict(_UpperCamelCase ) _snake_case = use_timm_backbone _snake_case = backbone_config _snake_case = num_channels _snake_case = num_queries _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = init_xavier_std _snake_case = encoder_layerdrop _snake_case = auxiliary_loss _snake_case = position_embedding_type _snake_case = backbone _snake_case = use_pretrained_backbone _snake_case = dilation # deformable attributes _snake_case = num_feature_levels _snake_case = encoder_n_points _snake_case = decoder_n_points _snake_case = two_stage _snake_case = two_stage_num_proposals _snake_case = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = mask_loss_coefficient _snake_case = dice_loss_coefficient _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient _snake_case = focal_alpha _snake_case = disable_custom_kernels super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def lowerCamelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def lowerCamelCase ( self ): """simple docstring""" return self.d_model def lowerCamelCase ( self ): """simple docstring""" _snake_case = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _snake_case = self.backbone_config.to_dict() _snake_case = self.__class__.model_type return output
42
import os from datetime import datetime as dt from github import Github snake_case__ : Union[str, Any] = [ 'good first issue', 'feature request', 'wip', ] def _a ( ) -> List[Any]: '''simple docstring''' __A = Github(os.environ['''GITHUB_TOKEN'''] ) __A = g.get_repo('''huggingface/accelerate''' ) __A = repo.get_issues(state='''open''' ) for issue in open_issues: __A = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase : i.created_at , reverse=lowerCamelCase ) __A = comments[0] if len(lowerCamelCase ) > 0 else None __A = dt.utcnow() __A = (current_time - issue.updated_at).days __A = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
117
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase__ = logging.get_logger(__name__) # TODO: upload to AWS lowercase__ = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class __snake_case ( __lowerCAmelCase ): a__ = """retribert""" def __init__( self , lowercase=3_05_22 , lowercase=7_68 , lowercase=8 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_12 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=True , lowercase=1_28 , lowercase=0 , **lowercase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase) a__: Tuple = vocab_size a__: Dict = hidden_size a__: Union[str, Any] = num_hidden_layers a__: List[str] = num_attention_heads a__: Dict = hidden_act a__: Union[str, Any] = intermediate_size a__: List[Any] = hidden_dropout_prob a__: Tuple = attention_probs_dropout_prob a__: int = max_position_embeddings a__: Any = type_vocab_size a__: Tuple = initializer_range a__: str = layer_norm_eps a__: Union[str, Any] = share_encoders a__: List[str] = projection_dim
351
"""simple docstring""" import unittest from knapsack import knapsack as k class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: List[Any] = 0 a__: Dict = [0] a__: int = [0] a__: Optional[Any] = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 0) a__: str = [60] a__: Dict = [10] a__: List[str] = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 0) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: int = 3 a__: str = [1, 2, 3] a__: Dict = [3, 2, 1] a__: Optional[int] = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 5) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Any = 50 a__: Optional[int] = [60, 1_00, 1_20] a__: str = [10, 20, 30] a__: int = len(lowercase) self.assertEqual(k.knapsack(lowercase , lowercase , lowercase , lowercase) , 2_20) if __name__ == "__main__": unittest.main()
203
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE__ ) if number < 0: return False _SCREAMING_SNAKE_CASE : str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
200
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=18 , __snake_case=30 , __snake_case=400 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=None , ): _SCREAMING_SNAKE_CASE : Any = size if size is not None else {"""shortest_edge""": 20} _SCREAMING_SNAKE_CASE : int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _SCREAMING_SNAKE_CASE : Dict = parent _SCREAMING_SNAKE_CASE : Any = batch_size _SCREAMING_SNAKE_CASE : Any = num_channels _SCREAMING_SNAKE_CASE : Dict = image_size _SCREAMING_SNAKE_CASE : Any = min_resolution _SCREAMING_SNAKE_CASE : Any = max_resolution _SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize _SCREAMING_SNAKE_CASE : Tuple = size _SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop _SCREAMING_SNAKE_CASE : str = crop_size def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase__ ( _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = MobileNetVaImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = MobileNetVaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """do_center_crop""" ) ) self.assertTrue(hasattr(__snake_case , """crop_size""" ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing _SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE : int = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _SCREAMING_SNAKE_CASE : str = image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
200
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = field(default_factory=lowerCamelCase__) lowerCamelCase__ = field(default_factory=lowerCamelCase__) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = len(list(m.modules())) == 1 or isinstance(lowercase__, nn.Convad) or isinstance(lowercase__, nn.BatchNormad) if has_not_submodules: self.traced.append(lowercase__) def __call__( self, __a): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(lowercase__) [x.remove() for x in self.handles] return self @property def snake_case__ ( self): '''simple docstring''' return list(filter(lambda __a: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 1 lowerCamelCase__ = field(default_factory=lowerCamelCase__) lowerCamelCase__ = field(default_factory=lowerCamelCase__) lowerCamelCase__ = True def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Tracker(self.dest)(lowercase__).parametrized _lowerCAmelCase : Union[str, Any] = Tracker(self.src)(lowercase__).parametrized _lowerCAmelCase : Any = list(filter(lambda __a: type(lowercase__) not in self.src_skip, lowercase__)) _lowerCAmelCase : List[Any] = list(filter(lambda __a: type(lowercase__) not in self.dest_skip, lowercase__)) if len(lowercase__) != len(lowercase__) and self.raise_if_mismatch: raise Exception( f"Numbers of operations are different. Source module has {len(lowercase__)} operations while" f" destination module has {len(lowercase__)}.") for dest_m, src_m in zip(lowercase__, lowercase__): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") class UpperCAmelCase_ ( nn.Module): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), f"Unexpected layer name {k}" _lowerCAmelCase : Optional[int] = len(lowercase__) + 1 feature_blocks.append((f"res{block_index}", v)) _lowerCAmelCase : Optional[int] = nn.ModuleDict(lowercase__) def snake_case__ ( self, __a): '''simple docstring''' return get_trunk_forward_outputs( lowercase__, out_feat_keys=lowercase__, feature_blocks=self._feature_blocks, ) class UpperCAmelCase_ ( lowerCamelCase__): def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = x.split("-") return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self, __a): '''simple docstring''' if x not in self: _lowerCAmelCase : Union[str, Any] = self.convert_name_to_timm(lowercase__) _lowerCAmelCase : Union[str, Any] = partial(lambda: (timm.create_model(lowercase__, pretrained=lowercase__).eval(), None)) else: _lowerCAmelCase : List[str] = super().__getitem__(lowercase__) return val class UpperCAmelCase_ ( lowerCamelCase__): def __getitem__( self, __a): '''simple docstring''' if "seer" in x and "in1k" not in x: _lowerCAmelCase : int = RegNetModel else: _lowerCAmelCase : Dict = RegNetForImageClassification return val def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for from_key, to_key in keys: _lowerCAmelCase : Tuple = from_state_dict[from_key].clone() print(F"Copied key={from_key} to={to_key}" ) return to_state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ): '''simple docstring''' print(F"Converting {name}..." ) with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase : Any = from_model_func() _lowerCAmelCase : str = our_model_func(A__ ).eval() _lowerCAmelCase : Union[str, Any] = ModuleTransfer(src=A__ , dest=A__ , raise_if_mismatch=A__ ) _lowerCAmelCase : Any = torch.randn((1, 3, 224, 224) ) module_transfer(A__ ) if from_state_dict is not None: _lowerCAmelCase : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _lowerCAmelCase : Optional[Any] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _lowerCAmelCase : Optional[int] = manually_copy_vissl_head(A__ , our_model.state_dict() , A__ ) our_model.load_state_dict(A__ ) _lowerCAmelCase : Optional[Any] = our_model(A__ , output_hidden_states=A__ ) _lowerCAmelCase : List[str] = ( our_outputs.logits if isinstance(A__ , A__ ) else our_outputs.last_hidden_state ) _lowerCAmelCase : Tuple = from_model(A__ ) _lowerCAmelCase : Tuple = from_output[-1] if type(A__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _lowerCAmelCase : Any = our_outputs.hidden_states[-1] assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=A__ , ) _lowerCAmelCase : int = 224 if "seer" not in name else 384 # we can use the convnext one _lowerCAmelCase : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=A__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=A__ , ) print(F"Pushed {name}" ) def A ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCAmelCase : Tuple = 1_000 _lowerCAmelCase : Union[str, Any] = (1, num_labels) _lowerCAmelCase : Any = "huggingface/label-files" _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : str = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="dataset" ) ) , "r" ) ) _lowerCAmelCase : int = {int(A__ ): v for k, v in idalabel.items()} _lowerCAmelCase : str = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} _lowerCAmelCase : Tuple = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) _lowerCAmelCase : Optional[Any] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } _lowerCAmelCase : Union[str, Any] = NameToOurModelFuncMap() _lowerCAmelCase : Optional[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCamelCase , _lowerCamelCase ) -> Tuple[nn.Module, Dict]: _lowerCAmelCase : Any = torch.hub.load_state_dict_from_url(A__ , model_dir=str(A__ ) , map_location="cpu" ) _lowerCAmelCase : List[str] = model_func() # check if we have a head, if yes add it _lowerCAmelCase : Any = files["classy_state_dict"]["base_model"]["model"] _lowerCAmelCase : str = model_state_dict["trunk"] model.load_state_dict(A__ ) return model.eval(), model_state_dict["heads"] # pretrained _lowerCAmelCase : int = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Tuple = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Dict = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase : Any = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _lowerCAmelCase : str = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Optional[int] = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Any = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase : Any = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A__ , A__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A__ , A__ , A__ , ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A_ , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(A_ , 'num_encoder_blocks' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=4 , A_=[2, 2, 2, 2] , A_=[8, 4, 2, 1] , A_=[16, 32, 64, 128] , A_=[1, 4, 8, 16] , A_=[1, 2, 4, 8] , A_=True , A_=True , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.02 , A_=3 , A_=None , ) -> List[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = num_encoder_blocks UpperCamelCase = sr_ratios UpperCamelCase = depths UpperCamelCase = hidden_sizes UpperCamelCase = downsampling_rates UpperCamelCase = num_attention_heads UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> Any: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = SegformerModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) UpperCamelCase = UpperCamelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = SegformerForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = SegformerForSemanticSegmentation(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(A_ ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertGreater(result.loss , 0.0 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[Any] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __lowercase : Any = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Tuple = True __lowercase : Union[str, Any] = False __lowercase : Dict = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = SegformerModelTester(self ) UpperCamelCase = SegformerConfigTester(self , config_class=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A_ ) @unittest.skip('SegFormer does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" pass def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.attentions UpperCamelCase = sum(self.model_tester.depths ) self.assertEqual(len(A_ ) , A_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(A_ ) , A_ ) # verify the first attentions (first block, first layer) UpperCamelCase = (self.model_tester.image_size // 4) ** 2 UpperCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) UpperCamelCase = (self.model_tester.image_size // 32) ** 2 UpperCamelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) UpperCamelCase = len(A_ ) # Check attention is always last and order is fine UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + 1 , len(A_ ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(A_ ) , A_ ) # verify the first attentions (first block, first layer) UpperCamelCase = (self.model_tester.image_size // 4) ** 2 UpperCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(A_ ): continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> Any: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = SegformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowercase ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" # only resize + normalize UpperCamelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A_ , align=A_ , do_random_crop=A_ ) UpperCamelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ) UpperCamelCase = encoded_inputs.pixel_values.to(A_ ) with torch.no_grad(): UpperCamelCase = model(A_ ) UpperCamelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" # only resize + normalize UpperCamelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A_ , align=A_ , do_random_crop=A_ ) UpperCamelCase = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(A_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ) UpperCamelCase = encoded_inputs.pixel_values.to(A_ ) with torch.no_grad(): UpperCamelCase = model(A_ ) UpperCamelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A_ , atol=1e-1 ) ) @slow def __UpperCamelCase ( self ) -> Any: """simple docstring""" # only resize + normalize UpperCamelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A_ , align=A_ , do_random_crop=A_ ) UpperCamelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ) UpperCamelCase = encoded_inputs.pixel_values.to(A_ ) with torch.no_grad(): UpperCamelCase = model(A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , A_ )
222
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" super().__init__() UpperCamelCase = value_function UpperCamelCase = unet UpperCamelCase = scheduler UpperCamelCase = env UpperCamelCase = env.get_dataset() UpperCamelCase = {} for key in self.data.keys(): try: UpperCamelCase = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase = {} for key in self.data.keys(): try: UpperCamelCase = self.data[key].std() except: # noqa: E722 pass UpperCamelCase = env.observation_space.shape[0] UpperCamelCase = env.action_space.shape[0] def __UpperCamelCase ( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __UpperCamelCase ( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" if type(A_ ) is dict: return {k: self.to_torch(A_ ) for k, v in x_in.items()} elif torch.is_tensor(A_ ): return x_in.to(self.unet.device ) return torch.tensor(A_ , device=self.unet.device ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" for key, val in cond.items(): UpperCamelCase = val.clone() return x_in def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = x.shape[0] UpperCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase = torch.full((batch_size,) , A_ , device=self.unet.device , dtype=torch.long ) for _ in range(A_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase = self.value_function(x.permute(0 , 2 , 1 ) , A_ ).sample UpperCamelCase = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase = self.scheduler._get_variance(A_ ) UpperCamelCase = torch.exp(0.5 * posterior_variance ) UpperCamelCase = model_std * grad UpperCamelCase = 0 UpperCamelCase = x.detach() UpperCamelCase = x + scale * grad UpperCamelCase = self.reset_xa(A_ , A_ , self.action_dim ) UpperCamelCase = self.unet(x.permute(0 , 2 , 1 ) , A_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase = self.scheduler.step(A_ , A_ , A_ , predict_epsilon=A_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) UpperCamelCase = self.reset_xa(A_ , A_ , self.action_dim ) UpperCamelCase = self.to_torch(A_ ) return x, y def __call__( self , A_ , A_=64 , A_=32 , A_=2 , A_=0.1 ) -> List[str]: """simple docstring""" # normalize the observations and create batch dimension UpperCamelCase = self.normalize(A_ , 'observations' ) UpperCamelCase = obs[None].repeat(A_ , axis=0 ) UpperCamelCase = {0: self.to_torch(A_ )} UpperCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase = randn_tensor(A_ , device=self.unet.device ) UpperCamelCase = self.reset_xa(A_ , A_ , self.action_dim ) UpperCamelCase = self.to_torch(A_ ) # run the diffusion process UpperCamelCase , UpperCamelCase = self.run_diffusion(A_ , A_ , A_ , A_ ) # sort output trajectories by value UpperCamelCase = y.argsort(0 , descending=A_ ).squeeze() UpperCamelCase = x[sorted_idx] UpperCamelCase = sorted_values[:, :, : self.action_dim] UpperCamelCase = actions.detach().cpu().numpy() UpperCamelCase = self.de_normalize(A_ , key='actions' ) # select the action with the highest value if y is not None: UpperCamelCase = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase = np.random.randint(0 , A_ ) UpperCamelCase = denorm_actions[selected_index, 0] return denorm_actions
222
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Optional[Any] , snake_case_ : int , snake_case_ : int ): __a : str = jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase (self : Optional[int] ): __a : int = None __a : List[str] = 2_0 __a : Union[str, Any] = self._get_uniform_logits(batch_size=2 , length=snake_case_ ) # tweak scores to not be uniform anymore __a : str = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __a : Optional[Any] = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __a : Any = jax.nn.softmax(snake_case_ , axis=-1 ) __a : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) __a : str = jax.nn.softmax(temp_dist_warper_sharper(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) __a : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase (self : Tuple ): __a : Any = None __a : int = 1_0 __a : Union[str, Any] = 2 # create ramp distribution __a : int = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() __a : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size __a : Dict = FlaxTopKLogitsWarper(3 ) __a : Optional[Any] = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __a : str = 5 __a : int = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __a : str = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, length) ).copy() __a : Tuple = top_k_warp_safety_check(snake_case_ , snake_case_ , cur_len=snake_case_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase (self : Any ): __a : Dict = None __a : str = 1_0 __a : Tuple = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __a : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __a : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) __a : Tuple = np.exp(top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __a : Optional[int] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits __a : List[Any] = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __a : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __a : Any = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __a : Any = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase (self : int ): __a : int = 2_0 __a : Union[str, Any] = 4 __a : str = 0 __a : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) # check that min length is applied at length 5 __a : Union[str, Any] = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) __a : List[str] = 5 __a : Any = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : Optional[int] = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 __a : Optional[Any] = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : Any = 1_5 __a : Any = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def lowerCAmelCase (self : Optional[Any] ): __a : Dict = 2_0 __a : Union[str, Any] = 4 __a : Optional[int] = 0 __a : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) # check that all scores are -inf except the bos_token_id score __a : str = ids_tensor((batch_size, 1) , vocab_size=2_0 ) __a : str = 1 __a : Tuple = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : Optional[int] = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __a : Optional[Any] = 3 __a : Optional[Any] = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : Union[str, Any] = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def lowerCAmelCase (self : Optional[int] ): __a : Union[str, Any] = 2_0 __a : str = 4 __a : Optional[Any] = 0 __a : int = 5 __a : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) # check that all scores are -inf except the eos_token_id when max_length is reached __a : str = ids_tensor((batch_size, 4) , vocab_size=2_0 ) __a : int = 4 __a : Dict = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : List[Any] = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __a : List[str] = 3 __a : Union[str, Any] = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : Union[str, Any] = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def lowerCAmelCase (self : int ): __a : Dict = 4 __a : Optional[int] = 1_0 __a : int = 1_5 __a : Optional[Any] = 2 __a : Union[str, Any] = 1 __a : Dict = 1_5 # dummy input_ids and scores __a : Tuple = ids_tensor((batch_size, sequence_length) , snake_case_ ) __a : Dict = input_ids.copy() __a : List[Any] = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : Optional[Any] = scores.copy() # instantiate all dist processors __a : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a : Tuple = FlaxTopKLogitsWarper(3 ) __a : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __a : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) __a : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) __a : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) __a : List[str] = 1_0 # no processor list __a : Optional[Any] = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Dict = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Optional[int] = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Union[str, Any] = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Union[str, Any] = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Union[str, Any] = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) # with processor list __a : Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __a : Dict = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase (self : int ): __a : List[Any] = 4 __a : Optional[Any] = 1_0 __a : Optional[Any] = 1_5 __a : int = 2 __a : Tuple = 1 __a : int = 1_5 # dummy input_ids and scores __a : Union[str, Any] = ids_tensor((batch_size, sequence_length) , snake_case_ ) __a : List[str] = input_ids.copy() __a : int = self._get_uniform_logits(snake_case_ , snake_case_ ) __a : Dict = scores.copy() # instantiate all dist processors __a : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __a : str = FlaxTopKLogitsWarper(3 ) __a : Any = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __a : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) __a : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) __a : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) __a : int = 1_0 # no processor list def run_no_processor_list(snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Any ): __a : Any = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Optional[Any] = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Optional[int] = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : Optional[int] = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : List[str] = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) __a : int = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores # with processor list def run_processor_list(snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): __a : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __a : Dict = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores __a : Dict = jax.jit(snake_case_ ) __a : Union[str, Any] = jax.jit(snake_case_ ) __a : List[str] = jitted_run_no_processor_list(snake_case_ , snake_case_ , snake_case_ ) __a : str = jitted_run_processor_list(snake_case_ , snake_case_ , snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
90
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ ={ 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure)
90
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = (UniPCMultistepScheduler,) lowercase = (("num_inference_steps", 25),) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**__UpperCAmelCase ) return config def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = dict(self.forward_default_kwargs ) __UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase ) __UpperCamelCase = self.dummy_sample __UpperCamelCase = 0.1 * sample __UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase ) __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals __UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) __UpperCamelCase = scheduler_class.from_pretrained(__UpperCAmelCase ) new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals __UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase , __UpperCamelCase = sample, sample for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): __UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample __UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = dict(self.forward_default_kwargs ) __UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase ) __UpperCamelCase = self.dummy_sample __UpperCamelCase = 0.1 * sample __UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) __UpperCamelCase = scheduler_class.from_pretrained(__UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample __UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' if scheduler is None: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase ) __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase ) __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) __UpperCamelCase = 10 __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = dict(self.forward_default_kwargs ) __UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase ) for scheduler_class in self.scheduler_classes: __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) __UpperCamelCase = self.dummy_sample __UpperCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(__UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , 'set_timesteps' ): __UpperCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] __UpperCamelCase = scheduler.timesteps[5] __UpperCamelCase = scheduler.timesteps[6] __UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample __UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) __UpperCamelCase = self.full_loop(scheduler=__UpperCAmelCase ) __UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 __UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase = self.full_loop(scheduler=__UpperCAmelCase ) __UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=__UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , ) def UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , ) __UpperCamelCase = self.full_loop( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , ) assert not torch.isnan(__UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=__UpperCAmelCase ) self.check_over_configs(lower_order_final=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.full_loop() __UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.full_loop(prediction_type='v_prediction' ) __UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0 ) __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) __UpperCamelCase = 10 __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' for scheduler_class in self.scheduler_classes: __UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase ) __UpperCamelCase = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : str = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ["input_features", "is_longer"] def __init__( self : Optional[int] , lowerCamelCase : Any=64 , lowerCamelCase : Dict=48000 , lowerCamelCase : Dict=480 , lowerCamelCase : Tuple=10 , lowerCamelCase : Optional[int]=1024 , lowerCamelCase : int=0.0 , lowerCamelCase : Any=False , lowerCamelCase : float = 0 , lowerCamelCase : float = 14000 , lowerCamelCase : int = None , lowerCamelCase : str = "fusion" , lowerCamelCase : str = "repeatpad" , **lowerCamelCase : Optional[int] , ) -> Dict: super().__init__( feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) __snake_case : Optional[Any] = top_db __snake_case : Dict = truncation __snake_case : Dict = padding __snake_case : Optional[Any] = fft_window_size __snake_case : Optional[Any] = (fft_window_size >> 1) + 1 __snake_case : Dict = hop_length __snake_case : Optional[int] = max_length_s __snake_case : Optional[int] = max_length_s * sampling_rate __snake_case : Dict = sampling_rate __snake_case : Optional[int] = frequency_min __snake_case : Any = frequency_max __snake_case : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase , min_frequency=lowerCamelCase , max_frequency=lowerCamelCase , sampling_rate=lowerCamelCase , norm=lowerCamelCase , mel_scale="htk" , ) __snake_case : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase , min_frequency=lowerCamelCase , max_frequency=lowerCamelCase , sampling_rate=lowerCamelCase , norm="slaney" , mel_scale="slaney" , ) def __snake_case ( self : str ) -> Dict[str, Any]: __snake_case : List[str] = copy.deepcopy(self.__dict__ ) __snake_case : List[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __snake_case ( self : List[Any] , lowerCamelCase : np.array , lowerCamelCase : Optional[np.array] = None ) -> np.ndarray: __snake_case : List[Any] = spectrogram( lowerCamelCase , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase , log_mel="dB" , ) return log_mel_spectrogram.T def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any ) -> str: __snake_case : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __snake_case : Tuple = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __snake_case : Tuple = [0] # randomly choose index for each part __snake_case : List[Any] = np.random.choice(ranges[0] ) __snake_case : int = np.random.choice(ranges[1] ) __snake_case : List[str] = np.random.choice(ranges[2] ) __snake_case : Dict = mel[idx_front : idx_front + chunk_frames, :] __snake_case : Optional[Any] = mel[idx_middle : idx_middle + chunk_frames, :] __snake_case : Tuple = mel[idx_back : idx_back + chunk_frames, :] __snake_case : Optional[Any] = torch.tensor(mel[None, None, :] ) __snake_case : Optional[int] = torch.nn.functional.interpolate( lowerCamelCase , size=[chunk_frames, 64] , mode="bilinear" , align_corners=lowerCamelCase ) __snake_case : List[Any] = mel_shrink[0][0].numpy() __snake_case : Union[str, Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __snake_case ( self : Any , lowerCamelCase : np.array , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Dict ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __snake_case : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __snake_case : Tuple = len(lowerCamelCase ) - max_length __snake_case : List[Any] = np.random.randint(0 , overflow + 1 ) __snake_case : Dict = waveform[idx : idx + max_length] __snake_case : Optional[int] = self._np_extract_fbank_features(lowerCamelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __snake_case : Any = self._np_extract_fbank_features(lowerCamelCase , self.mel_filters ) __snake_case : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __snake_case : str = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __snake_case : str = np.stack([mel, mel, mel, mel] , axis=0 ) __snake_case : Optional[Any] = False else: __snake_case : Any = self._random_mel_fusion(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __snake_case : Tuple = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: __snake_case : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __snake_case : List[str] = int(max_length / len(lowerCamelCase ) ) __snake_case : Any = np.stack(np.tile(lowerCamelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __snake_case : str = int(max_length / len(lowerCamelCase ) ) __snake_case : List[str] = np.stack(np.tile(lowerCamelCase , lowerCamelCase ) ) __snake_case : str = np.pad(lowerCamelCase , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": __snake_case : List[str] = self._np_extract_fbank_features(lowerCamelCase , self.mel_filters ) __snake_case : List[str] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __snake_case : Optional[int] = self._np_extract_fbank_features(lowerCamelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase : str = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : Any , ) -> BatchFeature: __snake_case : Union[str, Any] = truncation if truncation is not None else self.truncation __snake_case : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __snake_case : Any = isinstance(lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __snake_case : str = is_batched_numpy or ( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __snake_case : Tuple = [np.asarray(lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): __snake_case : str = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __snake_case : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __snake_case : Union[str, Any] = [np.asarray(lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. __snake_case : Optional[int] = [ self._get_input_mel(lowerCamelCase , max_length if max_length else self.nb_max_samples , lowerCamelCase , lowerCamelCase ) for waveform in raw_speech ] __snake_case : Optional[int] = [] __snake_case : Any = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase ) is_longer.append(lowerCamelCase ) if truncation == "fusion" and sum(lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __snake_case : Optional[Any] = np.random.randint(0 , len(lowerCamelCase ) ) __snake_case : Union[str, Any] = True if isinstance(input_mel[0] , lowerCamelCase ): __snake_case : List[str] = [np.asarray(lowerCamelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __snake_case : Any = [[longer] for longer in is_longer] __snake_case : Tuple = {"input_features": input_mel, "is_longer": is_longer} __snake_case : List[str] = BatchFeature(lowerCamelCase ) if return_tensors is not None: __snake_case : Any = input_features.convert_to_tensors(lowerCamelCase ) return input_features
