code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case__ : List[str] = datasets.load_iris() snake_case__ : Union[str, Any] = np.array(data['''data''']) snake_case__ : Optional[Any] = np.array(data['''target''']) snake_case__ : Optional[Any] = data['''target_names'''] snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = train_test_split(X, y) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict ): return np.linalg.norm(np.array(_snake_case ) - np.array(_snake_case ) ) def _snake_case ( _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Dict=5 ): lowerCAmelCase : Optional[Any] = zip(_snake_case , _snake_case ) # List of distances of all points from the point to be classified lowerCAmelCase : Union[str, Any] = [] for data_point in data: lowerCAmelCase : Any = euclidean_distance(data_point[0] , _snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase : str = [i[1] for i in sorted(_snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase : Optional[Any] = Counter(_snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
60
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: if "model" in orig_key: lowercase__ : Tuple = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: lowercase__ : List[str] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: lowercase__ : Union[str, Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] lowercase__ : List[str] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase__ : Union[str, Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: lowercase__ : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: lowercase__ : Any = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: lowercase__ : List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: lowercase__ : Any = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: lowercase__ : Optional[int] = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: lowercase__ : List[str] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: lowercase__ : int = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: lowercase__ : Optional[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: lowercase__ : Optional[Any] = '''yoso.''' + orig_key return orig_key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowercase__ : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase__ : Tuple = val lowercase__ : Union[str, Any] = orig_state_dict['''cls.predictions.decoder.bias'''] lowercase__ : List[str] = torch.arange(__lowerCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model_state_dict'''] lowercase__ : List[Any] = YosoConfig.from_json_file(__lowerCamelCase ) lowercase__ : List[Any] = YosoForMaskedLM(__lowerCamelCase ) lowercase__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , __lowerCamelCase ) print(model.load_state_dict(__lowerCamelCase ) ) model.eval() model.save_pretrained(__lowerCamelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
16
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = MgpstrTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = {} UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' super().setUp() # fmt: off A__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__)))) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(UpperCAmelCase__) + '''\n''') def SCREAMING_SNAKE_CASE ( self : List[str] , **UpperCAmelCase__ : Optional[Any]) ->Dict: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Any) ->Dict: '''simple docstring''' A__ = '''tester''' A__ = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ = self.get_tokenizers(do_lower_case=UpperCAmelCase__) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}"""): A__ = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token}) A__ = tokenizer.encode([special_token] , add_special_tokens=UpperCAmelCase__) self.assertEqual(len(UpperCAmelCase__) , 1) A__ = tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) self.assertTrue(special_token not in decoded) def SCREAMING_SNAKE_CASE ( self : int) ->Dict: '''simple docstring''' A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}"""): A__ , A__ = self.get_input_output_texts(UpperCAmelCase__) A__ = tokenizer.tokenize(UpperCAmelCase__) A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__) A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__) self.assertNotEqual(len(UpperCAmelCase__) , 0) A__ = tokenizer.decode(UpperCAmelCase__) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) self.assertEqual(text_a.replace(''' ''' , '''''') , UpperCAmelCase__) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''') def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' pass
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCamelCase : Union[str, Any] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=3 ,__UpperCAmelCase=32 ,__UpperCAmelCase=3 ,__UpperCAmelCase=10 ,__UpperCAmelCase=[10, 20, 30, 40] ,__UpperCAmelCase=[1, 1, 2, 1] ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase="relu" ,__UpperCAmelCase=3 ,__UpperCAmelCase=None ,) -> int: lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : int = embeddings_size lowerCAmelCase__ : List[Any] = hidden_sizes lowerCAmelCase__ : Any = depths lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = num_labels lowerCAmelCase__ : Union[str, Any] = scope lowerCAmelCase__ : Optional[int] = len(__lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[Any] = None if self.use_labels: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowerCAmelCase__ : List[str] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: lowerCAmelCase__ : int = TFRegNetModel(config=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,training=__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = self.num_labels lowerCAmelCase__ : Any = TFRegNetForImageClassification(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ,labels=__lowerCamelCase ,training=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() lowerCAmelCase__ : Optional[Any] = config_and_inputs lowerCAmelCase__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowercase : str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __lowercase : List[Any] = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) __lowercase : List[Any] = False __lowercase : Tuple = False __lowercase : Optional[int] = False __lowercase : Dict = False __lowercase : int = False def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Dict = TFRegNetModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,reason="""TF does not support backprop for grouped convolutions on CPU.""" ,) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(__lowerCamelCase ) lowerCAmelCase__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: def check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : List[str] = model_class(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ,training=__lowerCamelCase ) lowerCAmelCase__ : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ : Union[str, Any] = layer_type lowerCAmelCase__ : Dict = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : str = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase={} ): lowerCAmelCase__ : int = model(__lowerCamelCase ,return_dict=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : int = model(__lowerCamelCase ,return_dict=__lowerCamelCase ,**__lowerCamelCase ).to_tuple() def recursive_check(__UpperCAmelCase ,__UpperCAmelCase ): if isinstance(__lowerCamelCase ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase ,__lowerCamelCase ): recursive_check(__lowerCamelCase ,__lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__lowerCamelCase ,__lowerCamelCase ) ) ,msg=( """Tuple and dict output are not equal. Difference:""" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) ,) recursive_check(__lowerCamelCase ,__lowerCamelCase ) for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) lowerCAmelCase__ : int = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : int = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) check_equivalence(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ,return_labels=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ,return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Tuple = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) check_equivalence(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,{"""output_hidden_states""": True} ) lowerCAmelCase__ : Optional[int] = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ,return_labels=__lowerCamelCase ) lowerCAmelCase__ : str = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ,return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,{"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = TFRegNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : int = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(images=__lowerCamelCase ,return_tensors="""tf""" ) # forward pass lowerCAmelCase__ : Dict = model(**__lowerCamelCase ,training=__lowerCamelCase ) # verify the logits lowerCAmelCase__ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,__lowerCamelCase ) lowerCAmelCase__ : int = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1E-4 )
37
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowercase ( snake_case_ : int ) ->Tuple: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def __lowercase ( snake_case_ : str ) ->Dict: '''simple docstring''' for char in word: __A : int = ord(snake_case_ ) if not _is_chinese_char(snake_case_ ): return 0 return 1 def __lowercase ( snake_case_ : List[str] ) ->List[Any]: '''simple docstring''' __A : str = set() for token in tokens: __A : List[Any] = len(snake_case_ ) > 1 and is_chinese(snake_case_ ) if chinese_word: word_set.add(snake_case_ ) __A : Any = list(snake_case_ ) return word_list def __lowercase ( snake_case_ : List[str] ,snake_case_ : set() ) ->Any: '''simple docstring''' if not chinese_word_set: return bert_tokens __A : List[Any] = max([len(snake_case_ ) for w in chinese_word_set] ) __A : List[str] = bert_tokens __A , __A : Any = 0, len(snake_case_ ) while start < end: __A : str = True if is_chinese(bert_word[start] ): __A : int = min(end - start ,snake_case_ ) for i in range(snake_case_ ,1 ,-1 ): __A : Any = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): __A : Any = '''##''' + bert_word[j] __A : Optional[int] = start + i __A : str = False break if single_word: start += 1 return bert_word def __lowercase ( snake_case_ : List[str] ,snake_case_ : LTP ,snake_case_ : BertTokenizer ) ->Dict: '''simple docstring''' __A : Optional[Any] = [] for i in range(0 ,len(snake_case_ ) ,100 ): __A : int = ltp_tokenizer.seg(lines[i : i + 100] )[0] __A : List[Any] = [get_chinese_word(snake_case_ ) for r in res] ltp_res.extend(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) __A : Any = [] for i in range(0 ,len(snake_case_ ) ,100 ): __A : Tuple = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=snake_case_ ,truncation=snake_case_ ,max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(snake_case_ ) == len(snake_case_ ) __A : Optional[int] = [] for input_ids, chinese_word in zip(snake_case_ ,snake_case_ ): __A : List[str] = [] for id in input_ids: __A : Tuple = bert_tokenizer._convert_id_to_token(snake_case_ ) input_tokens.append(snake_case_ ) __A : Optional[int] = add_sub_symbol(snake_case_ ,snake_case_ ) __A : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case_ ): if token[:2] == "##": __A : Optional[Any] = token[2:] # save chinese tokens' pos if len(snake_case_ ) == 1 and _is_chinese_char(ord(snake_case_ ) ): ref_id.append(snake_case_ ) ref_ids.append(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) return ref_ids def __lowercase ( snake_case_ : int ) ->List[Any]: '''simple docstring''' with open(args.file_name ,'''r''' ,encoding='''utf-8''' ) as f: __A : List[str] = f.readlines() __A : Optional[Any] = [line.strip() for line in data if len(snake_case_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __A : str = LTP(args.ltp ) # faster in GPU device __A : Optional[int] = BertTokenizer.from_pretrained(args.bert ) __A : Optional[Any] = prepare_ref(snake_case_ ,snake_case_ ,snake_case_ ) with open(args.save_path ,'''w''' ,encoding='''utf-8''' ) as f: __A : int = [json.dumps(snake_case_ ) + '''\n''' for ref in ref_ids] f.writelines(snake_case_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") a_ = parser.parse_args() main(args)