134
0
import math def __magic_name__ ( __a : list , __a : int ): '''simple docstring''' UpperCamelCase__ = len(__a ) UpperCamelCase__ = int(math.floor(math.sqrt(__a ) ) ) UpperCamelCase__ = 0 while arr[min(__a , __a ) - 1] < x: UpperCamelCase__ = step step += int(math.floor(math.sqrt(__a ) ) ) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase__ = prev + 1 if prev == min(__a , __a ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase_ = [int(item) for item in user_input.split(''',''')] lowerCamelCase_ = int(input('''Enter the number to be searched:\n''')) lowerCamelCase_ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'Number {x} is at index {res}')
244
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase_ = '''CompVis/stable-diffusion-v1-1''' lowerCamelCase_ = '''CompVis/stable-diffusion-v1-2''' lowerCamelCase_ = '''CompVis/stable-diffusion-v1-3''' lowerCamelCase_ = '''CompVis/stable-diffusion-v1-4''' class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ): super()._init_() UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , requires_safety_checker=SCREAMING_SNAKE_CASE_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase_ (self ): return {k: getattr(self , SCREAMING_SNAKE_CASE_ ) for k in self.config.keys() if not k.startswith("""_""" )} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(SCREAMING_SNAKE_CASE_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase__ = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
244
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {"""vocab_file""": """vocab.txt"""} _A = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _A = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : str = collections.OrderedDict() with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as reader: lowerCAmelCase__ : List[str] = reader.readlines() for index, token in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Tuple = token.rstrip("""\n""" ) lowerCAmelCase__ : Any = index return vocab class _lowerCamelCase ( a_ ): def __init__( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[str]="<unk>" , UpperCamelCase : Union[str, Any]=2_00 ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = vocab lowerCAmelCase__ : List[Any] = unk_token lowerCAmelCase__ : Optional[Any] = max_input_chars_per_word def _lowerCAmelCase ( self : Any , UpperCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Any = list(UpperCamelCase ) if len(UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = [] while start < len(UpperCamelCase ): lowerCAmelCase__ : Any = len(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = None while start < end: lowerCAmelCase__ : str = """""".join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase__ : List[str] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase ) lowerCAmelCase__ : Any = end return sub_tokens class _lowerCamelCase ( a_ ): _lowerCamelCase :Any = VOCAB_FILES_NAMES _lowerCamelCase :Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase :List[str] = ["input_ids", "attention_mask"] _lowerCamelCase :str = False def __init__( self : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple="<d>" , UpperCamelCase : int="</d>" , UpperCamelCase : List[str]="<s>" , UpperCamelCase : List[Any]="</s>" , UpperCamelCase : int="<pad>" , UpperCamelCase : List[Any]="<unk>" , UpperCamelCase : List[Any]="</n>" , UpperCamelCase : Dict="</_>" , UpperCamelCase : Optional[Any]="left" , **UpperCamelCase : List[Any] , ) -> Any: """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=UpperCamelCase , eod_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , pad_token=UpperCamelCase , unk_token=UpperCamelCase , line_token=UpperCamelCase , space_token=UpperCamelCase , padding_side=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : Dict = bod_token lowerCAmelCase__ : Any = eod_token lowerCAmelCase__ : List[Any] = load_vocab(UpperCamelCase ) lowerCAmelCase__ : List[str] = self.encoder[space_token] lowerCAmelCase__ : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase__ : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase : x[1] ) ) lowerCAmelCase__ : Tuple = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.encoder[self.bod_token] @property def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" return self.encoder[self.eod_token] @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.encoder["\n"] @property def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return len(self.encoder ) def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = [] for x in jieba.cut(UpperCamelCase , cut_all=UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase ) ) return output_tokens def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Optional[Any] , **UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = [i for i in token_ids if i >= 0] lowerCAmelCase__ : Optional[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Optional[int] ) -> str: """simple docstring""" return token in self.encoder def _lowerCAmelCase ( self : str , UpperCamelCase : List[str] ) -> str: """simple docstring""" return "".join(UpperCamelCase ) def _lowerCAmelCase ( self : Any , UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" return self.encoder.get(UpperCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any , UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.decoder.get(UpperCamelCase , self.unk_token ) def _lowerCAmelCase ( self : str , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(UpperCamelCase ): lowerCAmelCase__ : Optional[int] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCAmelCase__ : List[str] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory lowerCAmelCase__ : Optional[int] = 0 if " " in self.encoder: lowerCAmelCase__ : Any = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase__ : Union[str, Any] = self.encoder["""\n"""] del self.encoder["\n"] lowerCAmelCase__ : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase : x[1] ) ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) lowerCAmelCase__ : Dict = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[int] , UpperCamelCase : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowerCAmelCase ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) return [1] + ([0] * len(UpperCamelCase ))
212
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _A = """base_with_context""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) lowerCAmelCase__ : int = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : str = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : str = ly_weight["""attention"""] lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : int = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Any = ly_weight["""attention"""] lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCAmelCase__ : List[Any] = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Tuple = ly_weight["""self_attention"""] lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = ly_weight["""MultiHeadDotProductAttention_0"""] lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCAmelCase__ : Optional[int] = jnp.tree_util.tree_map(onp.array , __UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] lowerCAmelCase__ : Dict = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) lowerCAmelCase__ : Tuple = inference.parse_training_gin_file(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Any = inference.InferenceModel(args.checkpoint_path , __UpperCAmelCase ) lowerCAmelCase__ : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) lowerCAmelCase__ : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ : List[str] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCAmelCase__ : Optional[Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : List[str] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : Any = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) lowerCAmelCase__ : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase , continuous_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase , scheduler=__UpperCAmelCase , melgan=__UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) _A = parser.parse_args() main(args)
212
1
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __lowerCAmelCase ( lowercase : Any ) -> Union[str, Any]: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __lowerCAmelCase ( lowercase : int , lowercase : Dict ) -> Tuple: """simple docstring""" if args.student_type == "roberta": snake_case : List[str] = False elif args.student_type == "gpt2": snake_case : Optional[int] = False def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" if args.student_type == "roberta": snake_case : Optional[Any] = False def __lowerCAmelCase ( ) -> int: """simple docstring""" snake_case : Any = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=lowercase , required=lowercase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=lowercase , required=lowercase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=lowercase , choices=["distilbert", "roberta", "gpt2"] , required=lowercase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=lowercase , required=lowercase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=lowercase , type=lowercase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=lowercase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=lowercase , required=lowercase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=lowercase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=lowercase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=lowercase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=lowercase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=lowercase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=lowercase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=lowercase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=lowercase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=lowercase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=lowercase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=lowercase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=lowercase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=lowercase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=lowercase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=lowercase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=lowercase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=lowercase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=lowercase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=lowercase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=lowercase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowercase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=lowercase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=lowercase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=lowercase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=lowercase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=lowercase , default=4000 , help="Checkpoint interval." ) snake_case : str = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.student_type] snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case : int = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case : List[str] = tokenizer.all_special_tokens.index(lowercase ) snake_case : Optional[int] = tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) snake_case : Any = special_tok_ids snake_case : Dict = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file , "rb" ) as fp: snake_case : Optional[int] = pickle.load(lowercase ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , "rb" ) as fp: snake_case : Dict = pickle.load(lowercase ) snake_case : str = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case : str = 0.0 # do not predict special tokens snake_case : Dict = torch.from_numpy(lowercase ) else: snake_case : Tuple = None snake_case : str = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info("Data loader created." ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) snake_case : str = student_config_class.from_pretrained(args.student_config ) snake_case : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) snake_case : Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: snake_case : Union[str, Any] = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info("Student loaded." ) # TEACHER # snake_case : List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case : Optional[Any] = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
203
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=12 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=0 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Dict = batch_size snake_case : List[str] = seq_length snake_case : Dict = is_training snake_case : Optional[Any] = use_input_mask snake_case : Optional[int] = use_labels snake_case : Tuple = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Optional[Any] = projection_dim snake_case : List[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : int = intermediate_size snake_case : str = dropout snake_case : List[Any] = attention_dropout snake_case : Any = max_position_embeddings snake_case : List[Any] = initializer_range snake_case : Any = scope snake_case : Union[str, Any] = bos_token_id def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = None if self.use_input_mask: snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case : Tuple = input_mask.numpy() snake_case ,snake_case : str = input_mask.shape snake_case : Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase__ ): snake_case : int = 1 snake_case : Tuple = 0 snake_case : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = TFBlipTextModel(config=UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , training=UpperCamelCase__ ) snake_case : Optional[int] = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Tuple = config_and_inputs snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : Any = (TFBlipTextModel,) if is_tf_available() else () __UpperCAmelCase : Any = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[Any] = BlipTextModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @slow def lowerCamelCase ( self ) -> int: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = TFBlipTextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__=True ) -> Optional[int]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase__ )
203
1
'''simple docstring''' from collections import defaultdict def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = 1 A_ : List[Any] = True for v in tree[start]: if v not in visited: ret += dfs(a_ ) if ret % 2 == 0: cuts.append(a_ ) return ret def UpperCAmelCase ( ) -> int: """simple docstring""" dfs(1 ) if __name__ == "__main__": UpperCamelCase__ , UpperCamelCase__ : Optional[int] = 10, 9 UpperCamelCase__ : Any = defaultdict(list) UpperCamelCase__ : dict[int, bool] = {} UpperCamelCase__ : list[int] = [] UpperCamelCase__ : Any = 0 UpperCamelCase__ : Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
164
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCamelCase__ : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCamelCase__ : Tuple = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCamelCase__ : Optional[Any] = 'zero2' UpperCamelCase__ : Optional[int] = 'zero3' UpperCamelCase__ : Dict = [ZEROa, ZEROa] def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" A_ : int = parameterized.to_safe_name("""_""".join(str(a_ ) for x in param.args ) ) return F"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test UpperCamelCase__ : Tuple = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _lowerCAmelCase ( __A ): """simple docstring""" @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = True , ) -> List[str]: A_ : Union[str, Any] = models[model] A_ : Tuple = self.run_trainer( stage=_lowerCamelCase , model_name=_lowerCamelCase , eval_steps=_lowerCamelCase , num_train_epochs=1 , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) self.do_checks(_lowerCamelCase ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = 1 , _lowerCamelCase = True , _lowerCamelCase = True , ) -> Any: A_ : Dict = self.get_auto_remove_tmp_dir("""./xxx""" , after=_lowerCamelCase ) A_ : str = F"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(_lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = F"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : Union[str, Any] = [F"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : Tuple = self.get_launcher(_lowerCamelCase ) A_ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return F"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
164
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : int ) ->Union[str, Any]: _SCREAMING_SNAKE_CASE = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) ->Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _SCREAMING_SNAKE_CASE = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = in_proj_weight[ : encoder_config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ) ->str: _SCREAMING_SNAKE_CASE = dct.pop(_UpperCAmelCase ) _SCREAMING_SNAKE_CASE = val def lowerCamelCase ( __lowerCamelCase : Dict ) ->Union[str, Any]: if "handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def lowerCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Any ) ->int: _SCREAMING_SNAKE_CASE = ViTConfig(image_size=384 , qkv_bias=_UpperCAmelCase ) _SCREAMING_SNAKE_CASE = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _SCREAMING_SNAKE_CASE = 768 elif "large" in checkpoint_url: # use ViT-large encoder _SCREAMING_SNAKE_CASE = 1024 _SCREAMING_SNAKE_CASE = 4096 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 1024 else: raise ValueError("""Should either find \'base\' or \'large\' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = """relu""" _SCREAMING_SNAKE_CASE = 1024 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False # load HuggingFace model _SCREAMING_SNAKE_CASE = ViTModel(_UpperCAmelCase , add_pooling_layer=_UpperCAmelCase ) _SCREAMING_SNAKE_CASE = TrOCRForCausalLM(_UpperCAmelCase ) _SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel(encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="""cpu""" , check_hash=_UpperCAmelCase )["""model"""] _SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: _SCREAMING_SNAKE_CASE = val else: _SCREAMING_SNAKE_CASE = val # load state dict model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=encoder_config.image_size ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("""roberta-large""" ) _SCREAMING_SNAKE_CASE = TrOCRProcessor(_UpperCAmelCase , _UpperCAmelCase ) _SCREAMING_SNAKE_CASE = processor(images=prepare_img(_UpperCAmelCase ) , return_tensors="""pt""" ).pixel_values # verify logits _SCREAMING_SNAKE_CASE = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _SCREAMING_SNAKE_CASE = model(pixel_values=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) _SCREAMING_SNAKE_CASE = outputs.logits _SCREAMING_SNAKE_CASE = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _UpperCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase_ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
58
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case :Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(f'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') __snake_case :Tuple = [file for file in filepaths if ''' ''' in file] if space_files: print(f'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') __snake_case :Optional[int] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') __snake_case :Optional[int] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') __snake_case :int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
49
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __snake_case ( ): __a = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=_UpperCAmelCase , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=_UpperCAmelCase , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=_UpperCAmelCase , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=_UpperCAmelCase , default=0 , help='''cuda_id.''' , ) __a = parser.parse_args() return args def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) __a , __a = imgs[0].size __a = Image.new('''RGB''' , size=(cols * w, rows * h) ) __a , __a = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __snake_case ( _UpperCAmelCase , _UpperCAmelCase="robotic cat with wings" , _UpperCAmelCase=7.5 , _UpperCAmelCase=50 , _UpperCAmelCase=1 , _UpperCAmelCase=42 , ): __a = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) __a = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images __a = int(math.sqrt(_UpperCAmelCase ) ) __a = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __snake_case :Union[str, Any] = parse_args() # Load models and create wrapper for stable diffusion __snake_case :List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __snake_case :Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __snake_case :int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __snake_case :Tuple = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __snake_case :Union[str, Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __snake_case :Optional[int] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __snake_case :int = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __snake_case :str = unet.to(torch.device('''cuda''', args.cuda_id)) __snake_case :Optional[Any] = pipeline.to(unet.device) __snake_case ,__snake_case :Optional[int] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __snake_case :Dict = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
131
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :Tuple = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __snake_case :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _lowerCamelCase( _a ): lowercase_ : Dict = """xlm-prophetnet""" lowercase_ : Union[str, Any] = ["""past_key_values"""] lowercase_ : Dict = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self, lowerCamelCase = 0.1, lowerCamelCase = "gelu", lowerCamelCase = 3_05_22, lowerCamelCase = 10_24, lowerCamelCase = 40_96, lowerCamelCase = 12, lowerCamelCase = 16, lowerCamelCase = 40_96, lowerCamelCase = 12, lowerCamelCase = 16, lowerCamelCase = 0.1, lowerCamelCase = 0.1, lowerCamelCase = 5_12, lowerCamelCase = 0.0_2, lowerCamelCase = True, lowerCamelCase = True, lowerCamelCase = 0, lowerCamelCase = 2, lowerCamelCase = 32, lowerCamelCase = 1_28, lowerCamelCase = False, lowerCamelCase = 0.0, lowerCamelCase = True, lowerCamelCase = 0, lowerCamelCase = 1, lowerCamelCase = 2, **lowerCamelCase, ) -> Any: """simple docstring""" _lowercase : Any = vocab_size _lowercase : Tuple = hidden_size _lowercase : str = encoder_ffn_dim _lowercase : Any = num_encoder_layers _lowercase : Any = num_encoder_attention_heads _lowercase : List[str] = decoder_ffn_dim _lowercase : Dict = num_decoder_layers _lowercase : Optional[int] = num_decoder_attention_heads _lowercase : List[str] = max_position_embeddings _lowercase : Any = init_std # Normal(0, this parameter) _lowercase : Any = activation_function # parameters for xlmprophetnet _lowercase : List[Any] = ngram _lowercase : List[Any] = num_buckets _lowercase : Optional[Any] = relative_max_distance _lowercase : Optional[int] = disable_ngram_loss _lowercase : Any = eps # 3 Types of Dropout _lowercase : Optional[Any] = attention_dropout _lowercase : List[str] = activation_dropout _lowercase : Optional[int] = dropout _lowercase : Dict = use_cache super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, add_cross_attention=lowerCamelCase, decoder_start_token_id=lowerCamelCase, **lowerCamelCase, ) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.')
21
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __UpperCAmelCase =logging.get_logger(__name__) class a__ : lowerCamelCase : str lowerCamelCase : str =None @staticmethod def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" raise NotImplementedError def SCREAMING_SNAKE_CASE__ ( self : int , a : Any , a : int , a : str , **a : Union[str, Any] ): """simple docstring""" raise NotImplementedError def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Optional[Any] ): """simple docstring""" raise NotImplementedError def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple ): """simple docstring""" return f"""`pip install {cls.pip_package or cls.name}`""" class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="optuna" @staticmethod def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" return is_optuna_available() def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Optional[int] , a : int , a : str , **a : Optional[Any] ): """simple docstring""" return run_hp_search_optuna(a , a , a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : Union[str, Any] ): """simple docstring""" return default_hp_space_optuna(a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : int ="ray" lowerCamelCase : Dict ="'ray[tune]'" @staticmethod def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" return is_ray_available() def SCREAMING_SNAKE_CASE__ ( self : int , a : int , a : int , a : str , **a : List[Any] ): """simple docstring""" return run_hp_search_ray(a , a , a , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : int ): """simple docstring""" return default_hp_space_ray(a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] ="sigopt" @staticmethod def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" return is_sigopt_available() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Tuple , a : int , a : str , **a : List[Any] ): """simple docstring""" return run_hp_search_sigopt(a , a , a , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Optional[Any] ): """simple docstring""" return default_hp_space_sigopt(a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Tuple ="wandb" @staticmethod def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" return is_wandb_available() def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Union[str, Any] , a : int , a : str , **a : Optional[int] ): """simple docstring""" return run_hp_search_wandb(a , a , a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : List[str] ): """simple docstring""" return default_hp_space_wandb(a ) __UpperCAmelCase ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __lowerCAmelCase ( ) -> str: __lowerCamelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(UpperCamelCase__ ) > 0: __lowerCamelCase = available_backends[0].name if len(UpperCamelCase__ ) > 1: logger.info( f"""{len(UpperCamelCase__ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
237
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} __UpperCAmelCase ={ "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } __UpperCAmelCase ={ "allenai/longformer-base-4096": 4_0_9_6, "allenai/longformer-large-4096": 4_0_9_6, "allenai/longformer-large-4096-finetuned-triviaqa": 4_0_9_6, "allenai/longformer-base-4096-extra.pos.embd.only": 4_0_9_6, "allenai/longformer-large-4096-extra.pos.embd.only": 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCAmelCase ( ) -> Optional[int]: __lowerCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowerCamelCase = bs[:] __lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 __lowerCamelCase = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char return pairs class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] =["input_ids", "attention_mask"] def __init__( self : str , a : List[str] , a : Any , a : Optional[int]="replace" , a : List[Any]="<s>" , a : List[str]="</s>" , a : Dict="</s>" , a : str="<s>" , a : Union[str, Any]="<unk>" , a : Any="<pad>" , a : Union[str, Any]="<mask>" , a : Dict=False , **a : int , ): """simple docstring""" __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(a ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} __lowerCamelCase = errors # how to handle errors in decoding __lowerCamelCase = bytes_to_unicode() __lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = {} __lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int ): """simple docstring""" if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(a ) __lowerCamelCase = get_pairs(a ) if not pairs: return token while True: __lowerCamelCase = min(a , key=lambda a : self.bpe_ranks.get(a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(a ): try: __lowerCamelCase = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(a ) __lowerCamelCase = new_word if len(a ) == 1: break else: __lowerCamelCase = get_pairs(a ) __lowerCamelCase = ''' '''.join(a ) __lowerCamelCase = word return word def SCREAMING_SNAKE_CASE__ ( self : str , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = [] for token in re.findall(self.pat , a ): __lowerCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(''' ''' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Tuple ): """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : Tuple ): """simple docstring""" return self.decoder.get(a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = ''''''.join(a ) __lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : str , a : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + '''\n''' ) __lowerCamelCase = 0 with open(a , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(a ) + '''\n''' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Dict , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Dict , a : Any=False , **a : Any ): """simple docstring""" __lowerCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): __lowerCamelCase = ''' ''' + text return (text, kwargs)
237
1
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowercase = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase ( ): """simple docstring""" try: __lowercase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowercase = int(nums[0] ) __lowercase = int(nums[1] ) print( F"greatest_common_divisor({num_a}, {num_a}) = " F"{greatest_common_divisor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}" ) print(F"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
210
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase: List[str] = 1000000 ) -> int: '''simple docstring''' __lowerCamelCase : Any = 1 __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : List[str] = {1: 1} for inputa in range(2 , __snake_case ): __lowerCamelCase : Any = 0 __lowerCamelCase : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __lowerCamelCase : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __lowerCamelCase : Dict = counter if counter > pre_counter: __lowerCamelCase : int = inputa __lowerCamelCase : Optional[int] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
361
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "deta" snake_case__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Any , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict=900 , UpperCAmelCase : str=2048 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : int=1024 , UpperCAmelCase : str=8 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]="relu" , UpperCAmelCase : List[str]=256 , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=0.0_2 , UpperCAmelCase : Optional[Any]=1.0 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=False , UpperCAmelCase : Optional[int]="sine" , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=300 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : str=5 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=1 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=0.2_5 , **UpperCAmelCase : List[str] , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowerCamelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : List[Any] = backbone_config.pop("model_type" ) __lowerCamelCase : Any = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : List[Any] = config_class.from_dict(UpperCAmelCase ) __lowerCamelCase : List[str] = backbone_config __lowerCamelCase : Any = num_queries __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Dict = d_model __lowerCamelCase : List[str] = encoder_ffn_dim __lowerCamelCase : int = encoder_layers __lowerCamelCase : str = encoder_attention_heads __lowerCamelCase : Dict = decoder_ffn_dim __lowerCamelCase : Tuple = decoder_layers __lowerCamelCase : str = decoder_attention_heads __lowerCamelCase : Dict = dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : int = activation_dropout __lowerCamelCase : int = activation_function __lowerCamelCase : Any = init_std __lowerCamelCase : Optional[Any] = init_xavier_std __lowerCamelCase : int = encoder_layerdrop __lowerCamelCase : Dict = auxiliary_loss __lowerCamelCase : Optional[int] = position_embedding_type # deformable attributes __lowerCamelCase : Tuple = num_feature_levels __lowerCamelCase : str = encoder_n_points __lowerCamelCase : List[str] = decoder_n_points __lowerCamelCase : List[str] = two_stage __lowerCamelCase : Dict = two_stage_num_proposals __lowerCamelCase : int = with_box_refine __lowerCamelCase : Union[str, Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __lowerCamelCase : str = class_cost __lowerCamelCase : Optional[Any] = bbox_cost __lowerCamelCase : Tuple = giou_cost # Loss coefficients __lowerCamelCase : List[Any] = mask_loss_coefficient __lowerCamelCase : Dict = dice_loss_coefficient __lowerCamelCase : Any = bbox_loss_coefficient __lowerCamelCase : Dict = giou_loss_coefficient __lowerCamelCase : Optional[Any] = eos_coefficient __lowerCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def lowerCamelCase__ ( self : Dict ): return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.d_model def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Dict = self.backbone_config.to_dict() __lowerCamelCase : str = self.__class__.model_type return output
64
0
def a__ ( A_ ): '''simple docstring''' if len(A_ ) <= 1: return [tuple(A_ )] __magic_name__ = [] def generate(A_, A_ ): __magic_name__ = [0] * n res.append(tuple(A_ ) ) __magic_name__ = 0 while i < n: if c[i] < i: if i % 2 == 0: __magic_name__ , __magic_name__ = arr[i], arr[0] else: __magic_name__ , __magic_name__ = arr[i], arr[c[i]] res.append(tuple(A_ ) ) c[i] += 1 __magic_name__ = 0 else: __magic_name__ = 0 i += 1 generate(len(A_ ), A_ ) return res if __name__ == "__main__": __lowerCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : int = [int(item) for item in user_input.split(',')] print(heaps(arr))
88
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : List[Any] = logging.get_logger() @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : list = field(default_factory=lowercase_ ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = len(list(m.modules() ) ) == 1 or isinstance(snake_case , nn.Convad ) or isinstance(snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self , snake_case ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def a ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) def __call__( self , snake_case ): snake_case_ = Tracker(self.dest )(snake_case ).parametrized snake_case_ = Tracker(self.src )(snake_case ).parametrized snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.src_skip , snake_case ) ) snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip , snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( F'''Numbers of operations are different. Source module has {len(snake_case )} operations while''' F''' destination module has {len(snake_case )}.''' ) for dest_m, src_m in zip(snake_case , snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() snake_case_ = ResNetForImageClassification(UpperCamelCase__ ).eval() snake_case_ = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) snake_case_ = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." snake_case_ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one snake_case_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) print(F'''Pushed {checkpoint_name}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 1000 snake_case_ = (1, num_labels) snake_case_ = 'huggingface/label-files' snake_case_ = num_labels snake_case_ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) snake_case_ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _UpperCAmelCase : Optional[Any] = parser.parse_args() _UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
285
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } lowerCAmelCase_ = '▁' class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[str] = AlbertTokenizer def __init__( self : Dict ,_snake_case : Dict=None ,_snake_case : Optional[Any]=None ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=True ,_snake_case : Optional[Any]=False ,_snake_case : Any="[CLS]" ,_snake_case : int="[SEP]" ,_snake_case : List[str]="<unk>" ,_snake_case : Any="[SEP]" ,_snake_case : Union[str, Any]="<pad>" ,_snake_case : Optional[int]="[CLS]" ,_snake_case : Optional[int]="[MASK]" ,**_snake_case : Optional[Any] ,) -> str: """simple docstring""" lowercase__ : Optional[int] = ( AddedToken(_snake_case ,lstrip=_snake_case ,rstrip=_snake_case ,normalized=_snake_case ) if isinstance(_snake_case ,_snake_case ) else mask_token ) super().__init__( _snake_case ,tokenizer_file=_snake_case ,do_lower_case=_snake_case ,remove_space=_snake_case ,keep_accents=_snake_case ,bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,pad_token=_snake_case ,cls_token=_snake_case ,mask_token=_snake_case ,**_snake_case ,) lowercase__ : List[Any] = do_lower_case lowercase__ : Tuple = remove_space lowercase__ : Optional[int] = keep_accents lowercase__ : int = vocab_file lowercase__ : List[Any] = False if not self.vocab_file else True def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self : str ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[str] = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file ,_snake_case ) return (out_vocab_file,)
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCAmelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _a ( a :Optional[int] , a :tuple , a :Path , a :int , a :Optional[Any] , a :Any , a :Union[str, Any] , a :int=False , ) -> Union[str, Any]: output_path.parent.mkdir(parents=a , exist_ok=a ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a , a , f=output_path.as_posix() , input_names=a , output_names=a , dynamic_axes=a , do_constant_folding=a , use_external_data_format=a , enable_onnx_checker=a , opset_version=a , ) else: export( a , a , f=output_path.as_posix() , input_names=a , output_names=a , dynamic_axes=a , do_constant_folding=a , opset_version=a , ) @torch.no_grad() def _a ( a :str , a :str , a :int , a :bool = False ) -> List[Any]: a = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): a = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: a = '''cpu''' a = Path(a ) # VAE DECODER a = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) a = vae_decoder.config.latent_channels # forward only through the decoder part a = vae_decoder.decode onnx_export( a , model_args=( torch.randn(1 , a , 25 , 25 ).to(device=a , dtype=a ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a , ) del vae_decoder if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCAmelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __SCREAMING_SNAKE_CASE :List[str] = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> int: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) return (preds == labels).mean() def UpperCAmelCase_ ( __lowercase : int , __lowercase : str ) -> Optional[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = simple_accuracy(__lowercase , __lowercase ) _UpperCAmelCase = fa_score(y_true=__lowercase , y_pred=__lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : List[str] ) -> List[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = pearsonr(__lowercase , __lowercase )[0] _UpperCAmelCase = spearmanr(__lowercase , __lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : str ) -> Tuple: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) assert len(__lowercase ) == len(__lowercase ), f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' if task_name == "cola": return {"mcc": matthews_corrcoef(__lowercase , __lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mrpc": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "sts-b": return pearson_and_spearman(__lowercase , __lowercase ) elif task_name == "qqp": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) if len(__lowercase ) != len(__lowercase ): raise ValueError(f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' ) if task_name == "xnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase )
22
0
import os def a ( SCREAMING_SNAKE_CASE_ : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) as input_file: UpperCamelCase : int = [ [int(SCREAMING_SNAKE_CASE_ ) for element in line.split(''',''' )] for line in input_file.readlines() ] UpperCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = len(matrix[0] ) UpperCamelCase : Union[str, Any] = [[-1 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = matrix[i][0] for j in range(1 , SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCamelCase : List[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
315
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , ): """simple docstring""" UpperCamelCase : List[str] = size if size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase : int = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Union[str, Any] = min_resolution UpperCamelCase : Tuple = max_resolution UpperCamelCase : List[str] = do_resize UpperCamelCase : List[str] = size UpperCamelCase : int = apply_ocr def _lowercase ( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = LayoutLMvaImageProcessingTester(self ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''apply_ocr''' ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , __SCREAMING_SNAKE_CASE ) # Test batched UpperCamelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase : Optional[int] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase : Dict = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) UpperCamelCase : List[Any] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) UpperCamelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase : Union[str, Any] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCamelCase : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , __SCREAMING_SNAKE_CASE ) # with apply_OCR = False UpperCamelCase : Optional[Any] = LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
315
1
"""simple docstring""" import math def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = input("""Enter message: """ ) _a : Any = int(input(F"""Enter key [2-{len(__a ) - 1}]: """ ) ) _a : Dict = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): _a : Optional[int] = encrypt_message(__a , __a ) elif mode.lower().startswith("""d""" ): _a : Optional[Any] = decrypt_message(__a , __a ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + '|'}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[Any] = [""""""] * key for col in range(__a ): _a : List[str] = col while pointer < len(__a ): cipher_text[col] += message[pointer] pointer += key return "".join(__a ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = math.ceil(len(__a ) / key ) _a : Tuple = key _a : Dict = (num_cols * num_rows) - len(__a ) _a : Any = [""""""] * num_cols _a : Dict = 0 _a : str = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _a : Optional[int] = 0 row += 1 return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod() main()
294
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time A : Dict = Lock() def __lowerCamelCase ( __a :Dict , __a :List[str] , __a :Optional[int] , __a :Optional[int] , __a :Optional[Any] , __a :Optional[int] , __a :int ) -> Dict: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A__ = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A__ = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def __lowerCamelCase ( __a :List[str] ) -> int: """simple docstring""" A__ = [] A__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A__ = temp_rs A__ = temp_rr for i in range(1 , len(__a ) - 1 ): A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A__ = temp_rs A__ = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): A__ = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = list(range(1_0 , 0 , -1 ) ) print("""Initial List""" ) print(*__a ) A__ = odd_even_transposition(__a ) print("""Sorted List\n""" ) print(*__a ) if __name__ == "__main__": main()
274
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowercase : int = pd.read_csv("""sample_data.csv""", header=None) lowercase : str = df.shape[:1][0] # If you're using some other dataset input the target column lowercase : Optional[int] = df.iloc[:, 1:2] lowercase : Optional[int] = actual_data.values.reshape(len_data, 1) lowercase : Any = MinMaxScaler().fit_transform(actual_data) lowercase : Dict = 10 lowercase : List[str] = 5 lowercase : Any = 20 lowercase : Optional[int] = len_data - periods * look_back lowercase : Optional[int] = actual_data[:division] lowercase : Optional[int] = actual_data[division - look_back :] lowercase : Tuple = [], [] lowercase : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowercase : List[str] = np.array(train_x) lowercase : str = np.array(test_x) lowercase : Union[str, Any] = np.array([list(i.ravel()) for i in train_y]) lowercase : List[Any] = np.array([list(i.ravel()) for i in test_y]) lowercase : str = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") lowercase : str = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowercase : str = model.predict(x_test)
370
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: # vision encoder if "img_encoder.pos_embed" in name: lowercase : Dict = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase : Any = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase : Tuple = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase : Tuple = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase : Optional[Any] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase : Union[str, Any] = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase : Dict = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase : Dict = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase : Tuple = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase : Tuple = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase : List[Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase : Tuple = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase : Any = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase : Dict = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase : List[str] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase : Tuple = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase : str = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase : Union[str, Any] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase : Tuple = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase : Optional[Any] = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase : List[str] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase : Tuple = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase : List[Any] = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase : List[Any] = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase : Dict = key.split(""".""" ) lowercase , lowercase : Optional[Any] = int(key_split[2] ), int(key_split[4] ) lowercase : List[Any] = config.vision_config.hidden_size if "weight" in key: lowercase : str = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Optional[int] = val[-dim:, :] else: lowercase : Dict = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Dict = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase : int = key.split(""".""" ) lowercase : Tuple = int(key_split[3] ) lowercase : str = config.text_config.hidden_size if "weight" in key: lowercase : Optional[int] = val[:dim, :] lowercase : Optional[Any] = val[ dim : dim * 2, : ] lowercase : Optional[int] = val[-dim:, :] else: lowercase : Optional[int] = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : List[str] = val[-dim:] else: lowercase : Tuple = rename_key(SCREAMING_SNAKE_CASE__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase : str = val.squeeze_() else: lowercase : Any = val return orig_state_dict def _snake_case( ) -> List[Any]: lowercase : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE__=False ) -> str: lowercase : Dict = GroupViTConfig() lowercase : Tuple = GroupViTModel(SCREAMING_SNAKE_CASE__ ).eval() lowercase : List[str] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Optional[Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE__ ) == 0) # verify result lowercase : Tuple = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase : Optional[Any] = prepare_img() lowercase : List[Any] = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) if model_name == "groupvit-gcc-yfcc": lowercase : Optional[int] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase : int = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("""Successfully saved processor and model to""" , SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) lowercase : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
285
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def UpperCamelCase_ ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : int = 16_000 ) -> Any: """simple docstring""" _UpperCAmelCase : Union[str, Any] = int(round(sample_rate * max_length ) ) if len(_UpperCAmelCase ) <= sample_length: return wav _UpperCAmelCase : Optional[Any] = randint(0 , len(_UpperCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: Optional[str] = field(default=snake_case__ , metadata={"help": "Name of a dataset from the datasets package"} ) __UpperCamelCase: Optional[str] = field( default=snake_case__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __UpperCamelCase: Optional[str] = field( default=snake_case__ , metadata={"help": "A file containing the training audio paths and labels."} ) __UpperCamelCase: Optional[str] = field( default=snake_case__ , metadata={"help": "A file containing the validation audio paths and labels."} ) __UpperCamelCase: str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __UpperCamelCase: str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) __UpperCamelCase: str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) __UpperCamelCase: str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __UpperCamelCase: Optional[int] = field( default=snake_case__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase: Optional[int] = field( default=snake_case__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase: float = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) __UpperCamelCase: Optional[str] = field( default=snake_case__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase: Optional[str] = field( default=snake_case__ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __UpperCamelCase: str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase: Optional[str] = field( default=snake_case__ , metadata={"help": "Name or path of preprocessor config."} ) __UpperCamelCase: bool = field( default=snake_case__ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __UpperCamelCase: bool = field( default=snake_case__ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __UpperCamelCase: bool = field( default=snake_case__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __UpperCamelCase: Optional[bool] = field( default=snake_case__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __UpperCamelCase: bool = field( default=snake_case__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _A ( self : str ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , A , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def UpperCamelCase_ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCAmelCase , _UpperCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCAmelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _UpperCAmelCase : Union[str, Any] = DatasetDict() _UpperCAmelCase : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--audio_column_name` to the correct audio column - one of " F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--label_column_name` to the correct text column - one of " F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCAmelCase : Any = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCAmelCase : Optional[int] = feature_extractor.model_input_names[0] def train_transforms(_UpperCAmelCase : Optional[Any] ): _UpperCAmelCase : Optional[Any] = [] for audio in batch[data_args.audio_column_name]: _UpperCAmelCase : int = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCAmelCase ) _UpperCAmelCase : str = feature_extractor(_UpperCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase : Dict = {model_input_name: inputs.get(_UpperCAmelCase )} _UpperCAmelCase : Tuple = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCAmelCase : Any ): _UpperCAmelCase : str = [audio["array"] for audio in batch[data_args.audio_column_name]] _UpperCAmelCase : List[Any] = feature_extractor(_UpperCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase : str = {model_input_name: inputs.get(_UpperCAmelCase )} _UpperCAmelCase : List[str] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : int = raw_datasets["train"].features[data_args.label_column_name].names _UpperCAmelCase , _UpperCAmelCase : Any = {}, {} for i, label in enumerate(_UpperCAmelCase ): _UpperCAmelCase : Union[str, Any] = str(_UpperCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : Dict = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCAmelCase : Optional[int] ): _UpperCAmelCase : str = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCAmelCase , references=eval_pred.label_ids ) _UpperCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCAmelCase ) , labelaid=_UpperCAmelCase , idalabel=_UpperCAmelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Dict = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCAmelCase : List[str] = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCAmelCase , output_all_columns=_UpperCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCAmelCase : Tuple = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCAmelCase , output_all_columns=_UpperCAmelCase ) # Initialize our trainer _UpperCAmelCase : Dict = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Tuple = trainer.evaluate() trainer.log_metrics("eval" , _UpperCAmelCase ) trainer.save_metrics("eval" , _UpperCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) if __name__ == "__main__": main()
31
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: str = "encodec" def __init__( self : Optional[int] , A : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , A : List[Any]=24000 , A : Union[str, Any]=1 , A : List[Any]=False , A : Optional[int]=None , A : int=None , A : str=128 , A : List[Any]=32 , A : List[Any]=1 , A : int=[8, 5, 4, 2] , A : Optional[int]="weight_norm" , A : List[Any]=7 , A : Any=7 , A : Dict=3 , A : Optional[int]=2 , A : Dict=True , A : Dict="reflect" , A : Any=2 , A : Dict=2 , A : str=1.0 , A : Optional[int]=1024 , A : Any=None , A : Any=True , **A : str , ): _UpperCAmelCase : Optional[int] = target_bandwidths _UpperCAmelCase : List[str] = sampling_rate _UpperCAmelCase : Optional[int] = audio_channels _UpperCAmelCase : str = normalize _UpperCAmelCase : int = chunk_length_s _UpperCAmelCase : str = overlap _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : int = num_filters _UpperCAmelCase : Optional[Any] = num_residual_layers _UpperCAmelCase : Optional[int] = upsampling_ratios _UpperCAmelCase : int = norm_type _UpperCAmelCase : List[Any] = kernel_size _UpperCAmelCase : List[Any] = last_kernel_size _UpperCAmelCase : List[Any] = residual_kernel_size _UpperCAmelCase : List[str] = dilation_growth_rate _UpperCAmelCase : Dict = use_causal_conv _UpperCAmelCase : Tuple = pad_mode _UpperCAmelCase : Tuple = compress _UpperCAmelCase : List[str] = num_lstm_layers _UpperCAmelCase : List[Any] = trim_right_ratio _UpperCAmelCase : int = codebook_size _UpperCAmelCase : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size _UpperCAmelCase : Optional[int] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**A ) @property def _A ( self : Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _A ( self : Union[str, Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _A ( self : Union[str, Any] ): _UpperCAmelCase : Dict = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _A ( self : str ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
31
1
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __A = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize __A = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' __A = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' __A = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0.9 , lowerCamelCase__=3 , lowerCamelCase__=0.5 ) -> Union[str, Any]: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): __lowerCamelCase = [ meteor_score.single_meteor_score( word_tokenize(lowercase_ ) , word_tokenize(lowercase_ ) , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] else: __lowerCamelCase = [ meteor_score.single_meteor_score(lowercase_ , lowercase_ , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] return {"meteor": np.mean(lowercase_ )}
356
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: str ) -> str: snake_case_ :Tuple = tempfile.mkdtemp() snake_case_ :Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case_ :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) snake_case_ :List[str] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } snake_case_ :List[str] = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(snake_case , snake_case ) def lowerCAmelCase_ ( self: Dict , **snake_case: Any ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCAmelCase_ ( self: Optional[Any] , **snake_case: List[str] ) -> Union[str, Any]: return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def lowerCAmelCase_ ( self: Optional[Any] , **snake_case: Dict ) -> Any: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def lowerCAmelCase_ ( self: List[Any] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self: List[Any] ) -> int: snake_case_ :Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ :Dict = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self: List[Any] ) -> Any: snake_case_ :Optional[Any] = self.get_tokenizer() snake_case_ :Tuple = self.get_rust_tokenizer() snake_case_ :Optional[int] = self.get_image_processor() snake_case_ :List[Any] = AlignProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ :Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) snake_case_ :int = AlignProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ :int = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def lowerCAmelCase_ ( self: str ) -> int: snake_case_ :List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ :List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ :Optional[Any] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) snake_case_ :int = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case_ :Tuple = self.get_image_processor() snake_case_ :List[str] = self.get_tokenizer() snake_case_ :int = AlignProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ :Optional[Any] = self.prepare_image_inputs() snake_case_ :Optional[int] = image_processor(snake_case , return_tensors="""np""" ) snake_case_ :Optional[Any] = processor(images=snake_case , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case_ :List[str] = self.get_image_processor() snake_case_ :List[Any] = self.get_tokenizer() snake_case_ :Dict = AlignProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ :Optional[Any] = """lower newer""" snake_case_ :int = processor(text=snake_case ) snake_case_ :Optional[Any] = tokenizer(snake_case , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case_ :Any = self.get_image_processor() snake_case_ :Optional[int] = self.get_tokenizer() snake_case_ :Union[str, Any] = AlignProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ :Dict = """lower newer""" snake_case_ :Dict = self.prepare_image_inputs() snake_case_ :Dict = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case_ :Optional[Any] = self.get_image_processor() snake_case_ :Optional[Any] = self.get_tokenizer() snake_case_ :str = AlignProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ :Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ :int = processor.batch_decode(snake_case ) snake_case_ :List[str] = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: snake_case_ :List[Any] = self.get_image_processor() snake_case_ :str = self.get_tokenizer() snake_case_ :Optional[Any] = AlignProcessor(tokenizer=snake_case , image_processor=snake_case ) snake_case_ :List[Any] = """lower newer""" snake_case_ :Dict = self.prepare_image_inputs() snake_case_ :int = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
from __future__ import annotations lowercase__ :Any = 1.60_21E-19 # units = C def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
101
0
def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ): '''simple docstring''' A_ : Tuple = [randint(-10_00 ,10_00 ) for i in range(10 )] A_ : int = randint(-50_00 ,50_00 ) return (arr, r) _UpperCAmelCase = make_dataset() def UpperCamelCase ( __lowercase : list[int] ,__lowercase : int ): '''simple docstring''' for triplet in permutations(__lowerCAmelCase ,3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def UpperCamelCase ( __lowercase : list[int] ,__lowercase : int ): '''simple docstring''' arr.sort() A_ : Optional[Any] = len(__lowerCAmelCase ) for i in range(n - 1 ): A_ , A_ : Any = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ): '''simple docstring''' A_ : Dict = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' A_ : Dict = '\ntriplet_sum1(*dataset)\n' A_ : Tuple = '\ntriplet_sum2(*dataset)\n' A_ : Union[str, Any] = repeat(setup=__lowerCAmelCase ,stmt=__lowerCAmelCase ,repeat=5 ,number=1_00_00 ) A_ : Optional[int] = repeat(setup=__lowerCAmelCase ,stmt=__lowerCAmelCase ,repeat=5 ,number=1_00_00 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
140
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase :Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["pixel_values"] def __init__( self : int , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = True , **_A : Union[str, Any] , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 224} __magic_name__ : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A , param_name='crop_size' ) __magic_name__ : Any = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : List[Any] = resample __magic_name__ : str = do_center_crop __magic_name__ : Optional[Any] = crop_size __magic_name__ : List[Any] = do_rescale __magic_name__ : Union[str, Any] = rescale_factor __magic_name__ : int = do_normalize __magic_name__ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __magic_name__ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __magic_name__ : Dict = do_convert_rgb def __lowerCAmelCase ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ : str = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : str , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: __magic_name__ : int = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Dict: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : int = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , **_A : List[str] , ) -> PIL.Image.Image: __magic_name__ : Dict = do_resize if do_resize is not None else self.do_resize __magic_name__ : List[str] = size if size is not None else self.size __magic_name__ : str = get_size_dict(_A , param_name='size' , default_to_square=_A ) __magic_name__ : Dict = resample if resample is not None else self.resample __magic_name__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __magic_name__ : List[str] = get_size_dict(_A , param_name='crop_size' , default_to_square=_A ) __magic_name__ : Any = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : Tuple = image_mean if image_mean is not None else self.image_mean __magic_name__ : str = image_std if image_std is not None else self.image_std __magic_name__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __magic_name__ : List[str] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __magic_name__ : List[Any] = [convert_to_rgb(_A ) for image in images] # All transformations expect numpy arrays. __magic_name__ : Tuple = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : Tuple = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: __magic_name__ : List[str] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: __magic_name__ : Dict = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : Any = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Any = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
353
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase :str = logging.get_logger(__name__) lowerCAmelCase :str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } lowerCAmelCase :List[str] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = {} with open(lowerCAmelCase , 'r' ) as file: for line_number, line in enumerate(lowerCAmelCase ): __magic_name__ : Optional[Any] = line.strip() if line: __magic_name__ : Optional[int] = line.split() __magic_name__ : Any = line_number __magic_name__ : Union[str, Any] = words[0] __magic_name__ : Dict = value return result def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" for attribute in key.split('.' ): __magic_name__ : Optional[Any] = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase ): __magic_name__ : Optional[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] __magic_name__ : List[Any] = 'param' if weight_type is not None and weight_type != "param": __magic_name__ : List[str] = getattr(lowerCAmelCase , lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": __magic_name__ : Tuple = hf_pointer for attribute in hf_param_name.split('.' ): __magic_name__ : str = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Union[str, Any] = shape_pointer.shape # let's reduce dimension __magic_name__ : int = value[0] else: __magic_name__ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : Optional[Any] = value elif weight_type == "weight_g": __magic_name__ : List[str] = value elif weight_type == "weight_v": __magic_name__ : Optional[int] = value elif weight_type == "bias": __magic_name__ : Optional[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __magic_name__ : Optional[int] = getattr(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = value else: __magic_name__ : int = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase ): __magic_name__ : List[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] __magic_name__ : Dict = 'param' if weight_type is not None and weight_type != "param": __magic_name__ : Union[str, Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __magic_name__ : Optional[Any] = '.'.join([key, hf_param_name] ) else: __magic_name__ : int = key __magic_name__ : int = value if 'lm_head' in full_key else value[0] lowerCAmelCase :int = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=None ): """simple docstring""" __magic_name__ : Dict = False for key, mapped_key in MAPPING.items(): __magic_name__ : int = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __magic_name__ : Union[str, Any] = True if "*" in mapped_key: __magic_name__ : List[Any] = name.split(lowerCAmelCase )[0].split('.' )[-2] __magic_name__ : List[str] = mapped_key.replace('*' , lowerCAmelCase ) if "weight_g" in name: __magic_name__ : str = 'weight_g' elif "weight_v" in name: __magic_name__ : Optional[int] = 'weight_v' elif "bias" in name: __magic_name__ : int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ : List[str] = 'weight' else: __magic_name__ : Any = None if hf_dict is not None: rename_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return is_used return is_used def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : Any = fairseq_model.state_dict() __magic_name__ : Optional[int] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) __magic_name__ : Optional[int] = True else: __magic_name__ : str = load_wavaveca_layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Any = full_name.split('conv_layers.' )[-1] __magic_name__ : int = name.split('.' ) __magic_name__ : Any = int(items[0] ) __magic_name__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=False ): """simple docstring""" if config_path is not None: __magic_name__ : int = WavaVecaConfig.from_pretrained(lowerCAmelCase ) else: __magic_name__ : List[str] = WavaVecaConfig() if is_seq_class: __magic_name__ : Any = read_txt_into_dict(lowerCAmelCase ) __magic_name__ : Optional[Any] = idalabel __magic_name__ : Union[str, Any] = WavaVecaForSequenceClassification(lowerCAmelCase ) __magic_name__ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) feature_extractor.save_pretrained(lowerCAmelCase ) elif is_finetuned: if dict_path: __magic_name__ : str = Dictionary.load(lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__ : Dict = target_dict.pad_index __magic_name__ : Union[str, Any] = target_dict.bos_index __magic_name__ : Union[str, Any] = target_dict.eos_index __magic_name__ : Union[str, Any] = len(target_dict.symbols ) __magic_name__ : Dict = os.path.join(lowerCAmelCase , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase ) ) return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) __magic_name__ : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__ : Any = 0 __magic_name__ : Optional[int] = 1 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = WavaVecaCTCTokenizer( lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase , ) __magic_name__ : Tuple = True if config.feat_extract_norm == 'layer' else False __magic_name__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) __magic_name__ : List[Any] = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) __magic_name__ : Dict = WavaVecaForCTC(lowerCAmelCase ) else: __magic_name__ : Tuple = WavaVecaForPreTraining(lowerCAmelCase ) if is_finetuned or is_seq_class: __magic_name__ , __magic_name__ , __magic_name__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __magic_name__ : Optional[Any] = argparse.Namespace(task='audio_pretraining' ) __magic_name__ : Dict = fairseq.tasks.setup_task(lowerCAmelCase ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase ) __magic_name__ : Any = model[0].eval() recursively_load_weights(lowerCAmelCase , lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) lowerCAmelCase :Dict = parser.parse_args() lowerCAmelCase :Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