179
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 10**9 ) -> int: '''simple docstring''' lowerCAmelCase : Any = 1 lowerCAmelCase : str = 2 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Tuple = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = botoa.client('''iam''' ) __UpperCAmelCase = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=snake_case_ , AssumeRolePolicyDocument=json.dumps(snake_case_ , indent=2 ) ) __UpperCAmelCase = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=snake_case_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(snake_case_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = botoa.client('''iam''' ) return iam_client.get_role(RoleName=snake_case_ )["Role"]["Arn"] def lowercase__ ( ): __UpperCAmelCase = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , snake_case_ , ) __UpperCAmelCase = None if credentials_configuration == 0: __UpperCAmelCase = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) __UpperCAmelCase = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) __UpperCAmelCase = _ask_field('''AWS Access Key ID: ''' ) __UpperCAmelCase = aws_access_key_id __UpperCAmelCase = _ask_field('''AWS Secret Access Key: ''' ) __UpperCAmelCase = aws_secret_access_key __UpperCAmelCase = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) __UpperCAmelCase = aws_region __UpperCAmelCase = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , snake_case_ , ) if role_management == 0: __UpperCAmelCase = _ask_field('''Enter your IAM role name: ''' ) else: __UpperCAmelCase = '''accelerate_sagemaker_execution_role''' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(snake_case_ ) __UpperCAmelCase = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = None if is_custom_docker_image: __UpperCAmelCase = _ask_field('''Enter your Docker image: ''' , lambda snake_case_ : str(snake_case_ ).lower() ) __UpperCAmelCase = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = None if is_sagemaker_inputs_enabled: __UpperCAmelCase = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda snake_case_ : str(snake_case_ ).lower() , ) __UpperCAmelCase = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = None if is_sagemaker_metrics_enabled: __UpperCAmelCase = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda snake_case_ : str(snake_case_ ).lower() , ) __UpperCAmelCase = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) __UpperCAmelCase = {} __UpperCAmelCase = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) if use_dynamo: __UpperCAmelCase = '''dynamo_''' __UpperCAmelCase = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __UpperCAmelCase = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) if use_custom_options: __UpperCAmelCase = _ask_options( '''Which mode do you want to use?''' , snake_case_ , lambda snake_case_ : TORCH_DYNAMO_MODES[int(snake_case_ )] , default='''default''' , ) __UpperCAmelCase = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=snake_case_ , error_message='''Please enter yes or no.''' , ) __UpperCAmelCase = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: __UpperCAmelCase = _ask_options( snake_case_ , snake_case_ , lambda snake_case_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(snake_case_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __UpperCAmelCase = _ask_field(snake_case_ , lambda snake_case_ : str(snake_case_ ).lower() , default='''ml.p3.2xlarge''' ) __UpperCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __UpperCAmelCase = _ask_field( '''How many machines do you want use? [1]: ''' , snake_case_ , default=1 , ) __UpperCAmelCase = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=snake_case_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=snake_case_ , use_cpu=snake_case_ , dynamo_config=snake_case_ , eca_instance_type=snake_case_ , profile=snake_case_ , region=snake_case_ , iam_role_name=snake_case_ , mixed_precision=snake_case_ , num_machines=snake_case_ , sagemaker_inputs_file=snake_case_ , sagemaker_metrics_file=snake_case_ , )
332
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Optional[int] ): return EnvironmentCommand() def lowercase__ ( snake_case_ :List[str] ): return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase ( _lowerCAmelCase ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Optional[int] , _lowercase : str , *_lowercase : Tuple ): __UpperCAmelCase = accelerate_config_file def a ( self : Dict ): __UpperCAmelCase = '''not installed''' if is_safetensors_available(): import safetensors __UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors __UpperCAmelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = __UpperCAmelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): __UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCAmelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'''\t{accelerate_config}''' ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_torch_available(): import torch __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 __UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCAmelCase = bool(tf.config.list_physical_devices('''GPU''' ) ) __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''not installed''' __UpperCAmelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib __UpperCAmelCase = flax.__version__ __UpperCAmelCase = jax.__version__ __UpperCAmelCase = jaxlib.__version__ __UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform __UpperCAmelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def a ( _lowercase : str ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