275
0
import os def _A ( ): UpperCamelCase :Dict = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) ) UpperCamelCase :Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , '''triangle.txt''' ) with open(SCREAMING_SNAKE_CASE__ ) as f: UpperCamelCase :List[Any] = f.readlines() UpperCamelCase :Any = [] for line in triangle: UpperCamelCase :int = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(SCREAMING_SNAKE_CASE__ ) ) a.append(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): for j in range(len(a[i] ) ): UpperCamelCase :Union[str, Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCamelCase :Any = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
259
from math import factorial __snake_case = {str(digit): factorial(digit) for digit in range(10)} def _A ( SCREAMING_SNAKE_CASE__ : int ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def _A ( SCREAMING_SNAKE_CASE__ : int = 60 , SCREAMING_SNAKE_CASE__ : int = 1000000 ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCamelCase :Any = 0 # the cached sizes of the previous chains UpperCamelCase :dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE__ ): # The temporary set will contain the elements of the chain UpperCamelCase :List[Any] = set() UpperCamelCase :Any = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCamelCase :Optional[Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE__ ) chain_set_length += 1 UpperCamelCase :List[Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCamelCase :Any = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
259
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase__ ( __lowerCamelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(__lowerCamelCase , __lowerCamelCase ) # Predict target for test data _UpperCAmelCase : Union[str, Any] =xgb.predict(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =predictions.reshape(len(__lowerCamelCase ) , 1 ) return predictions def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : int =fetch_california_housing() _UpperCAmelCase , _UpperCAmelCase : List[str] =data_handling(__lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] =train_test_split( __lowerCamelCase , __lowerCamelCase , test_size=0.25 , random_state=1 ) _UpperCAmelCase : Optional[int] =xgboost(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__lowerCamelCase , __lowerCamelCase )}" ) print(f"Mean Square Error : {mean_squared_error(__lowerCamelCase , __lowerCamelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
242
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase =logging.get_logger(__name__) lowercase ='T5Config' def lowerCamelCase__ ( __lowerCamelCase : jnp.array , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : List[Any] =jnp.zeros_like(__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] =shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _UpperCAmelCase : List[Any] =shifted_input_ids.at[:, 0].set(__lowerCamelCase ) _UpperCAmelCase : str =jnp.where(shifted_input_ids == -1_0_0 , __lowerCamelCase , __lowerCamelCase ) return shifted_input_ids class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="mt5" UpperCAmelCase =MTaConfig class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="mt5" UpperCAmelCase =MTaConfig class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="mt5" UpperCAmelCase =MTaConfig
242
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = CTRLTokenizer _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : Union[str, Any] = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] snake_case : Tuple = dict(zip(A , range(len(A ) ) ) ) snake_case : Union[str, Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] snake_case : List[Any] = {"""unk_token""": """<unk>"""} snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def UpperCAmelCase ( self , **A ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = """adapt react readapt apt""" snake_case : Optional[Any] = """adapt react readapt apt""" return input_text, output_text def UpperCAmelCase ( self ) -> int: snake_case : Dict = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : List[str] = """adapt react readapt apt""" snake_case : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() snake_case : int = tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : str = tokens + [tokenizer.unk_token] snake_case : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
124
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = XLMRobertaTokenizer _snake_case = XLMRobertaTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case : Tuple = XLMRobertaTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ) -> int: snake_case : str = """<pad>""" snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = XLMRobertaTokenizer(A , keep_accents=A ) snake_case : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case : Any = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase ( self ) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : int = self.tokenizer_class.from_pretrained(A , **A ) snake_case : Optional[int] = tempfile.mkdtemp() snake_case : List[Any] = tokenizer_r.save_pretrained(A ) snake_case : Optional[Any] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case : Union[str, Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : str = tokenizer_r.from_pretrained(A ) snake_case : Dict = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True snake_case : List[Any] = tempfile.mkdtemp() snake_case : Tuple = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Any = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : int = tokenizer_r.from_pretrained(A ) snake_case : Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False snake_case : Tuple = tempfile.mkdtemp() snake_case : str = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case : Dict = tokenizer_r.from_pretrained(A ) snake_case : List[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @cached_property def UpperCAmelCase ( self ) -> str: return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCAmelCase ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) snake_case : Any = XLMRobertaTokenizer(f.name , keep_accents=A ) snake_case : List[Any] = pickle.dumps(A ) pickle.loads(A ) def UpperCAmelCase ( self ) -> Any: if not self.test_rust_tokenizer: return snake_case : str = self.get_tokenizer() snake_case : List[str] = self.get_rust_tokenizer() snake_case : str = """I was born in 92000, and this is falsé.""" snake_case : Optional[int] = tokenizer.tokenize(A ) snake_case : List[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : List[Any] = tokenizer.encode(A , add_special_tokens=A ) snake_case : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) snake_case : Optional[Any] = self.get_rust_tokenizer() snake_case : str = tokenizer.encode(A ) snake_case : Dict = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = """Hello World!""" snake_case : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: snake_case : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) snake_case : Tuple = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: # fmt: off snake_case : Tuple = {"""input_ids""": [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
124
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowerCAmelCase_ ): a : torch.FloatTensor class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = torch.nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) # down __lowerCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # out __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = 2 * out_channels if double_z else out_channels __lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = x __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""","""1.11.0""" ): for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: __lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE ) # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ) # post-process __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",): '''simple docstring''' super().__init__() __lowerCAmelCase = layers_per_block __lowerCAmelCase = nn.Convad( __SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = in_channels if norm_type == """spatial""" else None # mid __lowerCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,) # up __lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = output_channel __lowerCAmelCase = reversed_block_out_channels[i] __lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = output_channel # out if norm_type == "spatial": __lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 ) __lowerCAmelCase = False def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = z __lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__SCREAMING_SNAKE_CASE ): def custom_forward(*__SCREAMING_SNAKE_CASE ): return module(*__SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""","""1.11.0""" ): # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: # middle __lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: __lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' super().__init__() __lowerCAmelCase = n_e __lowerCAmelCase = vq_embed_dim __lowerCAmelCase = beta __lowerCAmelCase = legacy __lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e ) __lowerCAmelCase = remap if self.remap is not None: self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase = self.used.shape[0] __lowerCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase = self.re_embed __lowerCAmelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __lowerCAmelCase = n_e __lowerCAmelCase = sane_index_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase = match.argmax(-1 ) __lowerCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase = self.unknown_index return new.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = inds.shape assert len(__SCREAMING_SNAKE_CASE ) > 1 __lowerCAmelCase = inds.reshape(ishape[0],-1 ) __lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase = 0 # simply set to zero __lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE ) return back.reshape(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = z.permute(0,2,3,1 ).contiguous() __lowerCAmelCase = z.view(-1,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 ) __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape ) __lowerCAmelCase = None __lowerCAmelCase = None # compute loss for embedding if not self.legacy: __lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() if self.remap is not None: __lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis __lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten if self.sane_index_shape: __lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.remap is not None: __lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis __lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ) if shape is not None: __lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE ) # reshape back to match original input shape __lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous() return z_q class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase = parameters __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 ) __lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 ) __lowerCAmelCase = deterministic __lowerCAmelCase = torch.exp(0.5 * self.logvar ) __lowerCAmelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase = __lowerCAmelCase = torch.zeros_like( self.mean,device=self.parameters.device,dtype=self.parameters.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = randn_tensor( self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype ) __lowerCAmelCase = self.mean + self.std * sample return x def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,dim=[1, 2, 3],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.mean
46
'''simple docstring''' import random def _lowerCAmelCase ( lowercase ) -> bool: __lowerCAmelCase = num - 1 __lowerCAmelCase = 0 while s % 2 == 0: __lowerCAmelCase = s // 2 t += 1 for _ in range(5 ): __lowerCAmelCase = random.randrange(2 , num - 1 ) __lowerCAmelCase = pow(lowercase , lowercase , lowercase ) if v != 1: __lowerCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: __lowerCAmelCase = i + 1 __lowerCAmelCase = (v**2) % num return True def _lowerCAmelCase ( lowercase ) -> bool: if num < 2: return False __lowerCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowercase ) def _lowerCAmelCase ( lowercase = 1024 ) -> int: while True: __lowerCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowercase ): return num if __name__ == "__main__": _a : Optional[int] = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
46
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import numpy as np def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ = 1e-12 , lowercase__ = 100 , ): """simple docstring""" assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase ) A = np.iscomplexobj(_lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. A = False A = 0 A = 0 A = 1e12 while not convergence: # Multiple matrix by the vector. A = np.dot(_lowerCAmelCase , _lowerCAmelCase ) # Normalize the resulting output vector. A = w / np.linalg.norm(_lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) A = vector.conj().T if is_complex else vector.T A = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) ) # Check convergence. A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: A = True A = lambda_ if is_complex: A = np.real(lambda_ ) return lambda_, vector def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) A = np.array([41, 4, 20] ) A = real_input_matrix.astype(np.complexaaa ) A = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T A = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": A = real_input_matrix A = real_vector elif problem_type == "complex": A = complex_input_matrix A = complex_vector # Our implementation. A = power_iteration(_lowerCAmelCase , _lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). A = np.linalg.eigh(_lowerCAmelCase ) # Last eigenvalue is the maximum one. A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
371
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Tuple = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ (cls : int): A = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Dict): try: delete_repo(token=cls._token , repo_id="test-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config") except HTTPError: pass def SCREAMING_SNAKE_CASE__ (self : Dict): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("test-config" , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="test-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id="test-config" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : int): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="valid_org/test-config-org" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): CustomConfig.register_for_auto_class() A = CustomConfig(attribute=4_2) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"}) A = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig") self.assertEqual(new_config.attribute , 4_2) class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A = c.n_embd + 1 # int A = c.resid_pdrop + 1.0 # float A = not c.scale_attn_weights # bool A = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(__SCREAMING_SNAKE_CASE , c.n_embd , "mismatch for key: n_embd") self.assertEqual(__SCREAMING_SNAKE_CASE , c.resid_pdrop , "mismatch for key: resid_pdrop") self.assertEqual(__SCREAMING_SNAKE_CASE , c.scale_attn_weights , "mismatch for key: scale_attn_weights") self.assertEqual(__SCREAMING_SNAKE_CASE , c.summary_type , "mismatch for key: summary_type") def SCREAMING_SNAKE_CASE__ (self : Dict): A = PretrainedConfig() A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __SCREAMING_SNAKE_CASE , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]) A = [key for key, value in config_common_kwargs.items() if value == getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] if len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {", ".join(__SCREAMING_SNAKE_CASE)}.""") def SCREAMING_SNAKE_CASE__ (self : Dict): with self.assertRaises(__SCREAMING_SNAKE_CASE): # config is in subfolder, the following should not work without specifying the subfolder A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder") A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert") self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : int): # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 5_0_0 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__SCREAMING_SNAKE_CASE) as mock_head: A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This test is for deprecated behavior and can be removed in v5 A = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = AutoConfig.from_pretrained("bert-base-cased") A = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__SCREAMING_SNAKE_CASE) A = 2 json.dump(configuration.to_dict() , open(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , "w")) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A = ["config.42.0.0.json"] A = 7_6_8 configuration.save_pretrained(__SCREAMING_SNAKE_CASE) shutil.move(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , os.path.join(__SCREAMING_SNAKE_CASE , "config.42.0.0.json")) A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 7_6_8) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A = "hf-internal-testing/test-two-configs" import transformers as new_transformers A = "v4.0.0" A , A = new_transformers.models.auto.AutoConfig.from_pretrained( __SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__SCREAMING_SNAKE_CASE , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A = "v3.0.0" A = old_transformers.models.auto.AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(old_configuration.hidden_size , 7_6_8)
57
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a_ ( snake_case_ ): '''simple docstring''' def snake_case_( self ) -> Tuple: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(A ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(A ): self.assertDictEqual(A , example_records[i] ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) _SCREAMING_SNAKE_CASE = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case_( self ) -> Union[str, Any]: # checks what happens with missing columns _SCREAMING_SNAKE_CASE = [{"""col_1""": 1}, {"""col_2""": """x"""}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def snake_case_( self ) -> Optional[Any]: # checks if the type can be inferred from the second record _SCREAMING_SNAKE_CASE = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = Dataset.from_list([] ) self.assertEqual(len(A ) , 0 ) self.assertListEqual(dset.column_names , [] )
58
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) ->Union[str, Any]: for attribute in key.split(""".""" ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": _SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": _SCREAMING_SNAKE_CASE = value elif weight_type == "bias": _SCREAMING_SNAKE_CASE = value else: _SCREAMING_SNAKE_CASE = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) ->Any: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = fairseq_model.state_dict() _SCREAMING_SNAKE_CASE = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): _SCREAMING_SNAKE_CASE = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): _SCREAMING_SNAKE_CASE = True if "*" in mapped_key: _SCREAMING_SNAKE_CASE = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: _SCREAMING_SNAKE_CASE = """weight_v""" elif "weight" in name: _SCREAMING_SNAKE_CASE = """weight""" elif "bias" in name: _SCREAMING_SNAKE_CASE = """bias""" else: _SCREAMING_SNAKE_CASE = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) ->Union[str, Any]: _SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] _SCREAMING_SNAKE_CASE = name.split(""".""" ) _SCREAMING_SNAKE_CASE = int(items[0] ) _SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=True ) ->Optional[int]: if config_path is not None: _SCREAMING_SNAKE_CASE = HubertConfig.from_pretrained(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = HubertConfig() if is_finetuned: if dict_path: _SCREAMING_SNAKE_CASE = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _SCREAMING_SNAKE_CASE = target_dict.pad_index _SCREAMING_SNAKE_CASE = target_dict.bos_index _SCREAMING_SNAKE_CASE = target_dict.eos_index _SCREAMING_SNAKE_CASE = len(target_dict.symbols ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = HubertForCTC(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = HubertModel(__lowerCamelCase ) if is_finetuned: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowercase_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
58
1
"""simple docstring""" from __future__ import annotations def lowercase ( a__ : int | str ) -> bool: _UpperCamelCase = str(a__ ) return n == n[::-1] def lowercase ( a__ : int = 1000000 ) -> List[Any]: _UpperCamelCase = 0 for i in range(1 , a__ ): if is_palindrome(a__ ) and is_palindrome(bin(a__ ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
54
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
54
1
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = AudioLDMPipeline A_ = TEXT_TO_AUDIO_PARAMS A_ = TEXT_TO_AUDIO_BATCH_PARAMS A_ = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__a , ) __a : Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __a : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __a : Any = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __a : List[str] = ClapTextModelWithProjection(__a ) __a : Any = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77 ) __a : str = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__a , ) __a : Optional[int] = SpeechTaHifiGan(__a ) __a : Dict = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' if str(__a ).startswith('mps' ): __a : List[str] = torch.manual_seed(__a ) else: __a : Union[str, Any] = torch.Generator(device=__a ).manual_seed(__a ) __a : int = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : Tuple = self.get_dummy_components() __a : List[str] = AudioLDMPipeline(**__a ) __a : int = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : List[Any] = self.get_dummy_inputs(__a ) __a : Any = audioldm_pipe(**__a ) __a : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__a ) == 256 __a : Dict = audio[:10] __a : Union[str, Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_dummy_components() __a : Optional[Any] = AudioLDMPipeline(**__a ) __a : Any = audioldm_pipe.to(__a ) __a : List[Any] = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : Any = self.get_dummy_inputs(__a ) __a : Optional[int] = 3 * [inputs['prompt']] # forward __a : List[Any] = audioldm_pipe(**__a ) __a : str = output.audios[0] __a : Any = self.get_dummy_inputs(__a ) __a : Optional[Any] = 3 * [inputs.pop('prompt' )] __a : int = audioldm_pipe.tokenizer( __a , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors='pt' , ) __a : str = text_inputs['input_ids'].to(__a ) __a : Optional[int] = audioldm_pipe.text_encoder( __a , ) __a : int = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __a : Union[str, Any] = F.normalize(__a , dim=-1 ) __a : Optional[int] = prompt_embeds # forward __a : Union[str, Any] = audioldm_pipe(**__a ) __a : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.get_dummy_components() __a : Optional[int] = AudioLDMPipeline(**__a ) __a : Union[str, Any] = audioldm_pipe.to(__a ) __a : Union[str, Any] = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : str = self.get_dummy_inputs(__a ) __a : List[str] = 3 * ['this is a negative prompt'] __a : int = negative_prompt __a : List[Any] = 3 * [inputs['prompt']] # forward __a : Dict = audioldm_pipe(**__a ) __a : str = output.audios[0] __a : List[Any] = self.get_dummy_inputs(__a ) __a : List[str] = 3 * [inputs.pop('prompt' )] __a : int = [] for p in [prompt, negative_prompt]: __a : List[str] = audioldm_pipe.tokenizer( __a , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors='pt' , ) __a : Dict = text_inputs['input_ids'].to(__a ) __a : List[Any] = audioldm_pipe.text_encoder( __a , ) __a : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __a : Optional[int] = F.normalize(__a , dim=-1 ) embeds.append(__a ) __a , __a : Union[str, Any] = embeds # forward __a : List[str] = audioldm_pipe(**__a ) __a : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : Tuple = self.get_dummy_components() __a : Optional[int] = PNDMScheduler(skip_prk_steps=__a ) __a : List[Any] = AudioLDMPipeline(**__a ) __a : int = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : List[str] = self.get_dummy_inputs(__a ) __a : str = 'egg cracking' __a : Union[str, Any] = audioldm_pipe(**__a , negative_prompt=__a ) __a : List[str] = output.audios[0] assert audio.ndim == 1 assert len(__a ) == 256 __a : Tuple = audio[:10] __a : List[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : Dict = PNDMScheduler(skip_prk_steps=__a ) __a : Any = AudioLDMPipeline(**__a ) __a : Dict = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : List[str] = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __a : str = audioldm_pipe(__a , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __a : Tuple = 2 __a : Optional[Any] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __a : Tuple = 2 __a : Dict = audioldm_pipe(__a , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __a : Optional[Any] = 2 __a : List[str] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : Optional[Any] = AudioLDMPipeline(**__a ) __a : Any = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : Dict = audioldm_pipe.vocoder.config.sampling_rate __a : Union[str, Any] = self.get_dummy_inputs(__a ) __a : str = audioldm_pipe(audio_length_in_s=0.016 , **__a ) __a : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__a ) / vocoder_sampling_rate == 0.016 __a : Tuple = audioldm_pipe(audio_length_in_s=0.032 , **__a ) __a : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__a ) / vocoder_sampling_rate == 0.032 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.get_dummy_components() __a : int = AudioLDMPipeline(**__a ) __a : Optional[Any] = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : Optional[Any] = ['hey'] __a : Optional[Any] = audioldm_pipe(__a , num_inference_steps=1 ) __a : int = output.audios.shape assert audio_shape == (1, 256) __a : str = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __a : Any = SpeechTaHifiGan(__a ).to(__a ) __a : str = audioldm_pipe(__a , num_inference_steps=1 ) __a : int = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__a ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a ) @slow class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self , __a , __a="cpu" , __a=torch.floataa , __a=0 ): '''simple docstring''' __a : Tuple = torch.Generator(device=__a ).manual_seed(__a ) __a : List[str] = np.random.RandomState(__a ).standard_normal((1, 8, 128, 16) ) __a : Tuple = torch.from_numpy(__a ).to(device=__a , dtype=__a ) __a : Optional[Any] = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __a : int = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : Optional[Any] = self.get_inputs(__a ) __a : Optional[Any] = 25 __a : List[Any] = audioldm_pipe(**__a ).audios[0] assert audio.ndim == 1 assert len(__a ) == 8_1920 __a : List[str] = audio[7_7230:7_7240] __a : str = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __a : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __a : Optional[int] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __a : Optional[Any] = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) __a : Dict = self.get_inputs(__a ) __a : Tuple = audioldm_pipe(**__a ).audios[0] assert audio.ndim == 1 assert len(__a ) == 8_1920 __a : int = audio[2_7780:2_7790] __a : str = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __a : Optional[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
27
def _UpperCamelCase ( snake_case__ ) -> list: __UpperCAmelCase : Dict = [0] * len(snake_case__ ) for i in range(1, len(snake_case__ ) ): # use last results for better performance - dynamic programming __UpperCAmelCase : Any = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __UpperCAmelCase : Union[str, Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __UpperCAmelCase : Tuple = j return prefix_result def _UpperCamelCase ( snake_case__ ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
157
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Any =argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=__a , default=__a , required=__a , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=__a , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=__a , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=__a , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=__a , default=0 , help='''cuda_id.''' , ) UpperCAmelCase : Optional[Any] =parser.parse_args() return args def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' if not len(__a ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) UpperCAmelCase : Tuple =imgs[0].size UpperCAmelCase : Dict =Image.new('''RGB''' , size=(cols * w, rows * h) ) UpperCAmelCase : Tuple =grid.size for i, img in enumerate(__a ): grid.paste(__a , box=(i % cols * w, i // cols * h) ) return grid def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase="robotic cat with wings" , __lowerCAmelCase=7.5 , __lowerCAmelCase=50 , __lowerCAmelCase=1 , __lowerCAmelCase=42 , )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =torch.Generator(pipeline.device ).manual_seed(__a ) UpperCAmelCase : Optional[int] =pipeline( __a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images UpperCAmelCase : Any =int(math.sqrt(__a ) ) UpperCAmelCase : List[Any] =image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __snake_case = parse_args() # Load models and create wrapper for stable diffusion __snake_case = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __snake_case = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __snake_case = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __snake_case = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __snake_case = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __snake_case = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __snake_case = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __snake_case = unet.to(torch.device('''cuda''', args.cuda_id)) __snake_case = pipeline.to(unet.device) __snake_case , __snake_case = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __snake_case = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
355
class __snake_case : def __init__( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =n UpperCAmelCase : Any =[None] * self.n UpperCAmelCase : Tuple =0 # index of the first element UpperCAmelCase : Union[str, Any] =0 UpperCAmelCase : str =0 def __len__( self ) -> int: '''simple docstring''' return self.size def UpperCAmelCase__ ( self ) -> bool: '''simple docstring''' return self.size == 0 def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase : Tuple =data UpperCAmelCase : Optional[Any] =(self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase : int =self.array[self.front] UpperCAmelCase : Any =None UpperCAmelCase : Tuple =(self.front + 1) % self.n self.size -= 1 return temp
78
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _lowercase : List[str] = False _lowercase : List[str] = False def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> List[str]: return TrainCommand(A__ ) class __magic_name__ ( lowerCamelCase__): @staticmethod def SCREAMING_SNAKE_CASE_ ( lowercase_ : ArgumentParser ): lowercase_ : Dict = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=lowercase__ , required=lowercase__ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=lowercase__ , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=lowercase__ , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=lowercase__ , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=lowercase__ , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=lowercase__ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=lowercase__ , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=lowercase__ , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=lowercase__ , default="""bert-base-uncased""" , help="""Model\'s name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=lowercase__ , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=lowercase__ , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=lowercase__ , default=3E-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=lowercase__ , default=1E-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=lowercase__ ) def __init__( self : int , lowercase_ : Namespace ): lowercase_ : List[Any] = logging.get_logger("""transformers-cli/training""" ) lowercase_ : List[str] = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=lowercase__ ) lowercase_ : Union[str, Any] = args.output lowercase_ : Optional[Any] = args.column_label lowercase_ : Optional[Any] = args.column_text lowercase_ : Union[str, Any] = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": lowercase_ : Optional[int] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) lowercase_ : Any = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase_ : Tuple = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) lowercase_ : str = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase_ : Union[str, Any] = args.validation_split lowercase_ : int = args.train_batch_size lowercase_ : str = args.valid_batch_size lowercase_ : List[str] = args.learning_rate lowercase_ : Dict = args.adam_epsilon def SCREAMING_SNAKE_CASE_ ( self : Any ): if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE_ ( self : int ): raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
239
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" __lowercase = len(A__ ) # We need to create solution object to save path. __lowercase = [[0 for _ in range(A__ )] for _ in range(A__ )] __lowercase = run_maze(A__ , 0 , 0 , A__ ) if solved: print('''\n'''.join(str(A__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = len(A__ ) # Final check point. if i == j == (size - 1): __lowercase = 1 return True __lowercase = (not i < 0) and (not j < 0) # Check lower bounds __lowercase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase = 1 # check for directions if ( run_maze(A__ , i + 1 , A__ , A__ ) or run_maze(A__ , A__ , j + 1 , A__ ) or run_maze(A__ , i - 1 , A__ , A__ ) or run_maze(A__ , A__ , j - 1 , A__ ) ): return True __lowercase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
104
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class _snake_case ( lowercase__): UpperCamelCase__ : Tuple ="""nllb-moe""" UpperCamelCase__ : Dict =["""past_key_values"""] UpperCamelCase__ : List[Any] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str], __lowercase : str=12_8112, __lowercase : List[Any]=1024, __lowercase : int=12, __lowercase : Union[str, Any]=4096, __lowercase : Union[str, Any]=16, __lowercase : Tuple=12, __lowercase : int=4096, __lowercase : Any=16, __lowercase : List[str]=0.05, __lowercase : Optional[int]=0.05, __lowercase : int=True, __lowercase : Optional[Any]=True, __lowercase : Optional[Any]="relu", __lowercase : str=1024, __lowercase : Optional[Any]=0.1, __lowercase : List[Any]=0.1, __lowercase : Union[str, Any]=0.0, __lowercase : Tuple=0.02, __lowercase : Optional[Any]=2, __lowercase : Optional[int]=True, __lowercase : List[Any]=False, __lowercase : Any="float32", __lowercase : Union[str, Any]=False, __lowercase : Optional[int]=128, __lowercase : Union[str, Any]=64, __lowercase : Optional[int]=4, __lowercase : Dict=4, __lowercase : Any=0.001, __lowercase : Optional[int]=0.001, __lowercase : int="all", __lowercase : Any=False, __lowercase : Optional[int]=False, __lowercase : Dict=1.0, __lowercase : int=0.2, __lowercase : str=1, __lowercase : Optional[Any]=0, __lowercase : Optional[int]=2, __lowercase : Any=False, **__lowercase : List[str], ): lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = router_z_loss_coef lowercase__ = router_aux_loss_coef lowercase__ = decoder_sparse_step lowercase__ = encoder_sparse_step lowercase__ = num_experts lowercase__ = expert_capacity lowercase__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowercase__ = router_dtype lowercase__ = router_ignore_padding_tokens lowercase__ = batch_prioritized_routing lowercase__ = second_expert_policy lowercase__ = normalize_router_prob_before_dropping lowercase__ = moe_eval_capacity_token_fraction lowercase__ = moe_token_dropout lowercase__ = output_router_logits super().__init__( pad_token_id=__lowercase, bos_token_id=__lowercase, eos_token_id=__lowercase, is_encoder_decoder=__lowercase, decoder_start_token_id=__lowercase, **__lowercase, )
224
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class _snake_case ( lowercase__): UpperCamelCase__ : Tuple ="""nllb-moe""" UpperCamelCase__ : Dict =["""past_key_values"""] UpperCamelCase__ : List[Any] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str], __lowercase : str=12_8112, __lowercase : List[Any]=1024, __lowercase : int=12, __lowercase : Union[str, Any]=4096, __lowercase : Union[str, Any]=16, __lowercase : Tuple=12, __lowercase : int=4096, __lowercase : Any=16, __lowercase : List[str]=0.05, __lowercase : Optional[int]=0.05, __lowercase : int=True, __lowercase : Optional[Any]=True, __lowercase : Optional[Any]="relu", __lowercase : str=1024, __lowercase : Optional[Any]=0.1, __lowercase : List[Any]=0.1, __lowercase : Union[str, Any]=0.0, __lowercase : Tuple=0.02, __lowercase : Optional[Any]=2, __lowercase : Optional[int]=True, __lowercase : List[Any]=False, __lowercase : Any="float32", __lowercase : Union[str, Any]=False, __lowercase : Optional[int]=128, __lowercase : Union[str, Any]=64, __lowercase : Optional[int]=4, __lowercase : Dict=4, __lowercase : Any=0.001, __lowercase : Optional[int]=0.001, __lowercase : int="all", __lowercase : Any=False, __lowercase : Optional[int]=False, __lowercase : Dict=1.0, __lowercase : int=0.2, __lowercase : str=1, __lowercase : Optional[Any]=0, __lowercase : Optional[int]=2, __lowercase : Any=False, **__lowercase : List[str], ): lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = router_z_loss_coef lowercase__ = router_aux_loss_coef lowercase__ = decoder_sparse_step lowercase__ = encoder_sparse_step lowercase__ = num_experts lowercase__ = expert_capacity lowercase__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowercase__ = router_dtype lowercase__ = router_ignore_padding_tokens lowercase__ = batch_prioritized_routing lowercase__ = second_expert_policy lowercase__ = normalize_router_prob_before_dropping lowercase__ = moe_eval_capacity_token_fraction lowercase__ = moe_token_dropout lowercase__ = output_router_logits super().__init__( pad_token_id=__lowercase, bos_token_id=__lowercase, eos_token_id=__lowercase, is_encoder_decoder=__lowercase, decoder_start_token_id=__lowercase, **__lowercase, )
224
1
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) a_ : Dict = logging.getLogger(__name__) def a_ ( __snake_case : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =git.Repo(search_parent_directories=__snake_case ) lowerCamelCase_ ={ '''repo_id''': str(__snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(__snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(__snake_case , __snake_case , indent=4 ) def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" if params.n_gpu <= 0: lowerCamelCase_ =0 lowerCamelCase_ =-1 lowerCamelCase_ =True lowerCamelCase_ =False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCamelCase_ =int(os.environ['''WORLD_SIZE'''] ) lowerCamelCase_ =int(os.environ['''N_GPU_NODE'''] ) lowerCamelCase_ =int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCamelCase_ =params.world_size // params.n_gpu_per_node lowerCamelCase_ =params.global_rank // params.n_gpu_per_node lowerCamelCase_ =True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCamelCase_ =1 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =1 lowerCamelCase_ =1 lowerCamelCase_ =False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCamelCase_ =params.node_id == 0 and params.local_rank == 0 lowerCamelCase_ =params.n_nodes > 1 # summary lowerCamelCase_ =F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def a_ ( __snake_case : Optional[int] ) -> Tuple: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
75
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE :Union[str, Any] = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' snake_case_ = "dummy_data" snake_case_ = "datasets" snake_case_ = False def __init__( self : Optional[int] ,A : str ,A : str ,A : Union[Version, str] ,A : Optional[str] = None ,A : bool = False ,A : bool = True ,A : Optional[List[Callable]] = None ,): __A = 0 __A = dataset_name __A = cache_dir __A = use_local_dummy_data __A = config # download_callbacks take a single url as input __A = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __A = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __A = str(A ) # to be downloaded __A = None __A = None @property def UpperCamelCase_ ( self : Union[str, Any] ): if self._dummy_file is None: __A = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self : Optional[Any] ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def UpperCamelCase_ ( self : List[Any] ): return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def UpperCamelCase_ ( self : Tuple ): __A = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __A = cached_path( A ,cache_dir=self.cache_dir ,extract_compressed_file=A ,force_extract=A ) return os.path.join(A ,self.dummy_file_name ) @property def UpperCamelCase_ ( self : str ): return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def UpperCamelCase_ ( self : Any ): if self._bucket_url is None: __A = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def UpperCamelCase_ ( self : Tuple ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,*A : Dict ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __A = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __A = self.dummy_file_name # special case when data_url is a dict if isinstance(A ,A ): return self.create_dummy_data_dict(A ,A ) elif isinstance(A ,(list, tuple) ): return self.create_dummy_data_list(A ,A ) else: return self.create_dummy_data_single(A ,A ) def UpperCamelCase_ ( self : str ,A : List[Any] ,*A : List[Any] ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Tuple ): return self.download_and_extract(A ) def UpperCamelCase_ ( self : Any ,A : Any ,*A : Optional[Any] ,**A : List[str] ): return path def UpperCamelCase_ ( self : str ): return {} def UpperCamelCase_ ( self : int ,A : int ,A : Tuple ): __A = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A ,A ): for single_url in single_urls: download_callback(A ) else: __A = single_urls download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A ,A ): __A = [os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) for x in single_urls] else: __A = single_urls __A = os.path.join(A ,urllib.parse.quote_plus(Path(A ).name ) ) __A = value # make sure that values are unique if all(isinstance(A ,A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __A = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : str ): __A = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __A = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,A ) ) for url in data_url ) __A = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __A = [data_url[0]] * len(A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(A ) return dummy_data_list def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ): for download_callback in self.download_callbacks: download_callback(A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __A = os.path.join(A ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : Dict ): pass def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ): def _iter_archive_members(A : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __A = Path(self.dummy_file ).parent __A = path.relative_to(A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __A = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A ) __A = Path(A ) __A = _iter_archive_members(A ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(A ).as_posix(), file_path.open("rb" ) def UpperCamelCase_ ( self : List[Any] ,A : Any ): if not isinstance(A ,A ): __A = [paths] for path in paths: if os.path.isfile(A ): if os.path.basename(A ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(A ): if os.path.basename(A ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(A ): if filename.startswith((".", "__") ): continue yield os.path.join(A ,A )
15
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[Any]=13 ,lowerCamelCase__ : List[Any]=7 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : int=True ,lowerCamelCase__ : List[str]=99 ,lowerCamelCase__ : str=32 ,lowerCamelCase__ : List[Any]=5 ,lowerCamelCase__ : Union[str, Any]=4 ,lowerCamelCase__ : Optional[int]=64 ,lowerCamelCase__ : Tuple="gelu" ,lowerCamelCase__ : str=0.1 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : Union[str, Any]=512 ,lowerCamelCase__ : Optional[int]=16 ,lowerCamelCase__ : Dict=2 ,lowerCamelCase__ : str=0.02 ,lowerCamelCase__ : Any=3 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Union[str, Any]=2 ,lowerCamelCase__ : str=2 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : Any=4 ,lowerCamelCase__ : int=1 ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = q_groups SCREAMING_SNAKE_CASE = k_groups SCREAMING_SNAKE_CASE = v_groups SCREAMING_SNAKE_CASE = post_attention_groups SCREAMING_SNAKE_CASE = intermediate_groups SCREAMING_SNAKE_CASE = output_groups def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Tuple: '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,lowerCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SqueezeBertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = SqueezeBertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = SqueezeBertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,start_positions=lowerCamelCase__ ,end_positions=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = SqueezeBertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) = config_and_inputs SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : str = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __snake_case : List[str] = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case : Dict = False __snake_case : List[Any] = True __snake_case : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,dim=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SqueezeBertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 3) ) self.assertEqual(output.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(lowerCamelCase__ ,lowerCamelCase__ ,atol=1e-4 ) )
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase: str = logging.get_logger(__name__) lowerCAmelCase: Any = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class a__( UpperCAmelCase__ ): lowercase__ = """xlm-roberta""" def __init__( self : Union[str, Any] , __snake_case : Dict=3_05_22 , __snake_case : List[Any]=7_68 , __snake_case : Optional[int]=12 , __snake_case : List[str]=12 , __snake_case : List[Any]=30_72 , __snake_case : Dict="gelu" , __snake_case : int=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : str=5_12 , __snake_case : Dict=2 , __snake_case : List[Any]=0.02 , __snake_case : str=1e-1_2 , __snake_case : Optional[Any]=1 , __snake_case : Tuple=0 , __snake_case : Any=2 , __snake_case : Dict="absolute" , __snake_case : str=True , __snake_case : List[Any]=None , **__snake_case : Union[str, Any] , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) a : int = vocab_size a : Optional[Any] = hidden_size a : str = num_hidden_layers a : Optional[Any] = num_attention_heads a : Union[str, Any] = hidden_act a : Dict = intermediate_size a : Any = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Optional[int] = max_position_embeddings a : Optional[int] = type_vocab_size a : int = initializer_range a : Union[str, Any] = layer_norm_eps a : Optional[Any] = position_embedding_type a : Tuple = use_cache a : Dict = classifier_dropout class a__( UpperCAmelCase__ ): @property def lowercase_ ( self : Any ): if self.task == "multiple-choice": a : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
297
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase__ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] lowercase__ : List[Any] = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] lowercase__ : Optional[Any] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase__ : str = f'''down_blocks.{i}.resnets.{j}.''' lowercase__ : Union[str, Any] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase__ : Tuple = f'''down_blocks.{i}.attentions.{j}.''' lowercase__ : Dict = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase__ : List[Any] = f'''up_blocks.{i}.resnets.{j}.''' lowercase__ : int = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase__ : List[str] = f'''up_blocks.{i}.attentions.{j}.''' lowercase__ : Tuple = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase__ : List[str] = f'''down_blocks.{i}.downsamplers.0.conv.''' lowercase__ : Any = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase__ : Optional[int] = f'''up_blocks.{i}.upsamplers.0.''' lowercase__ : int = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase__ : Union[str, Any] = "mid_block.attentions.0." lowercase__ : List[Any] = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase__ : Tuple = f'''mid_block.resnets.{j}.''' lowercase__ : List[str] = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: snake_case_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: snake_case_ = v.replace(_A , _A ) snake_case_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: snake_case_ = v.replace(_A , _A ) snake_case_ = v snake_case_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase__ : Dict = [ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase__ : Any = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowercase__ : List[Any] = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase__ : Optional[int] = f'''down_blocks.{i}.downsamplers.0.''' lowercase__ : Tuple = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase__ : List[str] = f'''up_blocks.{i}.upsamplers.0.''' lowercase__ : Optional[int] = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase__ : int = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowercase__ : Union[str, Any] = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase__ : Dict = f'''mid_block.resnets.{i}.''' lowercase__ : int = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase__ : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def lowerCamelCase__ ( _A ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: snake_case_ = v.replace(_A , _A ) snake_case_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: snake_case_ = v.replace(_A , _A ) snake_case_ = v snake_case_ = {v: vae_state_dict[k] for k, v in mapping.items()} snake_case_ = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) snake_case_ = reshape_weight_for_sd(_A ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase__ : int = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] lowercase__ : Dict = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase__ : Tuple = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase__ : Dict = {"q": 0, "k": 1, "v": 2} def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {} snake_case_ = {} snake_case_ = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): snake_case_ = k[: -len(".q_proj.weight" )] snake_case_ = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: snake_case_ = [None, None, None] snake_case_ = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): snake_case_ = k[: -len(".q_proj.bias" )] snake_case_ = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: snake_case_ = [None, None, None] snake_case_ = v continue snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , _A ) snake_case_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , _A ) snake_case_ = torch.cat(_A ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) snake_case_ = textenc_pattern.sub(lambda _A : protected[re.escape(m.group(0 ) )] , _A ) snake_case_ = torch.cat(_A ) return new_state_dict def lowerCamelCase__ ( _A ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) lowercase__ : Dict = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase__ : Tuple = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") lowercase__ : int = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") lowercase__ : Any = osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase__ : str = load_file(unet_path, device="cpu") else: lowercase__ : Optional[Any] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") lowercase__ : Any = torch.load(unet_path, map_location="cpu") if osp.exists(vae_path): lowercase__ : Tuple = load_file(vae_path, device="cpu") else: lowercase__ : Any = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") lowercase__ : Dict = torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): lowercase__ : Union[str, Any] = load_file(text_enc_path, device="cpu") else: lowercase__ : Union[str, Any] = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") lowercase__ : Optional[int] = torch.load(text_enc_path, map_location="cpu") # Convert the UNet model lowercase__ : Dict = convert_unet_state_dict(unet_state_dict) lowercase__ : Any = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase__ : Dict = convert_vae_state_dict(vae_state_dict) lowercase__ : Union[str, Any] = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase__ : Optional[Any] = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase__ : Any = {"transformer." + k: v for k, v in text_enc_dict.items()} lowercase__ : List[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) lowercase__ : List[str] = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: lowercase__ : Tuple = convert_text_enc_state_dict(text_enc_dict) lowercase__ : Any = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase__ : Tuple = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase__ : Any = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase__ : Union[str, Any] = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
187
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __lowerCamelCase ) -> float: if not nums: raise ValueError('''List is empty''' ) return sum(__lowerCamelCase ) / len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class snake_case ( __UpperCAmelCase ): """simple docstring""" def __get__( self : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) UpperCAmelCase__ = '__cached_' + self.fget.__name__ UpperCAmelCase__ = getattr(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) if cached is None: UpperCAmelCase__ = self.fget(lowerCamelCase__ ) setattr(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) return cached def a_ ( lowerCamelCase ): UpperCAmelCase__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a_ ( lowerCamelCase ): if is_torch_fx_proxy(lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCamelCase , np.ndarray ) def a_ ( lowerCamelCase ): return isinstance(lowerCamelCase , np.ndarray ) def a_ ( lowerCamelCase ): return _is_numpy(lowerCamelCase ) def a_ ( lowerCamelCase ): import torch return isinstance(lowerCamelCase , torch.Tensor ) def a_ ( lowerCamelCase ): return False if not is_torch_available() else _is_torch(lowerCamelCase ) def a_ ( lowerCamelCase ): import torch return isinstance(lowerCamelCase , torch.device ) def a_ ( lowerCamelCase ): return False if not is_torch_available() else _is_torch_device(lowerCamelCase ) def a_ ( lowerCamelCase ): import torch if isinstance(lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = getattr(lowerCamelCase , lowerCamelCase ) else: return False return isinstance(lowerCamelCase , torch.dtype ) def a_ ( lowerCamelCase ): return False if not is_torch_available() else _is_torch_dtype(lowerCamelCase ) def a_ ( lowerCamelCase ): import tensorflow as tf return isinstance(lowerCamelCase , tf.Tensor ) def a_ ( lowerCamelCase ): return False if not is_tf_available() else _is_tensorflow(lowerCamelCase ) def a_ ( lowerCamelCase ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCamelCase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(lowerCamelCase ) return type(lowerCamelCase ) == tf.Tensor def a_ ( lowerCamelCase ): return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCamelCase ) def a_ ( lowerCamelCase ): import jax.numpy as jnp # noqa: F811 return isinstance(lowerCamelCase , jnp.ndarray ) def a_ ( lowerCamelCase ): return False if not is_flax_available() else _is_jax(lowerCamelCase ) def a_ ( lowerCamelCase ): if isinstance(lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(lowerCamelCase ) for k, v in obj.items()} elif isinstance(lowerCamelCase , (list, tuple) ): return [to_py_obj(lowerCamelCase ) for o in obj] elif is_tf_tensor(lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCamelCase ): return np.asarray(lowerCamelCase ).tolist() elif isinstance(lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a_ ( lowerCamelCase ): if isinstance(lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(lowerCamelCase ) for k, v in obj.items()} elif isinstance(lowerCamelCase , (list, tuple) ): return np.array(lowerCamelCase ) elif is_tf_tensor(lowerCamelCase ): return obj.numpy() elif is_torch_tensor(lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCamelCase ): return np.asarray(lowerCamelCase ) else: return obj class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = fields(self ) # Safety and consistency checks if not len(lowerCamelCase__ ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase__ = getattr(self ,class_fields[0].name ) UpperCAmelCase__ = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCamelCase__ ): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): UpperCAmelCase__ = first_field.items() UpperCAmelCase__ = True else: try: UpperCAmelCase__ = iter(lowerCamelCase__ ) UpperCAmelCase__ = True except TypeError: UpperCAmelCase__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCamelCase__ ): if ( not isinstance(lowerCamelCase__ ,(list, tuple) ) or not len(lowerCamelCase__ ) == 2 or not isinstance(element[0] ,lowerCamelCase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: UpperCAmelCase__ = element[1] elif first_field is not None: UpperCAmelCase__ = first_field else: for field in class_fields: UpperCAmelCase__ = getattr(self ,field.name ) if v is not None: UpperCAmelCase__ = v def __delitem__( self : Union[str, Any] ,*lowerCamelCase__ : List[str] ,**lowerCamelCase__ : Dict ): raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __lowerCAmelCase ( self : Optional[int] ,*lowerCamelCase__ : List[str] ,**lowerCamelCase__ : str ): raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __lowerCAmelCase ( self : str ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : Union[str, Any] ): raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __lowerCAmelCase ( self : str ,*lowerCamelCase__ : Optional[Any] ,**lowerCamelCase__ : List[Any] ): raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str] ,lowerCamelCase__ : List[Any] ): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): UpperCAmelCase__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[int] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCamelCase__ ,lowerCamelCase__ ) super().__setattr__(lowerCamelCase__ ,lowerCamelCase__ ) def __setitem__( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict ): # Will raise a KeyException if needed super().__setitem__(lowerCamelCase__ ,lowerCamelCase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): return tuple(self[k] for k in self.keys() ) class snake_case ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls : List[str] ,lowerCamelCase__ : List[Any] ): raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "longest" snake_case__ = "max_length" snake_case__ = "do_not_pad" class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "pt" snake_case__ = "tf" snake_case__ = "np" snake_case__ = "jax" class snake_case : """simple docstring""" def __init__( self : Tuple ,lowerCamelCase__ : List[ContextManager] ): UpperCAmelCase__ = context_managers UpperCAmelCase__ = ExitStack() def __enter__( self : Union[str, Any] ): for context_manager in self.context_managers: self.stack.enter_context(lowerCamelCase__ ) def __exit__( self : Union[str, Any] ,*lowerCamelCase__ : Optional[Any] ,**lowerCamelCase__ : Dict ): self.stack.__exit__(*lowerCamelCase__ ,**lowerCamelCase__ ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = infer_framework(lowerCamelCase ) if framework == "tf": UpperCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a_ ( lowerCamelCase ): UpperCAmelCase__ = model_class.__name__ UpperCAmelCase__ = infer_framework(lowerCamelCase ) if framework == "tf": UpperCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a_ ( lowerCamelCase , lowerCamelCase = "" , lowerCamelCase = "." ): def _flatten_dict(lowerCamelCase , lowerCamelCase="" , lowerCamelCase="." ): for k, v in d.items(): UpperCAmelCase__ = str(lowerCamelCase ) + delimiter + str(lowerCamelCase ) if parent_key else k if v and isinstance(lowerCamelCase , lowerCamelCase ): yield from flatten_dict(lowerCamelCase , lowerCamelCase , delimiter=lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) @contextmanager def a_ ( lowerCamelCase , lowerCamelCase = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a_ ( lowerCamelCase , lowerCamelCase=None ): if is_numpy_array(lowerCamelCase ): return np.transpose(lowerCamelCase , axes=lowerCamelCase ) elif is_torch_tensor(lowerCamelCase ): return array.T if axes is None else array.permute(*lowerCamelCase ) elif is_tf_tensor(lowerCamelCase ): import tensorflow as tf return tf.transpose(lowerCamelCase , perm=lowerCamelCase ) elif is_jax_tensor(lowerCamelCase ): return jnp.transpose(lowerCamelCase , axes=lowerCamelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(lowerCamelCase )}.''' ) def a_ ( lowerCamelCase , lowerCamelCase ): if is_numpy_array(lowerCamelCase ): return np.reshape(lowerCamelCase , lowerCamelCase ) elif is_torch_tensor(lowerCamelCase ): return array.reshape(*lowerCamelCase ) elif is_tf_tensor(lowerCamelCase ): import tensorflow as tf return tf.reshape(lowerCamelCase , lowerCamelCase ) elif is_jax_tensor(lowerCamelCase ): return jnp.reshape(lowerCamelCase , lowerCamelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(lowerCamelCase )}.''' ) def a_ ( lowerCamelCase , lowerCamelCase=None ): if is_numpy_array(lowerCamelCase ): return np.squeeze(lowerCamelCase , axis=lowerCamelCase ) elif is_torch_tensor(lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCamelCase ) elif is_tf_tensor(lowerCamelCase ): import tensorflow as tf return tf.squeeze(lowerCamelCase , axis=lowerCamelCase ) elif is_jax_tensor(lowerCamelCase ): return jnp.squeeze(lowerCamelCase , axis=lowerCamelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(lowerCamelCase )}.''' ) def a_ ( lowerCamelCase , lowerCamelCase ): if is_numpy_array(lowerCamelCase ): return np.expand_dims(lowerCamelCase , lowerCamelCase ) elif is_torch_tensor(lowerCamelCase ): return array.unsqueeze(dim=lowerCamelCase ) elif is_tf_tensor(lowerCamelCase ): import tensorflow as tf return tf.expand_dims(lowerCamelCase , axis=lowerCamelCase ) elif is_jax_tensor(lowerCamelCase ): return jnp.expand_dims(lowerCamelCase , axis=lowerCamelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(lowerCamelCase )}.''' ) def a_ ( lowerCamelCase ): if is_numpy_array(lowerCamelCase ): return np.size(lowerCamelCase ) elif is_torch_tensor(lowerCamelCase ): return array.numel() elif is_tf_tensor(lowerCamelCase ): import tensorflow as tf return tf.size(lowerCamelCase ) elif is_jax_tensor(lowerCamelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(lowerCamelCase )}.''' ) def a_ ( lowerCamelCase , lowerCamelCase ): for key, value in auto_map.items(): if isinstance(lowerCamelCase , (tuple, list) ): UpperCAmelCase__ = [f'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ = f'''{repo_id}--{value}''' return auto_map def a_ ( lowerCamelCase ): for base_class in inspect.getmro(lowerCamelCase ): UpperCAmelCase__ = base_class.__module__ UpperCAmelCase__ = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
98
"""simple docstring""" import argparse __UpperCamelCase = '''docs/source/_static/js/custom.js''' def UpperCAmelCase ( UpperCAmelCase ) -> int: with open(UpperCAmelCase , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() snake_case_ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 snake_case_ = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') __UpperCamelCase = parser.parse_args() update_custom_js(args.version)
69
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[Any] = ["""image_processor""", """tokenizer"""] __SCREAMING_SNAKE_CASE :Dict = """Pix2StructImageProcessor""" __SCREAMING_SNAKE_CASE :List[str] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : List[str] , a__ : Union[str, Any] , a__ : Any ): __magic_name__ = False super().__init__(a__ , a__ ) def __call__( self : List[str] , a__ : int=None , a__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a__ : bool = True , a__ : Union[bool, str, PaddingStrategy] = False , a__ : Union[bool, str, TruncationStrategy] = None , a__ : Optional[int] = None , a__ : Optional[int] = 2048 , a__ : int = 0 , a__ : Optional[int] = None , a__ : Optional[bool] = None , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = True , a__ : Optional[Union[str, TensorType]] = None , **a__ : Optional[Any] , ): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: __magic_name__ = self.tokenizer __magic_name__ = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_token_type_ids=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __magic_name__ = self.image_processor( a__ , return_tensors=a__ , max_patches=a__ , **a__ ) else: # add pixel_values and bbox __magic_name__ = self.image_processor( a__ , return_tensors=a__ , max_patches=a__ , header_text=a__ , **a__ ) if text is not None and not self.image_processor.is_vqa: __magic_name__ = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_token_type_ids=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) if "attention_mask" in text_encoding: __magic_name__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: __magic_name__ = text_encoding.pop('''input_ids''' ) else: __magic_name__ = None if text_encoding is not None: encoding_image_processor.update(a__ ) return encoding_image_processor def snake_case__ ( self : Dict , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case__ ( self : Optional[Any] , *a__ : str , **a__ : Union[str, Any] ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case__ ( self : str ): __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
362
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , a__ : Union[str, Any] , a__ : Union[str, Any]=7 , a__ : Dict=3 , a__ : Optional[Any]=18 , a__ : Optional[Any]=30 , a__ : Tuple=400 , a__ : Optional[int]=True , a__ : int=None , a__ : Union[str, Any]=True , a__ : Optional[Any]=None , a__ : str=True , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : Tuple=[0.5, 0.5, 0.5] , a__ : Union[str, Any]=False , ): __magic_name__ = size if size is not None else {'''height''': 20, '''width''': 20} __magic_name__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_reduce_labels def snake_case__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCamelCase ( ) -> str: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(dataset[0]['''file'''] ) __magic_name__ = Image.open(dataset[1]['''file'''] ) return image, map def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(ds[0]['''file'''] ) __magic_name__ = Image.open(ds[1]['''file'''] ) __magic_name__ = Image.open(ds[2]['''file'''] ) __magic_name__ = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = BeitImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ): __magic_name__ = BeitImageProcessingTester(self ) @property def snake_case__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) self.assertTrue(hasattr(a__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a__ , '''center_crop''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) def snake_case__ ( self : int ): __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) def snake_case__ ( self : Optional[Any] ): pass def snake_case__ ( self : Dict ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[str] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Union[str, Any] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) __magic_name__ = [] for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_batch_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def snake_case__ ( self : Any ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __magic_name__ = True __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
98
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = 1 _snake_case = 2 while i * i <= n: _snake_case = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: _snake_case = 1 _snake_case = 1 while True: i += 1 t_num += i if count_divisors(__A ) > 500: break return t_num if __name__ == "__main__": print(solution())
42