332
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MobileViTFeatureExtractor'] __A = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {} class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''llama''' lowerCamelCase = ['''past_key_values'''] def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_key_value_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_range _lowerCAmelCase =rms_norm_eps _lowerCAmelCase =pretraining_tp _lowerCAmelCase =use_cache _lowerCAmelCase =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase ) _lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
341
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' with open(UpperCamelCase__ , encoding="utf-8" ) as input_file: snake_case : int = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) snake_case : List[str] = input_file.read() snake_case : List[Any] = regexp.search(UpperCamelCase__ ) return match def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' with open(UpperCamelCase__ , encoding="utf-8" ) as input_file: snake_case : Optional[int] = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) snake_case : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` snake_case : str = regexp.finditer(UpperCamelCase__ ) snake_case : Optional[Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : int = Path("./datasets" ) snake_case : Optional[int] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCamelCase__ ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Any = Path("./datasets" ) snake_case : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCamelCase__ ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
203
"""simple docstring""" def __lowerCAmelCase ( lowercase : list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) snake_case : List[str] = sum(lowercase ) / len(lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
203
1
from __future__ import annotations from math import ceil, floor, sqrt def _a ( a :int = 2_000_000 ) -> int: a = [0] a = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target a = 0 # the area corresponding to the grid that gives the product closest to target a = 0 # an estimate of b, using the quadratic formula a = 42 # the largest integer less than b_estimate a = 42 # the largest integer less than b_estimate a = 42 # the triangle number corresponding to b_floor a = 42 # the triangle number corresponding to b_ceil a = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): a = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 a = floor(a ) a = ceil(a ) a = triangle_numbers[b_floor] a = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): a = triangle_b_first_guess * triangle_a a = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): a = triangle_b_second_guess * triangle_a a = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
26
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: while second != 0: UpperCAmelCase__ : List[Any] = first & second first ^= second UpperCAmelCase__ : Dict = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = int(input('''Enter the first number: ''').strip()) UpperCamelCase__ = int(input('''Enter the second number: ''').strip()) print(F"""{add(first, second) = }""")
181
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """umt5""" lowerCAmelCase__ = ["""past_key_values"""] def __init__( self : Optional[int] , _lowerCAmelCase : int=2_5_0_1_1_2 , _lowerCAmelCase : Union[str, Any]=5_1_2 , _lowerCAmelCase : List[Any]=6_4 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : str=3_2 , _lowerCAmelCase : List[str]=1_2_8 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=1e-6 , _lowerCAmelCase : List[Any]=1.0 , _lowerCAmelCase : Union[str, Any]="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Tuple="T5Tokenizer" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Any=0 , **_lowerCAmelCase : int , ): '''simple docstring''' super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =vocab_size __lowercase =d_model __lowercase =d_kv __lowercase =d_ff __lowercase =num_layers __lowercase =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase =num_heads __lowercase =relative_attention_num_buckets __lowercase =relative_attention_max_distance __lowercase =dropout_rate __lowercase =layer_norm_epsilon __lowercase =initializer_factor __lowercase =feed_forward_proj __lowercase =use_cache __lowercase =self.feed_forward_proj.split('-') __lowercase =act_info[-1] __lowercase =act_info[0] == 'gated' if len(_lowerCAmelCase) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": __lowercase ='gelu_new' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.d_model @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.num_heads @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.num_layers class _UpperCamelCase ( A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={ 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase ='past_encoder_sequence + sequence' __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 1_3 @property def __lowerCamelCase ( self : int): '''simple docstring''' return 5e-4
166
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCamelCase = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize _UpperCamelCase = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' _UpperCamelCase = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' _UpperCamelCase = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0.9 , __UpperCAmelCase=3 , __UpperCAmelCase=0.5 ) -> List[Any]: '''simple docstring''' if NLTK_VERSION >= version.Version("""3.6.5""" ): __UpperCAmelCase : int = [ meteor_score.single_meteor_score( word_tokenize(__UpperCAmelCase ) , word_tokenize(__UpperCAmelCase ) , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase ) for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase ) ] else: __UpperCAmelCase : Dict = [ meteor_score.single_meteor_score(__UpperCAmelCase , __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , gamma=__UpperCAmelCase ) for ref, pred in zip(__UpperCAmelCase , __UpperCAmelCase ) ] return {"meteor": np.mean(__UpperCAmelCase )}