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , A_ : Union[str, Any] , A_ : Tuple=3 , A_ : Any=32 , A_ : Union[str, Any]=3 , A_ : str=10 , A_ : Tuple=[10, 20, 30, 40] , A_ : Tuple=[1, 1, 2, 1] , A_ : str=True , A_ : str=True , A_ : Optional[int]="relu" , A_ : Dict=3 , A_ : Optional[Any]=None , ) -> int: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(A_ ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = self.get_config() return config, pixel_values def a__ ( self : Any ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__ ( self : Optional[int] , A_ : Union[str, Any] , A_ : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = FlaxRegNetModel(config=A_ ) lowerCamelCase_ = model(A_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self : List[Any] , A_ : Union[str, Any] , A_ : int ) -> Any: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = FlaxRegNetForImageClassification(config=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : Optional[int] ) -> None: """simple docstring""" lowerCamelCase_ = FlaxRegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a__ ( self : int ) -> int: """simple docstring""" pass def a__ ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : Tuple ) -> Any: """simple docstring""" def check_hidden_states_output(A_ : int , A_ : Optional[int] , A_ : Tuple ): lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ = self._prepare_for_class(A_ , A_ ) lowerCamelCase_ = model_class(A_ ) @jax.jit def model_jitted(A_ : List[Any] , **A_ : List[Any] ): return model(pixel_values=A_ , **A_ ) with self.subTest('JIT Enabled' ): lowerCamelCase_ = model_jitted(**A_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase_ = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : str ) -> List[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='np' ) lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
208
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''OwlViTImageProcessor''' UpperCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , A_ : Tuple=None , A_ : Tuple=None , **A_ : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A_ , ) lowerCamelCase_ = kwargs.pop('feature_extractor' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_ , A_ ) def __call__( self : List[str] , A_ : List[str]=None , A_ : List[Any]=None , A_ : Dict=None , A_ : Tuple="max_length" , A_ : int="np" , **A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): lowerCamelCase_ = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): lowerCamelCase_ = [] # Maximum number of queries across batch lowerCamelCase_ = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: lowerCamelCase_ = t + [' '] * (max_num_queries - len(A_ )) lowerCamelCase_ = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowerCamelCase_ = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase_ = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase_ = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowerCamelCase_ = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase_ = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = input_ids lowerCamelCase_ = attention_mask if query_images is not None: lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values lowerCamelCase_ = query_pixel_values if images is not None: lowerCamelCase_ = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def a__ ( self : Tuple , *A_ : Dict , **A_ : Dict ) -> Any: """simple docstring""" return self.image_processor.post_process(*A_ , **A_ ) def a__ ( self : List[str] , *A_ : Any , **A_ : List[Any] ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*A_ , **A_ ) def a__ ( self : Any , *A_ : str , **A_ : List[Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def a__ ( self : Union[str, Any] , *A_ : Any , **A_ : Union[str, Any] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def a__ ( self : Optional[int] , *A_ : List[Any] , **A_ : int ) -> int: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @property def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A_ , ) return self.image_processor_class @property def a__ ( self : str ) -> List[str]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A_ , ) return self.image_processor
208
1
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __SCREAMING_SNAKE_CASE ="\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __SCREAMING_SNAKE_CASE ="\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __SCREAMING_SNAKE_CASE ="\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): def remove_articles(__SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Any = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__SCREAMING_SNAKE_CASE , ' ' , __SCREAMING_SNAKE_CASE ) def white_space_fix(__SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(__SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__SCREAMING_SNAKE_CASE : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__SCREAMING_SNAKE_CASE ) ) ) ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): return int(normalize_answer(__SCREAMING_SNAKE_CASE ) == normalize_answer(__SCREAMING_SNAKE_CASE ) ) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : List[Any] = [any(compute_exact(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return (sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE )) * 1_00 def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : int = [rgram for rgrams in rgramslist for rgram in rgrams] lowercase_ : List[Any] = Counter(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = Counter(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = Counter() for sgram, scount in sgramcounter.items(): lowercase_ : Dict = scount * numref lowercase_ : int = Counter(__SCREAMING_SNAKE_CASE ) lowercase_ : str = Counter() for cgram, ccount in cgramcounter.items(): lowercase_ : int = ccount * numref # KEEP lowercase_ : Any = sgramcounter_rep & cgramcounter_rep lowercase_ : Any = keepgramcounter_rep & rgramcounter lowercase_ : Optional[Any] = sgramcounter_rep & rgramcounter lowercase_ : str = 0 lowercase_ : Optional[int] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ : int = 1 lowercase_ : Dict = 1 if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : List[Any] = keeptmpscorea / len(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowercase_ : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowercase_ : Dict = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowercase_ : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowercase_ : str = sgramcounter_rep - cgramcounter_rep lowercase_ : Tuple = delgramcounter_rep - rgramcounter lowercase_ : List[str] = sgramcounter_rep - rgramcounter lowercase_ : int = 0 lowercase_ : Optional[int] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ : Dict = 1 if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Optional[Any] = deltmpscorea / len(__SCREAMING_SNAKE_CASE ) # ADDITION lowercase_ : Tuple = set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = set(__SCREAMING_SNAKE_CASE ) & set(__SCREAMING_SNAKE_CASE ) lowercase_ : int = set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ : Any = 1 lowercase_ : Optional[Any] = 1 if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : str = addtmpscore / len(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : int = addtmpscore / len(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = 0 if addscore_precision > 0 or addscore_recall > 0: lowercase_ : str = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = ssent.split(' ' ) lowercase_ : str = csent.split(' ' ) lowercase_ : List[Any] = [] lowercase_ : Tuple = [] lowercase_ : Optional[Any] = [] lowercase_ : Any = [] lowercase_ : Optional[int] = [] lowercase_ : int = [] lowercase_ : Any = [] lowercase_ : Dict = [] lowercase_ : List[str] = [] lowercase_ : Dict = [] for rsent in rsents: lowercase_ : Any = rsent.split(' ' ) lowercase_ : Dict = [] lowercase_ : Dict = [] lowercase_ : List[str] = [] ragramslist.append(__SCREAMING_SNAKE_CASE ) for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ): if i < len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 2: lowercase_ : int = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 3: lowercase_ : int = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__SCREAMING_SNAKE_CASE ) ragramslist.append(__SCREAMING_SNAKE_CASE ) ragramslist.append(__SCREAMING_SNAKE_CASE ) ragramslist.append(__SCREAMING_SNAKE_CASE ) for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ): if i < len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : Tuple = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 2: lowercase_ : Optional[int] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 3: lowercase_ : Optional[int] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__SCREAMING_SNAKE_CASE ) for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ): if i < len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : Any = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 2: lowercase_ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 3: lowercase_ : int = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__SCREAMING_SNAKE_CASE ) ((lowercase_) , (lowercase_) , (lowercase_)) : List[Any] = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((lowercase_) , (lowercase_) , (lowercase_)) : Union[str, Any] = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((lowercase_) , (lowercase_) , (lowercase_)) : Dict = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((lowercase_) , (lowercase_) , (lowercase_)) : Dict = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowercase_ : str = sum([delascore, delascore, delascore, delascore] ) / 4 lowercase_ : Optional[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 lowercase_ : str = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : str = "13a" , __SCREAMING_SNAKE_CASE : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: lowercase_ : Tuple = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowercase_ : Optional[Any] = sacrebleu.metrics.bleu._get_tokenizer(__SCREAMING_SNAKE_CASE )()(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": lowercase_ : List[Any] = sacremoses.MosesTokenizer().tokenize(__SCREAMING_SNAKE_CASE , return_str=__SCREAMING_SNAKE_CASE , escape=__SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": lowercase_ : int = sacremoses.MosesTokenizer().penn_tokenize(__SCREAMING_SNAKE_CASE , return_str=__SCREAMING_SNAKE_CASE ) else: lowercase_ : Optional[Any] = sentence if not return_str: lowercase_ : int = normalized_sent.split() return normalized_sent def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): if not (len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE )): raise ValueError('Sources length must match predictions and references lengths.' ) lowercase_ : str = 0 for src, pred, refs in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(__SCREAMING_SNAKE_CASE ) , normalize(__SCREAMING_SNAKE_CASE ) , [normalize(__SCREAMING_SNAKE_CASE ) for sent in refs] ) lowercase_ : Optional[int] = sari_score / len(__SCREAMING_SNAKE_CASE ) return 1_00 * sari_score def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]="exp" , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : List[str]=False , ): lowercase_ : List[str] = len(references[0] ) if any(len(__SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowercase_ : Any = [[refs[i] for refs in references] for i in range(__SCREAMING_SNAKE_CASE )] lowercase_ : Union[str, Any] = sacrebleu.corpus_bleu( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , smooth_method=__SCREAMING_SNAKE_CASE , smooth_value=__SCREAMING_SNAKE_CASE , force=__SCREAMING_SNAKE_CASE , lowercase=__SCREAMING_SNAKE_CASE , use_effective_order=__SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] ,reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = {} result.update({'sari': compute_sari(sources=__UpperCamelCase ,predictions=__UpperCamelCase ,references=__UpperCamelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=__UpperCamelCase ,references=__UpperCamelCase )} ) result.update({'exact': compute_em(predictions=__UpperCamelCase ,references=__UpperCamelCase )} ) return result
213
"""simple docstring""" __SCREAMING_SNAKE_CASE =[ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
213
1
'''simple docstring''' def __magic_name__ ( A = 1_0_0 ) -> int: snake_case = 0 snake_case = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
332
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
1
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
101
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """linear""" _SCREAMING_SNAKE_CASE = """cosine""" _SCREAMING_SNAKE_CASE = """cosine_with_restarts""" _SCREAMING_SNAKE_CASE = """polynomial""" _SCREAMING_SNAKE_CASE = """constant""" _SCREAMING_SNAKE_CASE = """constant_with_warmup""" _SCREAMING_SNAKE_CASE = """piecewise_constant""" def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int = -1 ) -> Tuple: """simple docstring""" return LambdaLR(lowerCAmelCase__ , lambda lowerCAmelCase__ : 1 , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int = -1 ) -> str: """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1.0 , lowerCAmelCase__ ) ) return 1.0 return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : str , lowerCAmelCase__ : int = -1 ) -> int: """simple docstring""" lowerCAmelCase_ : str = {} lowerCAmelCase_ : Optional[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = rule_str.split(':' ) lowerCAmelCase_ : List[str] = int(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = float(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = value lowerCAmelCase_ : str = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ): def rule_func(lowerCAmelCase__ : int ) -> float: lowerCAmelCase_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCAmelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase_ : Dict = create_rules_function(lowerCAmelCase__ , lowerCAmelCase__ ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=-1 ) -> Any: """simple docstring""" def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.5 , lowerCAmelCase__ : int = -1 ) -> Union[str, Any]: """simple docstring""" def lr_lambda(lowerCAmelCase__ : Any ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCAmelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = -1 ) -> int: """simple docstring""" def lr_lambda(lowerCAmelCase__ : str ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCAmelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=1e-7 , lowerCAmelCase__ : Union[str, Any]=1.0 , lowerCAmelCase__ : int=-1 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Any = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(lowerCAmelCase__ : int ): if current_step < num_warmup_steps: return float(lowerCAmelCase__ ) / float(max(1 , lowerCAmelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase_ : Any = lr_init - lr_end lowerCAmelCase_ : int = num_training_steps - num_warmup_steps lowerCAmelCase_ : Dict = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase_ : Dict = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__ : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, SchedulerType] , lowerCAmelCase__ : Optimizer , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : int = -1 , ) -> int: """simple docstring""" lowerCAmelCase_ : List[str] = SchedulerType(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCAmelCase__ , step_rules=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , num_cycles=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , power=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ , ) return schedule_func( lowerCAmelCase__ , num_warmup_steps=lowerCAmelCase__ , num_training_steps=lowerCAmelCase__ , last_epoch=lowerCAmelCase__ )
224
0
def _a ( SCREAMING_SNAKE_CASE_ : str ): if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) __lowerCAmelCase = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": UpperCamelCase__ = input("""Enter a string """).strip() UpperCamelCase__ = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
102
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
102
1
def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __A ( __lowerCAmelCase )-> dict[str, str]: """simple docstring""" _UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _UpperCAmelCase = remove_duplicates(key.upper() ) _UpperCAmelCase = len(__lowerCAmelCase ) # First fill cipher with key characters _UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(__lowerCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowerCAmelCase ) , 26 ): _UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _UpperCAmelCase = alphabet[i - offset] _UpperCAmelCase = char return cipher_alphabet def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" return "".join(cipher_map.get(__lowerCAmelCase , __lowerCAmelCase ) for ch in message.upper() ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowerCAmelCase , __lowerCAmelCase ) for ch in message.upper() ) def __A ( )-> None: """simple docstring""" _UpperCAmelCase = input('Enter message to encode or decode: ' ).strip() _UpperCAmelCase = input('Enter keyword: ' ).strip() _UpperCAmelCase = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _UpperCAmelCase = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _UpperCAmelCase = create_cipher_map(__lowerCAmelCase ) print(func(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
39
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''width_multiplier''' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase="swish" , __lowerCAmelCase=3 , __lowerCAmelCase=32 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=10 , __lowerCAmelCase=None , __lowerCAmelCase=0.2_5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , ) -> List[Any]: lowercase__ : List[str] = parent lowercase__ : List[Any] = batch_size lowercase__ : List[str] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Tuple = num_channels lowercase__ : List[str] = make_divisible(512 * width_multiplier , divisor=8 ) lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = conv_kernel_size lowercase__ : Dict = output_stride lowercase__ : List[Any] = classifier_dropout_prob lowercase__ : str = use_labels lowercase__ : List[Any] = is_training lowercase__ : Tuple = num_labels lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = scope lowercase__ : List[Any] = width_multiplier lowercase__ : Optional[int] = ffn_dropout lowercase__ : int = attn_dropout def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase( self ) -> Tuple: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Optional[int] = MobileViTVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : str = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = self.num_labels lowercase__ : Dict = MobileViTVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Optional[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: lowercase__ : str = self.num_labels lowercase__ : List[Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : int = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase__ : Union[str, Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = MobileViTVaModelTester(self ) lowercase__ : Any = MobileViTVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> str: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _lowerCAmelCase( self ) -> Optional[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _lowerCAmelCase( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _lowerCAmelCase( self ) -> Any: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> str: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : Optional[int] = 5 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase__ : str = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> List[str]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict = MobileViTVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase( self ) -> int: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCAmelCase ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**__lowerCAmelCase ) # verify the logits lowercase__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase__ : int = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = model.to(__lowerCAmelCase ) lowercase__ : Any = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : str = prepare_img() lowercase__ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : str = model(**__lowerCAmelCase ) lowercase__ : Tuple = outputs.logits # verify the logits lowercase__ : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : List[str] = model.to(__lowerCAmelCase ) lowercase__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowercase__ : int = prepare_img() lowercase__ : List[str] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : Optional[int] = outputs.logits.detach().cpu() lowercase__ : Any = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase , target_sizes=[(50, 60)] ) lowercase__ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase ) lowercase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowerCAmelCase )
198
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = CodeGenTokenizer lowerCAmelCase__ = CodeGenTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = {"add_prefix_space": True} lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] lowercase_ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) lowercase_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase_ = {"""unk_token""": """<unk>"""} lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , **UpperCAmelCase ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = """lower newer""" lowercase_ = """lower newer""" return input_text, output_text def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ = """lower newer""" lowercase_ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase_ = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def A__ ( self ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) lowercase_ = """lower newer""" # Testing tokenization lowercase_ = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) lowercase_ = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens lowercase_ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) lowercase_ = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens lowercase_ = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) lowercase_ = tokenizer.encode(snake_case_ , add_prefix_space=snake_case_ ) lowercase_ = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing the unknown token lowercase_ = tokens + [rust_tokenizer.unk_token] lowercase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: '''simple docstring''' pass def A__ ( self , UpperCAmelCase=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # Simple input lowercase_ = """This is a simple input""" lowercase_ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase_ = ("""This is a simple input""", """This is a pair""") lowercase_ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" , ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowercase_ = """This is a simple input""" lowercase_ = ["""This is a simple input looooooooong""", """This is a simple input"""] lowercase_ = ("""This is a simple input""", """This is a pair""") lowercase_ = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer(snake_case_ , padding="max_length" , max_length=30 , return_tensors="np" ) lowercase_ = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="np" ) lowercase_ = tokenizer(*snake_case_ , padding="max_length" , max_length=60 , return_tensors="np" ) lowercase_ = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = """$$$""" lowercase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case_ , add_bos_token=snake_case_ ) lowercase_ = """This is a simple input""" lowercase_ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer(snake_case_ ) lowercase_ = tokenizer(snake_case_ ) self.assertEqual(out_s.input_ids[0] , snake_case_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase_ = tokenizer.decode(out_s.input_ids ) lowercase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , snake_case_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowercase_ = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" lowercase_ = """\nif len_a > len_b: result = a\nelse: result = b""" lowercase_ = tokenizer.encode(snake_case_ ) lowercase_ = ["""^#""", re.escape("<|endoftext|>" ), """^'''""", """^\"\"\"""", """\n\n\n"""] lowercase_ = tokenizer.decode(snake_case_ , truncate_before_pattern=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> List[str]: '''simple docstring''' pass
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase__ = 1.0_5_4_5_7_1_8_1_7e-3_4 # unit of ℏ : J * s lowercase__ = 3e8 # unit of c : m * s^-1 def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: UpperCAmelCase : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: UpperCAmelCase : Dict = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: UpperCAmelCase : Optional[int] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
151
'''simple docstring''' import string from math import logaa def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) UpperCAmelCase : Optional[Any] = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase : Tuple = corpus_without_punctuation.split('\n' ) UpperCAmelCase : List[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCAmelCase_ )) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return round(tf * idf , 3 )
151
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) lowerCAmelCase_ = -1 lowerCAmelCase_ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) lowerCAmelCase_ = model.generate(__lowerCamelCase, max_new_tokens=10, do_sample=__lowerCamelCase ) lowerCAmelCase_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase_ = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase, max_new_tokens=10, do_sample=__lowerCamelCase, streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase_ = cs.out[:-1] self.assertEqual(__lowerCamelCase, __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) lowerCAmelCase_ = -1 lowerCAmelCase_ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) lowerCAmelCase_ = model.generate(__lowerCamelCase, max_new_tokens=10, do_sample=__lowerCamelCase ) lowerCAmelCase_ = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase_ = TextIteratorStreamer(__lowerCamelCase ) lowerCAmelCase_ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowerCAmelCase_ = Thread(target=model.generate, kwargs=__lowerCamelCase ) thread.start() lowerCAmelCase_ = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase, __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) lowerCAmelCase_ = -1 lowerCAmelCase_ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) lowerCAmelCase_ = model.generate(__lowerCamelCase, max_new_tokens=10, do_sample=__lowerCamelCase ) lowerCAmelCase_ = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase_ = TextStreamer(__lowerCamelCase, skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase, max_new_tokens=10, do_sample=__lowerCamelCase, streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase_ = cs.out[:-1] self.assertEqual(__lowerCamelCase, __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCamelCase ) lowerCAmelCase_ = -1 lowerCAmelCase_ = torch.ones((1, 5), device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase_ = TextStreamer(__lowerCamelCase, skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase, max_new_tokens=1, do_sample=__lowerCamelCase, streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase_ = cs.out[:-1] # Remove the final "\n" lowerCAmelCase_ = tokenizer(__lowerCamelCase, return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCamelCase ) lowerCAmelCase_ = -1 lowerCAmelCase_ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) lowerCAmelCase_ = TextIteratorStreamer(__lowerCamelCase, timeout=0.001 ) lowerCAmelCase_ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowerCAmelCase_ = Thread(target=model.generate, kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): lowerCAmelCase_ = """""" for new_text in streamer: streamer_text += new_text
368
def __UpperCamelCase ( _A ): if length <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
167
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase: Union[str, Any] = '''src/transformers''' lowerCAmelCase: str = '''docs/source/en/tasks''' def lowerCamelCase__ ( _A , _A , _A ): with open(__lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Dict = f.readlines() # Find the start prompt. a : str = 0 while not lines[start_index].startswith(__lowercase ): start_index += 1 start_index += 1 a : Dict = start_index while not lines[end_index].startswith(__lowercase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase: Dict = direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase: Optional[Any] = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase: Dict = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def lowerCamelCase__ ( _A ): a : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] a : List[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowercase , set() ) a : int = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCamelCase__ ( _A , _A=False ): a , a , a , a : List[str] = _find_text_in_file( filename=os.path.join(__lowercase , __lowercase ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) a : List[Any] = get_model_list_for_task(__lowercase ) if current_list != new_list: if overwrite: with open(os.path.join(__lowercase , __lowercase ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": lowerCAmelCase: str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase: Optional[int] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
297
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : Tuple ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
53
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase : List[Any] = 10 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' for i in range(__lowerCAmelCase , __lowerCAmelCase ): if array[i] == target: return i return -1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = len(__lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase_ = one_third - 1 elif array[two_third] < target: lowercase_ = two_third + 1 else: lowercase_ = one_third + 1 lowercase_ = two_third - 1 else: return -1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCAmelCase , one_third - 1 , __lowerCAmelCase , __lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowerCAmelCase , __lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Optional[int] = input("Enter numbers separated by comma:\n").strip() UpperCAmelCase : Dict = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." UpperCAmelCase : Tuple = int(input("Enter the number to be found in the list:\n").strip()) UpperCAmelCase : str = ite_ternary_search(collection, target) UpperCAmelCase : List[str] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print("Not found")
313
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = MegatronBertModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True # test_resize_embeddings = False lowercase__ = False def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class in get_values(lowerCAmelCase_): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_) return inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = MegatronBertModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_) lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_) model.to(lowerCAmelCase_) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , lowerCAmelCase_) lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3): for jj in range(3): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
313
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: assert isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: lowerCamelCase : Tuple = tmp_path / "cache" lowerCamelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase : Union[str, Any] = SqlDatasetReader( "dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ,keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : Tuple = tmp_path / "cache" lowerCamelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features lowerCamelCase : int = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase : Optional[int] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,features=_SCREAMING_SNAKE_CASE ,cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE ) -> Dict: with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: lowerCamelCase : List[str] = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]: lowerCamelCase : str = tmp_path / "cache" lowerCamelCase : str = os.path.join(_SCREAMING_SNAKE_CASE ,"tmp.sql" ) lowerCamelCase : Optional[int] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE ,"dataset" ,"sqlite:///" + output_sqlite_path ,num_proc=1 ).write() lowerCamelCase : Optional[Any] = iter_sql_file(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = tmp_path / "cache" lowerCamelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE ,"tmp.sql" ) lowerCamelCase : List[str] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(_SCREAMING_SNAKE_CASE ,"dataset" ,"sqlite:///" + output_sqlite_path ,num_proc=2 ).write() lowerCamelCase : List[str] = iter_sql_file(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = iter_sql_file(_SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: lowerCamelCase : List[Any] = tmp_path / "cache" lowerCamelCase : List[str] = os.path.join(_SCREAMING_SNAKE_CASE ,"tmp.sql" ) lowerCamelCase : Optional[int] = SqlDatasetReader("dataset" ,"sqlite:///" + sqlite_path ,cache_dir=_SCREAMING_SNAKE_CASE ).read() with pytest.raises(_SCREAMING_SNAKE_CASE ): SqlDatasetWriter(_SCREAMING_SNAKE_CASE ,"dataset" ,"sqlite:///" + output_sqlite_path ,num_proc=0 ).write()
48
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> list: lowerCamelCase : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowerCamelCase : Dict = True for j in range(_SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowerCamelCase : Optional[int] = False break if match_found: position.append(_SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
48
1
from math import asin, atan, cos, radians, sin, sqrt, tan snake_case_ = 6378137.0 snake_case_ = 6356752.314245 snake_case_ = 6378137 def lowerCamelCase__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A __snake_case = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) __snake_case = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) __snake_case = radians(snake_case_ ) __snake_case = radians(snake_case_ ) # Equation __snake_case = sin((phi_a - phi_a) / 2 ) __snake_case = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __snake_case = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
365
from pathlib import Path import fire def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str , snake_case_ : int ) -> str: __snake_case = Path(snake_case_ ) __snake_case = Path(snake_case_ ) dest_dir.mkdir(exist_ok=snake_case_ ) for path in src_dir.iterdir(): __snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] __snake_case = dest_dir.joinpath(path.name ) print(snake_case_ ) dest_path.open('''w''' ).write('''\n'''.join(snake_case_ ) ) if __name__ == "__main__": fire.Fire(minify)
238
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" _snake_case = 'timesformer' def __init__( self , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-6 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="divided_space_time" , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ , )-> List[Any]: '''simple docstring''' super().__init__(**_snake_case ) __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = num_frames __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = qkv_bias __UpperCamelCase = attention_type __UpperCamelCase = drop_path_rate
328
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ = TypeVar("""T""") A__ = TypeVar("""U""") class __lowerCAmelCase ( Generic[T, U] ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_snake_case ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def snake_case ( self , _snake_case ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class __lowerCAmelCase ( Generic[T, U] ): __lowerCamelCase = {} def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _snake_case ): """simple docstring""" return key in self.cache def snake_case ( self , _snake_case ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_snake_case ) @classmethod def snake_case ( cls , _snake_case = 128 ): """simple docstring""" def cache_decorator_inner(_snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_snake_case ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , _snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case , """cache_info""" , _snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
82
0
'''simple docstring''' from manim import * class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Union[str, Any] ) -> str: _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(4 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) _lowerCAmelCase = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) _lowerCAmelCase = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) _lowerCAmelCase = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(__snake_case ): _lowerCAmelCase = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) _lowerCAmelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
220
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : List[Any] ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case ) return image @property def lowercase__ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self : Optional[int] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowercase__ ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__snake_case ) @property def lowercase__ ( self : Union[str, Any] ) -> str: def extract(*__snake_case : List[Any] , **__snake_case : Any ): class UpperCAmelCase : def __init__( self : Any ) -> Any: _lowerCAmelCase = torch.ones([0] ) def lowercase__ ( self : Optional[Any] , __snake_case : Tuple ) -> Dict: self.pixel_values.to(__snake_case ) return self return Out() return extract def lowercase__ ( self : List[str] ) -> Optional[int]: _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=__snake_case ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase = 77 _lowerCAmelCase = self.dummy_image.to(__snake_case ) _lowerCAmelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCAmelCase = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case ) _lowerCAmelCase = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ) _lowerCAmelCase = output.images _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self : Tuple ) -> str: _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=__snake_case ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase = 77 _lowerCAmelCase = self.dummy_image.to(__snake_case ) # put models in fp16 _lowerCAmelCase = unet.half() _lowerCAmelCase = vae.half() _lowerCAmelCase = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case ) _lowerCAmelCase = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase = init_image.resize((7_60, 5_04) ) _lowerCAmelCase = """BAAI/AltDiffusion""" _lowerCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) _lowerCAmelCase = output.images[0] _lowerCAmelCase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowerCAmelCase = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Tuple: _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase = init_image.resize((7_68, 5_12) ) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _lowerCAmelCase = """BAAI/AltDiffusion""" _lowerCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
220
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) def lowercase_ ( _A : List[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase__ : Dict = [144, 192, 240] lowerCamelCase__ : List[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase__ : Union[str, Any] = [96, 120, 144] lowerCamelCase__ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase__ : Optional[int] = [64, 80, 96] lowerCamelCase__ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase__ : str = 0.05 lowerCamelCase__ : int = 2.0 if mobilevit_name.startswith("deeplabv3_" ): lowerCamelCase__ : int = 512 lowerCamelCase__ : int = 16 lowerCamelCase__ : Any = 21 lowerCamelCase__ : Union[str, Any] = "pascal-voc-id2label.json" else: lowerCamelCase__ : Dict = 1000 lowerCamelCase__ : Optional[Any] = "imagenet-1k-id2label.json" lowerCamelCase__ : str = "huggingface/label-files" lowerCamelCase__ : List[str] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : List[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase__ : Dict = idalabel lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _A : List[str] , _A : Tuple=False ): """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: lowerCamelCase__ : Any = name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: lowerCamelCase__ : Tuple = name.replace("conv_1." , "conv_stem." ) if ".block." in name: lowerCamelCase__ : List[str] = name.replace(".block." , "." ) if "exp_1x1" in name: lowerCamelCase__ : List[Any] = name.replace("exp_1x1" , "expand_1x1" ) if "red_1x1" in name: lowerCamelCase__ : int = name.replace("red_1x1" , "reduce_1x1" ) if ".local_rep.conv_3x3." in name: lowerCamelCase__ : Dict = name.replace(".local_rep.conv_3x3." , ".conv_kxk." ) if ".local_rep.conv_1x1." in name: lowerCamelCase__ : Union[str, Any] = name.replace(".local_rep.conv_1x1." , ".conv_1x1." ) if ".norm." in name: lowerCamelCase__ : Union[str, Any] = name.replace(".norm." , ".normalization." ) if ".conv." in name: lowerCamelCase__ : Optional[Any] = name.replace(".conv." , ".convolution." ) if ".conv_proj." in name: lowerCamelCase__ : Optional[int] = name.replace(".conv_proj." , ".conv_projection." ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: lowerCamelCase__ : int = name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: lowerCamelCase__ : Optional[Any] = name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: lowerCamelCase__ : Tuple = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: lowerCamelCase__ : List[Any] = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: lowerCamelCase__ : Optional[Any] = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: lowerCamelCase__ : List[Any] = name.replace(F".global_rep.{i}.weight" , ".layernorm.weight" ) if F".global_rep.{i}.bias" in name: lowerCamelCase__ : int = name.replace(F".global_rep.{i}.bias" , ".layernorm.bias" ) if ".global_rep." in name: lowerCamelCase__ : Dict = name.replace(".global_rep." , ".transformer." ) if ".pre_norm_mha.0." in name: lowerCamelCase__ : Union[str, Any] = name.replace(".pre_norm_mha.0." , ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase__ : List[Any] = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: lowerCamelCase__ : List[str] = name.replace(".pre_norm_ffn.0." , ".layernorm_after." ) if ".pre_norm_ffn.1." in name: lowerCamelCase__ : Dict = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: lowerCamelCase__ : List[str] = name.replace(".pre_norm_ffn.4." , ".output.dense." ) if ".transformer." in name: lowerCamelCase__ : Dict = name.replace(".transformer." , ".transformer.layer." ) if ".aspp_layer." in name: lowerCamelCase__ : Dict = name.replace(".aspp_layer." , "." ) if ".aspp_pool." in name: lowerCamelCase__ : Optional[int] = name.replace(".aspp_pool." , "." ) if "seg_head." in name: lowerCamelCase__ : Optional[Any] = name.replace("seg_head." , "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase__ : Union[str, Any] = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." ) if "classifier.fc." in name: lowerCamelCase__ : Optional[Any] = name.replace("classifier.fc." , "classifier." ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase__ : Dict = "mobilevit." + name return name def lowercase_ ( _A : Tuple , _A : str , _A : List[Any]=False ): """simple docstring""" if base_model: lowerCamelCase__ : Optional[int] = "" else: lowerCamelCase__ : Optional[Any] = "mobilevit." for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Tuple = orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": lowerCamelCase__ : Union[str, Any] = key[8:] if "qkv" in key: lowerCamelCase__ : Optional[Any] = key.split("." ) lowerCamelCase__ : List[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase__ : Dict = int(key_split[3] ) lowerCamelCase__ : Optional[Any] = model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) lowerCamelCase__ : Optional[Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase__ : Optional[Any] = ( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: lowerCamelCase__ : Any = val[:dim, :] lowerCamelCase__ : Optional[int] = val[dim : dim * 2, :] lowerCamelCase__ : Any = val[-dim:, :] else: lowerCamelCase__ : List[str] = val[:dim] lowerCamelCase__ : Optional[Any] = val[dim : dim * 2] lowerCamelCase__ : Optional[Any] = val[-dim:] else: lowerCamelCase__ : Dict = val return orig_state_dict def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : int = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def lowercase_ ( _A : Dict , _A : Dict , _A : Optional[int] , _A : Optional[int]=False ): """simple docstring""" lowerCamelCase__ : List[Any] = get_mobilevit_config(__snake_case ) # load original state_dict lowerCamelCase__ : str = torch.load(__snake_case , map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): lowerCamelCase__ : Union[str, Any] = MobileViTForSemanticSegmentation(__snake_case ).eval() else: lowerCamelCase__ : List[Any] = MobileViTForImageClassification(__snake_case ).eval() lowerCamelCase__ : Tuple = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase__ : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase__ : Any = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__ : Tuple = model(**__snake_case ) lowerCamelCase__ : int = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase__ : Any = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase__ : List[str] = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowerCamelCase__ : int = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase__ : Optional[Any] = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase__ : Optional[Any] = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1E-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: lowerCamelCase__ : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) lowerCamelCase__ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization="apple" ) model.push_to_hub(__snake_case , organization="apple" ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\'," " \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : int = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
356
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""ConditionalDetrFeatureExtractor"""] SCREAMING_SNAKE_CASE_ = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableUnCLIPPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 32 lowerCamelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=UpperCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) lowerCamelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL() lowerCamelCase_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def snake_case ( self , UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" if str(UpperCamelCase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ = pipe("anime turle" , generator=UpperCamelCase , output_type="np" ) lowerCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
55
0
import heapq def UpperCamelCase (lowercase_: dict ) -> set[int]: A__ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase_ , [-1 * len(lowercase_ ), (key, value)] ) # chosen_vertices = set of chosen vertices A__ : Any = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A__ : Optional[int] = heapq.heappop(lowercase_ )[1][0] chosen_vertices.add(lowercase_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A__ : Tuple = elem[1][1].index(lowercase_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
362
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> tuple[float, list[float]]: A__ : Tuple = list(range(len(lowercase_ ) ) ) A__ : Union[str, Any] = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ : float = 0 A__ : list[float] = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: A__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
141
0
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=64 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ): """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : str = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = embedding_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : List[str] = scope def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Dict = model(lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = MobileBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = MobileBertForNextSentencePrediction(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertForPreTraining(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , next_sentence_label=lowercase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = MobileBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : List[str] = MobileBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Tuple = MobileBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.num_choices UpperCAmelCase_ : Dict = MobileBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = config_and_inputs UpperCAmelCase_ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = True def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=False ): """simple docstring""" UpperCAmelCase_ : str = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): UpperCAmelCase_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = MobileBertModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) def __a ( __lowerCamelCase ): return torch.tensor( __lowerCamelCase, dtype=torch.long, device=__lowerCamelCase, ) _a = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class A_ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(lowercase_ ) UpperCAmelCase_ : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowercase_ )[0] UpperCAmelCase_ : int = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase_ : List[str] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6E0_7, 8.2_6_9_1_6_5_6E0_4, 1.6_5_2_1_8_3_8E0_5], [-5.7_5_4_1_7_0_4E-0_1, 3.9_0_5_6_0_2_2E0_0, 4.4_0_1_1_5_0_7E0_0], [2.6_0_4_7_3_5_9E0_0, 1.5_6_7_7_6_5_2E0_0, -1.7_3_2_4_1_8_8E-0_1], ] ] , device=lowercase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Tuple = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
61
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase_ = logging.get_logger(__name__) @dataclass class _snake_case ( lowercase__): UpperCamelCase__ : List[Any] =[ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : List[str], **__lowercase : str ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase__ = deprecated_arg[3:] setattr(self, __lowercase, not kwargs.pop(__lowercase ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase__ = kwargs.pop("torchscript", self.torchscript ) lowercase__ = kwargs.pop("torch_xla_tpu_print_metrics", self.torch_xla_tpu_print_metrics ) lowercase__ = kwargs.pop("fp16_opt_level", self.fpaa_opt_level ) super().__init__(**__lowercase ) UpperCamelCase__ : bool =field(default=lowercase__ , metadata={"""help""": """Trace the models using torchscript"""}) UpperCamelCase__ : bool =field(default=lowercase__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""}) UpperCamelCase__ : str =field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def A__ ( self : List[Any] ): requires_backends(self, ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: lowercase__ = torch.device("cpu" ) lowercase__ = 0 elif is_torch_tpu_available(): lowercase__ = xm.xla_device() lowercase__ = 0 else: lowercase__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowercase__ = torch.cuda.device_count() return device, n_gpu @property def A__ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def A__ ( self : List[str] ): requires_backends(self, ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def A__ ( self : Union[str, Any] ): requires_backends(self, ["torch"] ) return self._setup_devices[0] @property def A__ ( self : int ): requires_backends(self, ["torch"] ) return self._setup_devices[1] @property def A__ ( self : int ): return self.n_gpu > 0
224
from graphs.minimum_spanning_tree_kruskal import kruskal def __lowerCAmelCase ( ): lowercase__ = 9 lowercase__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase__ = kruskal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(SCREAMING_SNAKE_CASE_ ) == sorted(SCREAMING_SNAKE_CASE_ )
224
1
class _lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = "" lowerCamelCase__ : Dict = "" lowerCamelCase__ : List[str] = [] def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowerCamelCase__ : Dict = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowerCamelCase__ : Union[str, Any] = self.__min_dist_top_down_dp(__lowerCamelCase , n - 1 ) lowerCamelCase__ : int = self.__min_dist_top_down_dp(m - 1 , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowerCamelCase__ : Optional[int] = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Optional[int] = worda lowerCamelCase__ : List[Any] = worda lowerCamelCase__ : Tuple = [[-1 for _ in range(len(__lowerCamelCase ) )] for _ in range(len(__lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(__lowerCamelCase ) - 1 , len(__lowerCamelCase ) - 1 ) def lowerCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Tuple = worda lowerCamelCase__ : Dict = worda lowerCamelCase__ : Optional[int] = len(__lowerCamelCase ) lowerCamelCase__ : Tuple = len(__lowerCamelCase ) lowerCamelCase__ : Any = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowerCamelCase__ : Tuple = j elif j == 0: # second string is empty lowerCamelCase__ : List[str] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowerCamelCase__ : List[Any] = self.dp[i - 1][j - 1] else: lowerCamelCase__ : Any = self.dp[i][j - 1] lowerCamelCase__ : Optional[int] = self.dp[i - 1][j] lowerCamelCase__ : int = self.dp[i - 1][j - 1] lowerCamelCase__ : Dict = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": A : Any = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() A : List[Any] = input("Enter the first string: ").strip() A : List[Any] = input("Enter the second string: ").strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
184
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__) class _lowercase ( lowercase__): """simple docstring""" A__ = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True}) A__ = Features({"audio": Audio()}) A__ = Features({"transcription": Value("string")}) A__ = "audio" A__ = "transcription" def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , __lowerCamelCase ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) lowerCamelCase__ : Tuple = copy.deepcopy(self ) lowerCamelCase__ : Tuple = self.input_schema.copy() lowerCamelCase__ : Optional[int] = features[self.audio_column] lowerCamelCase__ : int = input_schema return task_template @property def lowerCAmelCase ( self : int ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
184
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE ( _lowercase : dict ) ->tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->XGBClassifier: '''simple docstring''' a : List[Any] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' a : List[str] = load_iris() a, a : Optional[int] = data_handling(_lowercase ) a, a, a, a : Tuple = train_test_split( _lowercase , _lowercase , test_size=0.25 ) a : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data a : Dict = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
79
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 50 ) ->int: '''simple docstring''' a : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
79
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = os.path.join(args.tf_model_dir , '''parameters.json''' ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(open(_A ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): SCREAMING_SNAKE_CASE : int = args.output + '''.pt''' SCREAMING_SNAKE_CASE : str = OrderedDict() with tf.device('''/CPU:0''' ): SCREAMING_SNAKE_CASE : List[str] = tf.train.load_checkpoint(args.tf_model_dir ) SCREAMING_SNAKE_CASE : List[str] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): SCREAMING_SNAKE_CASE : Dict = reader.get_tensor(_A ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): SCREAMING_SNAKE_CASE : List[Any] = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): SCREAMING_SNAKE_CASE : str = 8 SCREAMING_SNAKE_CASE : List[str] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time SCREAMING_SNAKE_CASE : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_A ) elif key_name.startswith('''model/moe''' ): SCREAMING_SNAKE_CASE : List[str] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): SCREAMING_SNAKE_CASE : Tuple = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player SCREAMING_SNAKE_CASE : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(_A ) elif key_name.endswith('''/softmlp/kernel''' ): SCREAMING_SNAKE_CASE : Tuple = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player SCREAMING_SNAKE_CASE : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(_A ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): SCREAMING_SNAKE_CASE : Optional[int] = key_name[-9:-7] for i in range(16 ): SCREAMING_SNAKE_CASE : Optional[Any] = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) SCREAMING_SNAKE_CASE : Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided SCREAMING_SNAKE_CASE : str = torch.tensor(_A ) elif key_name.startswith('''model/mlp''' ): SCREAMING_SNAKE_CASE : List[str] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): SCREAMING_SNAKE_CASE : Any = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player SCREAMING_SNAKE_CASE : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : List[str] = torch.tensor(_A ) elif key_name.endswith('''/p1/bias''' ): SCREAMING_SNAKE_CASE : List[str] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player SCREAMING_SNAKE_CASE : int = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : int = torch.tensor(_A ) elif key_name.endswith('''/p2/kernel''' ): SCREAMING_SNAKE_CASE : str = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player SCREAMING_SNAKE_CASE : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_A ) elif key_name.endswith('''/p2/bias''' ): SCREAMING_SNAKE_CASE : str = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player SCREAMING_SNAKE_CASE : Any = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : int = torch.tensor(_A ) elif key_name.startswith('''model/ln''' ): SCREAMING_SNAKE_CASE : Optional[Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): SCREAMING_SNAKE_CASE : int = '''model.blocks.%d.feed_forward.norm.bias''' % player SCREAMING_SNAKE_CASE : Tuple = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : Any = torch.tensor(_A ) elif key_name.endswith('''/g''' ): SCREAMING_SNAKE_CASE : Dict = '''model.blocks.%d.feed_forward.norm.weight''' % player SCREAMING_SNAKE_CASE : List[Any] = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : str = torch.tensor(_A ) elif key_name.startswith('''model/att''' ): SCREAMING_SNAKE_CASE : Optional[int] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): SCREAMING_SNAKE_CASE : Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum SCREAMING_SNAKE_CASE : List[str] = state[:, 0, :, :] SCREAMING_SNAKE_CASE : Optional[Any] = state[:, 1, :, :] SCREAMING_SNAKE_CASE : int = state[:, 2, :, :] SCREAMING_SNAKE_CASE : Optional[int] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : List[str] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : int = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player SCREAMING_SNAKE_CASE : str = torch.tensor(_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player SCREAMING_SNAKE_CASE : int = torch.tensor(_A ) SCREAMING_SNAKE_CASE : Optional[int] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player SCREAMING_SNAKE_CASE : Dict = torch.tensor(_A ) elif key_name.endswith('''/o/kernel''' ): SCREAMING_SNAKE_CASE : str = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player SCREAMING_SNAKE_CASE : int = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Dict = torch.tensor(_A ) elif key_name.startswith('''model/an''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): SCREAMING_SNAKE_CASE : List[Any] = '''model.blocks.%d.self_attn.norm.bias''' % player SCREAMING_SNAKE_CASE : Tuple = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_A ) elif key_name.endswith('''/g''' ): SCREAMING_SNAKE_CASE : int = '''model.blocks.%d.self_attn.norm.weight''' % player SCREAMING_SNAKE_CASE : Optional[Any] = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : int = torch.tensor(_A ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): SCREAMING_SNAKE_CASE : List[Any] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] SCREAMING_SNAKE_CASE : Dict = '''model.%s.weight''' % nlayer SCREAMING_SNAKE_CASE : int = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A ) if key_name.startswith('''model/wte''' ): SCREAMING_SNAKE_CASE : int = '''lm_head.weight''' SCREAMING_SNAKE_CASE : Optional[Any] = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_A ) elif key_name.startswith('''model/wob''' ): SCREAMING_SNAKE_CASE : Tuple = '''final_logits_bias''' SCREAMING_SNAKE_CASE : Any = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE : Any = state.reshape((1, -1) ) SCREAMING_SNAKE_CASE : int = torch.tensor(_A ) elif key_name == "model/dense/kernel": SCREAMING_SNAKE_CASE : Tuple = '''model.last_project.weight''' SCREAMING_SNAKE_CASE : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(_A ) elif key_name == "model/dense_1/bias": SCREAMING_SNAKE_CASE : Optional[int] = '''model.last_project.bias''' SCREAMING_SNAKE_CASE : int = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_A ) torch.save(_A , args.output ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') a__ : str = parser.parse_args() convert_tf_gptsan_to_pt(args)
313
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__( unittest.TestCase ): '''simple docstring''' @property def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a_ ( self): """simple docstring""" lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = PNDMScheduler() lowerCAmelCase = PNDMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase) pndm.to(__lowerCAmelCase) pndm.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = pndm(generator=__lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""").images lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = pndm(generator=__lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=__lowerCAmelCase)[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = """google/ddpm-cifar10-32""" lowerCAmelCase = UNetaDModel.from_pretrained(__lowerCAmelCase) lowerCAmelCase = PNDMScheduler() lowerCAmelCase = PNDMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase) pndm.to(__lowerCAmelCase) pndm.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = pndm(generator=__lowerCAmelCase , output_type="""numpy""").images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
272
0
from string import ascii_uppercase lowerCAmelCase : List[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def a__ ( snake_case__ , snake_case__ ) -> str: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("""int() can\'t convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("""\'str\' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("""\'float\' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowerCamelCase = """""" lowerCamelCase = 0 lowerCamelCase = 0 while div != 1: lowerCamelCase , lowerCamelCase = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: lowerCamelCase = ALPHABET_VALUES[str(UpperCamelCase__ )] else: lowerCamelCase = str(UpperCamelCase__ ) new_value += actual_value lowerCamelCase = num // base lowerCamelCase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
367
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , use_stable_embedding=_a , ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): """simple docstring""" lowerCamelCase = OpenLlamaModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a ) lowerCamelCase = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = True lowerCamelCase = OpenLlamaModel(_a ) model.to(_a ) model.eval() lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) lowerCamelCase = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = OpenLlamaForCausalLM(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" lowerCamelCase = True lowerCamelCase = True lowerCamelCase = OpenLlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] lowerCamelCase = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = OpenLlamaModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase = type self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(_a ) lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase = OpenLlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = """single_label_classification""" lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(_a ) lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase = OpenLlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = """multi_label_classification""" lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(_a ) lowerCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase = OpenLlamaForSequenceClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = ids_tensor([1, 10] , config.vocab_size ) lowerCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase = OpenLlamaModel(_a ) original_model.to(_a ) original_model.eval() lowerCamelCase = original_model(_a ).last_hidden_state lowerCamelCase = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase = {"""type""": scaling_type, """factor""": 10.0} lowerCamelCase = OpenLlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() lowerCamelCase = scaled_model(_a ).last_hidden_state lowerCamelCase = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) )
168
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: List[Any] = logging.get_logger(__name__) A__: List[str] = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """segformer""" def __init__( self: Optional[Any] , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: Any=[2, 2, 2, 2] , __lowerCamelCase: Tuple=[8, 4, 2, 1] , __lowerCamelCase: Dict=[32, 64, 160, 256] , __lowerCamelCase: Optional[int]=[7, 3, 3, 3] , __lowerCamelCase: Optional[int]=[4, 2, 2, 2] , __lowerCamelCase: List[Any]=[1, 2, 5, 8] , __lowerCamelCase: List[Any]=[4, 4, 4, 4] , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Any=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Optional[Any]=1e-6 , __lowerCamelCase: Dict=256 , __lowerCamelCase: Tuple=255 , **__lowerCamelCase: Optional[Any] , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , __lowerCamelCase , ) UpperCamelCase__: Optional[int] = num_channels UpperCamelCase__: str = num_encoder_blocks UpperCamelCase__: Optional[Any] = depths UpperCamelCase__: Optional[Any] = sr_ratios UpperCamelCase__: Dict = hidden_sizes UpperCamelCase__: Optional[Any] = patch_sizes UpperCamelCase__: Any = strides UpperCamelCase__: Optional[int] = mlp_ratios UpperCamelCase__: str = num_attention_heads UpperCamelCase__: int = hidden_act UpperCamelCase__: str = hidden_dropout_prob UpperCamelCase__: Any = attention_probs_dropout_prob UpperCamelCase__: List[str] = classifier_dropout_prob UpperCamelCase__: Union[str, Any] = initializer_range UpperCamelCase__: Tuple = drop_path_rate UpperCamelCase__: Optional[Any] = layer_norm_eps UpperCamelCase__: List[Any] = decoder_hidden_size UpperCamelCase__: Optional[int] = kwargs.get("reshape_last_stage" , __lowerCamelCase ) UpperCamelCase__: List[str] = semantic_loss_ignore_index class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return 1e-4 @property def UpperCAmelCase_ ( self: str ): '''simple docstring''' return 12
149
def lowerCAmelCase_ ( A_ ,A_): if b == 0: return 1 if (b % 2) == 0: return actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) else: return a * actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) def lowerCAmelCase_ ( A_ ,A_): if b < 0: return 1 / actual_power(A_ ,A_) return actual_power(A_ ,A_) if __name__ == "__main__": print(power(-2, -3))
149
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( _UpperCamelCase , unittest.TestCase): __UpperCamelCase = FunnelTokenizer __UpperCamelCase = FunnelTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def a_ ( self : List[Any] ) -> Tuple: '''simple docstring''' super().setUp() _A = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def a_ ( self : Optional[int] , **a__ : List[Any] ) -> Optional[int]: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self : Tuple , **a__ : Optional[int] ) -> List[Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self : Any , a__ : Optional[int] ) -> int: '''simple docstring''' _A = "UNwant\u00E9d,running" _A = "unwanted, running" return input_text, output_text def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' _A = self.tokenizer_class(self.vocab_file ) _A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [7, 4, 5, 10, 8, 9] ) def a_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _A = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: _A = tokenizer("UNwant\u00E9d,running" ) _A = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) _A = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
163
"""simple docstring""" def a__ ( __lowercase ) -> int: assert ( isinstance(__lowercase , __lowercase ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 _A , _A = 1, 1 for _ in range(number_of_steps - 1 ): _A , _A = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
163
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCamelCase = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCAmelCase ( unittest.TestCase ,A_ ): def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' snake_case : Optional[Any] = load_tool("text-question-answering" ) self.tool.setup() snake_case : str = load_tool("text-question-answering" , remote=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : Tuple = self.tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = self.remote_tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Dict = self.tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : List[Any] = self.remote_tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
59
def _a ( SCREAMING_SNAKE_CASE : int = 1000000 ): """simple docstring""" UpperCamelCase__ : Any = set(range(3 , SCREAMING_SNAKE_CASE , 2 ) ) primes.add(2 ) for p in range(3 , SCREAMING_SNAKE_CASE , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) UpperCamelCase__ : Union[str, Any] = [float(SCREAMING_SNAKE_CASE ) for n in range(limit + 1 )] for p in primes: for n in range(SCREAMING_SNAKE_CASE , limit + 1 , SCREAMING_SNAKE_CASE ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
146
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : List[Any] = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
233
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list: if len(_SCREAMING_SNAKE_CASE ) <= 1: return [tuple(_SCREAMING_SNAKE_CASE )] snake_case_ = [] def generate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _SCREAMING_SNAKE_CASE ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case_ , snake_case_ = arr[k - 1], arr[i] else: # k is odd snake_case_ , snake_case_ = arr[k - 1], arr[0] generate(k - 1 , _SCREAMING_SNAKE_CASE ) generate(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : str = [int(item) for item in user_input.split(',')] print(heaps(arr))
233
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _a : List[str]= logging.get_logger(__name__) # General docstring _a : Optional[Any]= "ResNetConfig" # Base docstring _a : List[str]= "microsoft/resnet-50" _a : Tuple= [1, 2_048, 7, 7] # Image classification docstring _a : Optional[Any]= "microsoft/resnet-50" _a : int= "tiger cat" _a : int= [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase ( nn.Module ): def __init__(self : Optional[Any] , _A : int , _A : int , _A : int = 3 , _A : int = 1 , _A : str = "relu") -> List[str]: super().__init__() __snake_case : Optional[int] = nn.Convad( _A , _A , kernel_size=_A , stride=_A , padding=kernel_size // 2 , bias=_A) __snake_case : Optional[int] = nn.BatchNormad(_A) __snake_case : Optional[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def _lowercase (self : List[str] , _A : Tensor) -> Tensor: __snake_case : Optional[int] = self.convolution(_A) __snake_case : List[str] = self.normalization(_A) __snake_case : int = self.activation(_A) return hidden_state class UpperCamelCase ( nn.Module ): def __init__(self : Any , _A : ResNetConfig) -> List[str]: super().__init__() __snake_case : int = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) __snake_case : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) __snake_case : int = config.num_channels def _lowercase (self : int , _A : Tensor) -> Tensor: __snake_case : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') __snake_case : Optional[int] = self.embedder(_A) __snake_case : List[Any] = self.pooler(_A) return embedding class UpperCamelCase ( nn.Module ): def __init__(self : Dict , _A : int , _A : int , _A : int = 2) -> Tuple: super().__init__() __snake_case : Tuple = nn.Convad(_A , _A , kernel_size=1 , stride=_A , bias=_A) __snake_case : List[Any] = nn.BatchNormad(_A) def _lowercase (self : int , _A : Tensor) -> Tensor: __snake_case : Union[str, Any] = self.convolution(_A) __snake_case : Any = self.normalization(_A) return hidden_state class UpperCamelCase ( nn.Module ): def __init__(self : List[Any] , _A : int , _A : int , _A : int = 1 , _A : str = "relu") -> List[str]: super().__init__() __snake_case : Any = in_channels != out_channels or stride != 1 __snake_case : List[str] = ( ResNetShortCut(_A , _A , stride=_A) if should_apply_shortcut else nn.Identity() ) __snake_case : Tuple = nn.Sequential( ResNetConvLayer(_A , _A , stride=_A) , ResNetConvLayer(_A , _A , activation=_A) , ) __snake_case : List[Any] = ACTaFN[activation] def _lowercase (self : List[Any] , _A : Tuple) -> List[str]: __snake_case : Optional[Any] = hidden_state __snake_case : Optional[int] = self.layer(_A) __snake_case : Any = self.shortcut(_A) hidden_state += residual __snake_case : int = self.activation(_A) return hidden_state class UpperCamelCase ( nn.Module ): def __init__(self : Optional[Any] , _A : int , _A : int , _A : int = 1 , _A : str = "relu" , _A : int = 4) -> Any: super().__init__() __snake_case : Tuple = in_channels != out_channels or stride != 1 __snake_case : Any = out_channels // reduction __snake_case : Tuple = ( ResNetShortCut(_A , _A , stride=_A) if should_apply_shortcut else nn.Identity() ) __snake_case : Optional[int] = nn.Sequential( ResNetConvLayer(_A , _A , kernel_size=1) , ResNetConvLayer(_A , _A , stride=_A) , ResNetConvLayer(_A , _A , kernel_size=1 , activation=_A) , ) __snake_case : Dict = ACTaFN[activation] def _lowercase (self : List[str] , _A : str) -> Dict: __snake_case : Optional[int] = hidden_state __snake_case : int = self.layer(_A) __snake_case : Optional[int] = self.shortcut(_A) hidden_state += residual __snake_case : Dict = self.activation(_A) return hidden_state class UpperCamelCase ( nn.Module ): def __init__(self : Dict , _A : ResNetConfig , _A : int , _A : int , _A : int = 2 , _A : int = 2 , ) -> Any: super().__init__() __snake_case : List[str] = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer __snake_case : Tuple = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_A , _A , stride=_A , activation=config.hidden_act) , *[layer(_A , _A , activation=config.hidden_act) for _ in range(depth - 1)] , ) def _lowercase (self : Union[str, Any] , _A : Tensor) -> Tensor: __snake_case : Any = input for layer in self.layers: __snake_case : Union[str, Any] = layer(_A) return hidden_state class UpperCamelCase ( nn.Module ): def __init__(self : str , _A : ResNetConfig) -> Optional[Any]: super().__init__() __snake_case : Tuple = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) __snake_case : Any = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(_A , config.depths[1:]): self.stages.append(ResNetStage(_A , _A , _A , depth=_A)) def _lowercase (self : str , _A : Tensor , _A : bool = False , _A : bool = True) -> BaseModelOutputWithNoAttention: __snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case : Dict = hidden_states + (hidden_state,) __snake_case : List[Any] = stage_module(_A) if output_hidden_states: __snake_case : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=_A , hidden_states=_A , ) class UpperCamelCase ( lowercase ): UpperCAmelCase : str = ResNetConfig UpperCAmelCase : Dict = """resnet""" UpperCAmelCase : List[str] = """pixel_values""" UpperCAmelCase : str = True def _lowercase (self : Tuple , _A : Optional[int]) -> Union[str, Any]: if isinstance(_A , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu') elif isinstance(_A , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def _lowercase (self : Dict , _A : List[str] , _A : Union[str, Any]=False) -> List[Any]: if isinstance(_A , _A): __snake_case : int = value _a : Tuple= R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _a : str= R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , lowercase , ) class UpperCamelCase ( lowercase ): def __init__(self : Dict , _A : List[Any]) -> List[str]: super().__init__(_A) __snake_case : Any = config __snake_case : Optional[int] = ResNetEmbeddings(_A) __snake_case : Any = ResNetEncoder(_A) __snake_case : Optional[int] = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase (self : str , _A : Tensor , _A : Optional[bool] = None , _A : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: __snake_case : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : Dict = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : int = self.embedder(_A) __snake_case : Optional[int] = self.encoder( _A , output_hidden_states=_A , return_dict=_A) __snake_case : Union[str, Any] = encoder_outputs[0] __snake_case : Optional[Any] = self.pooler(_A) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A , pooler_output=_A , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowercase , ) class UpperCamelCase ( lowercase ): def __init__(self : Dict , _A : str) -> Union[str, Any]: super().__init__(_A) __snake_case : Dict = config.num_labels __snake_case : Optional[Any] = ResNetModel(_A) # classification head __snake_case : Tuple = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase (self : List[str] , _A : Optional[torch.FloatTensor] = None , _A : Optional[torch.LongTensor] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Dict = self.resnet(_A , output_hidden_states=_A , return_dict=_A) __snake_case : Tuple = outputs.pooler_output if return_dict else outputs[1] __snake_case : Optional[int] = self.classifier(_A) __snake_case : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case : Any = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case : Union[str, Any] = 'single_label_classification' else: __snake_case : List[Any] = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case : Tuple = MSELoss() if self.num_labels == 1: __snake_case : Any = loss_fct(logits.squeeze() , labels.squeeze()) else: __snake_case : str = loss_fct(_A , _A) elif self.config.problem_type == "single_label_classification": __snake_case : Any = CrossEntropyLoss() __snake_case : Tuple = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __snake_case : Optional[Any] = BCEWithLogitsLoss() __snake_case : Tuple = loss_fct(_A , _A) if not return_dict: __snake_case : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_A , logits=_A , hidden_states=outputs.hidden_states) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , lowercase , ) class UpperCamelCase ( lowercase , lowercase ): def __init__(self : Dict , _A : List[str]) -> Dict: super().__init__(_A) super()._init_backbone(_A) __snake_case : List[Any] = [config.embedding_size] + config.hidden_sizes __snake_case : List[str] = ResNetEmbeddings(_A) __snake_case : Optional[Any] = ResNetEncoder(_A) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A) @replace_return_docstrings(output_type=_A , config_class=_CONFIG_FOR_DOC) def _lowercase (self : Tuple , _A : Tensor , _A : Optional[bool] = None , _A : Optional[bool] = None) -> BackboneOutput: __snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict __snake_case : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case : List[Any] = self.embedder(_A) __snake_case : Any = self.encoder(_A , output_hidden_states=_A , return_dict=_A) __snake_case : Union[str, Any] = outputs.hidden_states __snake_case : List[Any] = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __snake_case : Union[str, Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_A , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_A , )
172
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """Speech2TextFeatureExtractor""" UpperCAmelCase__ = """Speech2TextTokenizer""" def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ) -> str: super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = self.feature_extractor lowerCamelCase__ : str = False def __call__( self : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase , **UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : int = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : Any = kwargs.pop('audio' , UpperCAmelCase ) lowerCamelCase__ : int = kwargs.pop('sampling_rate' , UpperCAmelCase ) lowerCamelCase__ : List[str] = kwargs.pop('text' , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : str = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : int = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) if text is not None: lowerCamelCase__ : List[str] = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : str = encodings['input_ids'] return inputs def A_ ( self : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> Dict: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> List[Any]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @contextmanager def A_ ( self : List[Any] ) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : Dict = True lowerCamelCase__ : Dict = self.tokenizer yield lowerCamelCase__ : Union[str, Any] = self.feature_extractor lowerCamelCase__ : List[str] = False
45
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> float: if digit_amount > 0: return round(number - int(_UpperCAmelCase ) , _UpperCAmelCase ) return number - int(_UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
45
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case=sys.maxsize ): """simple docstring""" _lowerCAmelCase = """bilinear""" _lowerCAmelCase = max_size _lowerCAmelCase = short_edge_length def __call__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [] for img in imgs: _lowerCAmelCase , _lowerCAmelCase = img.shape[:2] # later: provide list and randomly choose index for resize _lowerCAmelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _lowerCAmelCase = size * 1.0 / min(_snake_case , _snake_case ) if h < w: _lowerCAmelCase , _lowerCAmelCase = size, scale * w else: _lowerCAmelCase , _lowerCAmelCase = scale * h, size if max(_snake_case , _snake_case ) > self.max_size: _lowerCAmelCase = self.max_size * 1.0 / max(_snake_case , _snake_case ) _lowerCAmelCase = newh * scale _lowerCAmelCase = neww * scale _lowerCAmelCase = int(neww + 0.5 ) _lowerCAmelCase = int(newh + 0.5 ) if img.dtype == np.uinta: _lowerCAmelCase = Image.fromarray(_snake_case ) _lowerCAmelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _lowerCAmelCase = np.asarray(_snake_case ) else: _lowerCAmelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _lowerCAmelCase = nn.functional.interpolate( _snake_case , (newh, neww) , mode=self.interp_method , align_corners=_snake_case ).squeeze(0 ) img_augs.append(_snake_case ) return img_augs class __lowerCAmelCase : def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _lowerCAmelCase = cfg.INPUT.FORMAT _lowerCAmelCase = cfg.SIZE_DIVISIBILITY _lowerCAmelCase = cfg.PAD_VALUE _lowerCAmelCase = cfg.INPUT.MAX_SIZE_TEST _lowerCAmelCase = cfg.MODEL.DEVICE _lowerCAmelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowerCAmelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowerCAmelCase = lambda _snake_case : (x - self.pixel_mean) / self.pixel_std def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = tuple(max(_snake_case ) for s in zip(*[img.shape for img in images] ) ) _lowerCAmelCase = [im.shape[-2:] for im in images] _lowerCAmelCase = [ nn.functional.pad( _snake_case , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_snake_case , _snake_case ) ] return torch.stack(_snake_case ), torch.tensor(_snake_case ) def __call__( self , _snake_case , _snake_case=False ): """simple docstring""" with torch.no_grad(): if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase = [images] if single_image: assert len(_snake_case ) == 1 for i in range(len(_snake_case ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_snake_case , images.pop(_snake_case ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _snake_case , torch.as_tensor(img_tensorize(images.pop(_snake_case ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _lowerCAmelCase = torch.tensor([im.shape[:2] for im in images] ) _lowerCAmelCase = self.aug(_snake_case ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _lowerCAmelCase = [self.normalizer(_snake_case ) for x in images] # now pad them to do the following operations _lowerCAmelCase , _lowerCAmelCase = self.pad(_snake_case ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _lowerCAmelCase = torch.true_divide(_snake_case , _snake_case ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" _lowerCAmelCase , _lowerCAmelCase = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
82
def _UpperCAmelCase ( snake_case = 50 ): """simple docstring""" _lowerCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
82
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a : int = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') a : List[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a : Any = sorted(arg_to_scheduler.keys()) a : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="base", SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> List[Any]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = 0 UpperCAmelCase_: int = Path(self.hparams.output_dir ) UpperCAmelCase_: List[Any] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase_: int = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"""num_labels""": num_labels} if num_labels is not None else {}), cache_dir=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) else: UpperCAmelCase_: PretrainedConfig = config UpperCAmelCase_: Union[str, Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): assert hasattr(self.config, SCREAMING_SNAKE_CASE_ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config, SCREAMING_SNAKE_CASE_, getattr(self.hparams, SCREAMING_SNAKE_CASE_ ) ) if tokenizer is None: UpperCAmelCase_: Optional[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=SCREAMING_SNAKE_CASE_, ) else: UpperCAmelCase_: PreTrainedTokenizer = tokenizer UpperCAmelCase_: Tuple = MODEL_MODES[mode] if model is None: UpperCAmelCase_: int = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ), config=self.config, cache_dir=SCREAMING_SNAKE_CASE_, ) else: UpperCAmelCase_: List[str] = model def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: int = self.model_type.from_pretrained(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Union[str, Any] = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase_: int = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) UpperCAmelCase_: Dict = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def __snake_case (self ) -> str: UpperCAmelCase_: Any = self.model UpperCAmelCase_: Any = ["""bias""", """LayerNorm.weight"""] UpperCAmelCase_: int = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase_: Any = Adafactor( SCREAMING_SNAKE_CASE_, lr=self.hparams.learning_rate, scale_parameter=SCREAMING_SNAKE_CASE_, relative_step=SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: Dict = AdamW( SCREAMING_SNAKE_CASE_, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) UpperCAmelCase_: str = optimizer UpperCAmelCase_: Tuple = self.get_lr_scheduler() return [optimizer], [scheduler] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: return self.validation_step(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return self.validation_end(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> int: UpperCAmelCase_: Union[str, Any] = max(1, self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase_: Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Any: if stage == "test": UpperCAmelCase_: Optional[int] = len(self.test_dataloader().dataset ) else: UpperCAmelCase_: Any = self.get_dataloader("""train""", self.hparams.train_batch_size, shuffle=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = len(self.train_dataloader().dataset ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ) -> str: raise NotImplementedError("""You must implement this for your task""" ) def __snake_case (self ) -> Union[str, Any]: return self.train_loader def __snake_case (self ) -> Dict: return self.get_dataloader("""dev""", self.hparams.eval_batch_size, shuffle=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: return self.get_dataloader("""test""", self.hparams.eval_batch_size, shuffle=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Dict: return os.path.join( self.hparams.data_dir, """cached_{}_{}_{}""".format( SCREAMING_SNAKE_CASE_, list(filter(SCREAMING_SNAKE_CASE_, self.hparams.model_name_or_path.split("""/""" ) ) ).pop(), str(self.hparams.max_seq_length ), ), ) @pl.utilities.rank_zero_only def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: Tuple = self.output_dir.joinpath("""best_tfmr""" ) UpperCAmelCase_: Union[str, Any] = self.step_count self.model.save_pretrained(SCREAMING_SNAKE_CASE_ ) self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) @staticmethod def __snake_case (SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: parser.add_argument( """--model_name_or_path""", default=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_, required=SCREAMING_SNAKE_CASE_, help="""Path to pretrained model or model identifier from huggingface.co/models""", ) parser.add_argument( """--config_name""", default="""""", type=SCREAMING_SNAKE_CASE_, help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""", default=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--cache_dir""", default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / """test_run""" / """cache""" ), type=SCREAMING_SNAKE_CASE_, help="""Where do you want to store the pre-trained models downloaded from huggingface.co""", ) parser.add_argument( """--encoder_layerdrop""", type=SCREAMING_SNAKE_CASE_, help="""Encoder layer dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--decoder_layerdrop""", type=SCREAMING_SNAKE_CASE_, help="""Decoder layer dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--dropout""", type=SCREAMING_SNAKE_CASE_, help="""Dropout probability (Optional). Goes into model.config""", ) parser.add_argument( """--attention_dropout""", type=SCREAMING_SNAKE_CASE_, help="""Attention dropout probability (Optional). Goes into model.config""", ) parser.add_argument("""--learning_rate""", default=5E-5, type=SCREAMING_SNAKE_CASE_, help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""", default="""linear""", choices=SCREAMING_SNAKE_CASE_, metavar=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_, help="""Learning rate scheduler""", ) parser.add_argument("""--weight_decay""", default=0.0, type=SCREAMING_SNAKE_CASE_, help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""", default=1E-8, type=SCREAMING_SNAKE_CASE_, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""", default=0, type=SCREAMING_SNAKE_CASE_, help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""", default=4, type=SCREAMING_SNAKE_CASE_, help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""", dest="""max_epochs""", default=3, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--train_batch_size""", default=32, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--eval_batch_size""", default=32, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--adafactor""", action="""store_true""" ) class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(SCREAMING_SNAKE_CASE_ ) class _a ( pl.Callback ): def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: List[str] = trainer.lr_schedulers[0]["""scheduler"""] UpperCAmelCase_: Tuple = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: rank_zero_info("""***** Validation results *****""" ) UpperCAmelCase_: Union[str, Any] = trainer.callback_metrics # Log results for key in sorted(SCREAMING_SNAKE_CASE_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(SCREAMING_SNAKE_CASE_, str(metrics[key] ) ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: rank_zero_info("""***** Test results *****""" ) UpperCAmelCase_: int = trainer.callback_metrics # Log and save results to file UpperCAmelCase_: List[str] = os.path.join(pl_module.hparams.output_dir, """test_results.txt""" ) with open(SCREAMING_SNAKE_CASE_, """w""" ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(SCREAMING_SNAKE_CASE_, str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(SCREAMING_SNAKE_CASE_, str(metrics[key] ) ) ) def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Tuple ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(lowerCAmelCase__ ).parent / """test_run""" / """model_checkpoints""" ) , type=lowerCAmelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowerCAmelCase__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=lowerCAmelCase__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=lowerCAmelCase__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=lowerCAmelCase__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=4_2 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(lowerCAmelCase__ ).parent / """test_run""" / """dummy-train-data""" ) , type=lowerCAmelCase__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def lowerCAmelCase_ (lowerCAmelCase__: BaseTransformer , lowerCAmelCase__: argparse.Namespace , lowerCAmelCase__: List[Any]=None , lowerCAmelCase__: List[Any]=True , lowerCAmelCase__: Optional[int]=[] , lowerCAmelCase__: List[str]=None , lowerCAmelCase__: Optional[Any]=None , **lowerCAmelCase__: Dict , ): """simple docstring""" pl.seed_everything(args.seed ) # init model UpperCAmelCase_: Optional[Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase_: Optional[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: UpperCAmelCase_: str = LoggingCallback() UpperCAmelCase_: Optional[int] = {} if args.fpaa: UpperCAmelCase_: Optional[Any] = 1_6 if args.gpus > 1: UpperCAmelCase_: Any = """auto""" UpperCAmelCase_: str = """ddp""" UpperCAmelCase_: Tuple = args.accumulate_grad_batches UpperCAmelCase_: Dict = None UpperCAmelCase_: Any = """auto""" UpperCAmelCase_: List[str] = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
82
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=64, ) -> Union[str, Any]: UpperCAmelCase_: int = parent UpperCAmelCase_: Tuple = batch_size UpperCAmelCase_: int = is_training UpperCAmelCase_: Any = use_auxiliary_loss UpperCAmelCase_: str = num_queries UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: Union[str, Any] = min_size UpperCAmelCase_: Optional[Any] = max_size UpperCAmelCase_: Tuple = num_labels UpperCAmelCase_: Union[str, Any] = hidden_dim UpperCAmelCase_: int = hidden_dim def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = torch.ones([self.batch_size, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() UpperCAmelCase_: Optional[int] = (torch.rand((self.batch_size, self.num_labels), device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() UpperCAmelCase_: Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case (self ) -> Any: UpperCAmelCase_: Any = MaskaFormerConfig( hidden_size=self.hidden_dim, ) UpperCAmelCase_: Any = self.num_queries UpperCAmelCase_: Dict = self.num_labels UpperCAmelCase_: Dict = [1, 1, 1, 1] UpperCAmelCase_: int = self.num_channels UpperCAmelCase_: Union[str, Any] = 64 UpperCAmelCase_: List[Any] = 128 UpperCAmelCase_: Optional[Any] = self.hidden_dim UpperCAmelCase_: str = self.hidden_dim UpperCAmelCase_: List[str] = self.hidden_dim return config def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = self.prepare_config_and_inputs() UpperCAmelCase_: Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = output.encoder_hidden_states UpperCAmelCase_: int = output.pixel_decoder_hidden_states UpperCAmelCase_: Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), config.decoder_layers ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: with torch.no_grad(): UpperCAmelCase_: Dict = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Tuple = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_: Dict = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = model( pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} A = False A = False A = False A = False def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = MaskaFormerModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def __snake_case (self ) -> Dict: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def __snake_case (self ) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def __snake_case (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> Any: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Tuple = [*signature.parameters.keys()] UpperCAmelCase_: str = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_: Any = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = (self.model_tester.min_size,) * 2 UpperCAmelCase_: str = { """pixel_values""": torch.randn((2, 3, *size), device=SCREAMING_SNAKE_CASE_ ), """mask_labels""": torch.randn((2, 10, *size), device=SCREAMING_SNAKE_CASE_ ), """class_labels""": torch.zeros(2, 10, device=SCREAMING_SNAKE_CASE_ ).long(), } UpperCAmelCase_: Dict = self.model_tester.get_config() UpperCAmelCase_: Optional[Any] = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = model(**SCREAMING_SNAKE_CASE_, output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def __snake_case (self ) -> Optional[int]: if not self.model_tester.is_training: return UpperCAmelCase_: Union[str, Any] = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = True UpperCAmelCase_: str = True UpperCAmelCase_: Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_: Union[str, Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a : int = 1E-4 def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case (self ) -> Dict: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.default_image_processor UpperCAmelCase_: Optional[Any] = prepare_img() UpperCAmelCase_: str = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Dict = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Tuple = self.default_image_processor UpperCAmelCase_: Dict = prepare_img() UpperCAmelCase_: Any = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: int = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits UpperCAmelCase_: int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_: Optional[Any] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCAmelCase_: int = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits UpperCAmelCase_: Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_: Any = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Dict = self.default_image_processor UpperCAmelCase_: str = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="""pt""", ) UpperCAmelCase_: int = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""mask_labels"""]] UpperCAmelCase_: int = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
82
1
'''simple docstring''' def _A (lowerCAmelCase__ :list[int] ) -> Union[str, Any]: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) _a = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': 512, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = LxmertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Any = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : str = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
254
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' UpperCamelCase__ : int = parent UpperCamelCase__ : Union[str, Any] = 13 UpperCamelCase__ : Optional[Any] = 7 UpperCamelCase__ : str = True UpperCamelCase__ : List[Any] = True UpperCamelCase__ : Dict = False UpperCamelCase__ : int = True UpperCamelCase__ : Tuple = 99 UpperCamelCase__ : Tuple = 32 UpperCamelCase__ : int = 2 UpperCamelCase__ : List[str] = 4 UpperCamelCase__ : Union[str, Any] = 37 UpperCamelCase__ : Tuple = "gelu" UpperCamelCase__ : Any = 0.1 UpperCamelCase__ : Optional[int] = 0.1 UpperCamelCase__ : int = 5_12 UpperCamelCase__ : Dict = 16 UpperCamelCase__ : Union[str, Any] = 2 UpperCamelCase__ : List[str] = 0.0_2 UpperCamelCase__ : str = 3 UpperCamelCase__ : Tuple = 4 UpperCamelCase__ : Union[str, Any] = None def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Optional[int] = None if self.use_input_mask: UpperCamelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : List[Any] = None UpperCamelCase__ : str = None UpperCamelCase__ : Tuple = None if self.use_labels: UpperCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = TFDistilBertModel(config=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = [input_ids, input_mask] UpperCamelCase__ : Optional[int] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = TFDistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Any = TFDistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCamelCase__ : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.num_labels UpperCamelCase__ : List[Any] = TFDistilBertForSequenceClassification(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.num_choices UpperCamelCase__ : Union[str, Any] = TFDistilBertForMultipleChoice(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : List[Any] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : str = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCamelCase__ : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ : Any = self.num_labels UpperCamelCase__ : str = TFDistilBertForTokenClassification(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : str = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) : Optional[int] = config_and_inputs UpperCamelCase__ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __a ( A__ , A__ , unittest.TestCase ): _lowerCAmelCase : Optional[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCAmelCase : Optional[Any] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : List[str] = False _lowerCAmelCase : Optional[int] = False def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = TFDistilBertModelTester(self ) UpperCamelCase__ : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , dim=37 ) def __lowercase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE ) @slow def __lowercase ( self : Dict ): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCamelCase__ : Any = TFDistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_tf class __a ( unittest.TestCase ): @slow def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : List[str] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCamelCase__ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ : int = model(SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ : Any = [1, 6, 7_68] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 )
196
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase : str =logging.get_logger(__name__) @add_end_docstrings(A__ ) class __a ( A__ ): def __init__( self : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : List[Any] = {} if "candidate_labels" in kwargs: UpperCamelCase__ : Optional[Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase__ : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ): '''simple docstring''' UpperCamelCase__ : Dict = load_image(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCamelCase__ : Any = candidate_labels UpperCamelCase__ : Dict = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] UpperCamelCase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [text_inputs] return inputs def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = model_inputs.pop("candidate_labels" ) UpperCamelCase__ : List[str] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = text_inputs[0] else: # Batching case. UpperCamelCase__ : Union[str, Any] = text_inputs[0][0] UpperCamelCase__ : Any = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = model_outputs.pop("candidate_labels" ) UpperCamelCase__ : int = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase__ : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCamelCase__ : Optional[Any] = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = [scores] elif self.framework == "tf": UpperCamelCase__ : Optional[Any] = stable_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) UpperCamelCase__ : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) UpperCamelCase__ : Optional[int] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
196
1