16
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = LDMTextToImagePipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__UpperCAmelCase ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def __A ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if str(__UpperCAmelCase ).startswith("""mps""" ): __UpperCAmelCase : int = torch.manual_seed(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Tuple = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __UpperCAmelCase : Dict = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : int = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Any = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : int = pipe(**__UpperCAmelCase ).images __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Tuple = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) __UpperCAmelCase : Union[str, Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _A ( unittest.TestCase ): def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.manual_seed(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) __UpperCAmelCase : int = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = pipe(**__UpperCAmelCase ).images[0] __UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __UpperCAmelCase : Dict = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
'''simple docstring''' def UpperCamelCase_( snake_case : int ): '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError("only integers accepted as input" ) else: snake_case_ = str(abs(snake_case ) ) snake_case_ = [list(snake_case ) for char in range(len(snake_case ) )] for index in range(len(snake_case ) ): num_transpositions[index].pop(snake_case ) return max( int("".join(list(snake_case ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
85
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_( snake_case : Tuple ): '''simple docstring''' snake_case_ = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ = 0.01 with locka.acquire(): with pytest.raises(snake_case ): snake_case_ = time.time() locka.acquire(snake_case ) assert time.time() - _start > timeout def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = "a" * 1_0_0_0 + ".lock" snake_case_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 snake_case_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case ): locka.acquire(0 )
85
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'xlm-roberta-xl' def __init__( self , __a=25_08_80 , __a=25_60 , __a=36 , __a=32 , __a=1_02_40 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=0.02 , __a=1e-05 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
100
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Optional[int]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope def _a ( self ) -> Dict: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Optional[Any]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =BioGptModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Union[str, Any]: __UpperCamelCase =BioGptForCausalLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> str: __UpperCamelCase =BioGptModel(config=A_ ) model.to(A_ ) model.eval() # create attention mask __UpperCamelCase =torch.ones(input_ids.shape , dtype=torch.long , device=A_ ) __UpperCamelCase =self.seq_length // 2 __UpperCamelCase =0 # first forward pass __UpperCamelCase , __UpperCamelCase =model(A_ , attention_mask=A_ ).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __UpperCamelCase =ids_tensor((1,) , A_ ).item() + 1 __UpperCamelCase =ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __UpperCamelCase =random_other_next_tokens # append to next input_ids and attn_mask __UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase =torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=A_ )] , dim=1 , ) # get two different outputs __UpperCamelCase =model(A_ , attention_mask=A_ )['last_hidden_state'] __UpperCamelCase =model(A_ , past_key_values=A_ , attention_mask=A_ )['last_hidden_state'] # select random slice __UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase =output_from_no_past[:, -1, random_slice_idx].detach() __UpperCamelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> Tuple: __UpperCamelCase =BioGptModel(config=A_ ).to(A_ ).eval() __UpperCamelCase =torch.ones(input_ids.shape , dtype=torch.long , device=A_ ) # first forward pass __UpperCamelCase =model(A_ , attention_mask=A_ , use_cache=A_ ) __UpperCamelCase , __UpperCamelCase =outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase =ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase =torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __UpperCamelCase =model(A_ , attention_mask=A_ )['last_hidden_state'] __UpperCamelCase =model(A_ , attention_mask=A_ , past_key_values=A_ )[ 'last_hidden_state' ] # select random slice __UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , *A_ , A_=False ) -> List[str]: __UpperCamelCase =BioGptForCausalLM(A_ ) model.to(A_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _a ( self , A_ , *A_ ) -> Tuple: __UpperCamelCase =BioGptModel(A_ ) __UpperCamelCase =model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _a ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> Tuple: __UpperCamelCase =self.num_labels __UpperCamelCase =BioGptForTokenClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self ) -> int: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCAmelCase__ : int = (BioGptForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : Any = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = False def _a ( self ) -> Dict: __UpperCamelCase =BioGptModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*A_ , gradient_checkpointing=A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(A_ ) __UpperCamelCase =BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase ='left' # Define PAD Token = EOS Token = 50256 __UpperCamelCase =tokenizer.eos_token __UpperCamelCase =model.config.eos_token_id # use different length sentences to test batching __UpperCamelCase =[ 'Hello, my dog is a little', 'Today, I', ] __UpperCamelCase =tokenizer(A_ , return_tensors='pt' , padding=A_ ) __UpperCamelCase =inputs['input_ids'].to(A_ ) __UpperCamelCase =model.generate( input_ids=A_ , attention_mask=inputs['attention_mask'].to(A_ ) , ) __UpperCamelCase =tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(A_ ) __UpperCamelCase =model.generate(input_ids=A_ ) __UpperCamelCase =inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() __UpperCamelCase =tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(A_ ) __UpperCamelCase =model.generate(input_ids=A_ , max_length=model.config.max_length - num_paddings ) __UpperCamelCase =tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) __UpperCamelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) __UpperCamelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) __UpperCamelCase =[ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] ) @slow def _a ( self ) -> List[Any]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =BioGptModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase =input_dict['input_ids'] __UpperCamelCase =input_ids.ne(1 ).to(A_ ) __UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase =BioGptForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> Any: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase ='multi_label_classification' __UpperCamelCase =input_dict['input_ids'] __UpperCamelCase =input_ids.ne(1 ).to(A_ ) __UpperCamelCase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase =BioGptForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> Tuple: __UpperCamelCase =BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) __UpperCamelCase =torch.tensor([[2, 4805, 9, 656, 21]] ) __UpperCamelCase =model(A_ )[0] __UpperCamelCase =42384 __UpperCamelCase =torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase =torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __UpperCamelCase =BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(A_ ) torch.manual_seed(0 ) __UpperCamelCase =tokenizer('COVID-19 is' , return_tensors='pt' ).to(A_ ) __UpperCamelCase =model.generate( **A_ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=A_ , ) __UpperCamelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=A_ ) __UpperCamelCase =( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(A_ , A_ )
62
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase__ : Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = ['''pixel_values'''] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : int = 8 , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[str] = do_rescale _A: Any = rescale_factor _A: List[Any] = do_pad _A: Tuple = pad_size def __magic_name__ ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" _A , _A: Optional[int] = get_image_size(lowerCAmelCase_ ) _A: Union[str, Any] = (old_height // size + 1) * size - old_height _A: Optional[Any] = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : int , ): """simple docstring""" _A: List[str] = do_rescale if do_rescale is not None else self.do_rescale _A: int = rescale_factor if rescale_factor is not None else self.rescale_factor _A: str = do_pad if do_pad is not None else self.do_pad _A: Union[str, Any] = pad_size if pad_size is not None else self.pad_size _A: List[Any] = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _A: Union[str, Any] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_rescale: _A: str = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_pad: _A: str = [self.pad(lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] _A: Optional[Any] = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _A: List[Any] = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
121
0
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : list[list] ) ->list[list]: A__ : Tuple = current_set.copy() for row_index, row in enumerate(UpperCAmelCase__ ): A__ : Union[str, Any] = row[0] for column_index, column in enumerate(UpperCAmelCase__ ): if magnitude == 0: A__ : int = column continue A__ : Tuple = column / magnitude # Subtract to cancel term A__ : int = current_set[0] A__ : Any = [first_row] A__ : Optional[Any] = current_set[1::] for row in current_set: A__ : Dict = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCAmelCase__ ) continue for column_index in range(len(UpperCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: A__ : int = final_set[0] A__ : Union[str, Any] = [] A__ : Dict = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A__ : int = simplify(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, UpperCAmelCase__ ) A__ : int = resultant return final_set def _lowerCAmelCase ( UpperCAmelCase__ : list[list] ) ->list: if len(UpperCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) A__ : Tuple = len(UpperCAmelCase__ ) + 1 if any(len(UpperCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(UpperCAmelCase__, (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(UpperCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] A__ : str = equations.copy() if any(0 in row for row in data_set ): A__ : List[str] = data_set.copy() A__ : Tuple = [] for row_index, row in enumerate(UpperCAmelCase__ ): if 0 not in row: A__ : str = data_set.pop(UpperCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0, UpperCAmelCase__ ) A__ : int = data_set.copy() A__ : int = simplify(UpperCAmelCase__ ) A__ : int = simplified[::-1] A__ : list = [] for row in simplified: A__ : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A__ : int = row.copy()[: len(UpperCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCAmelCase__ ) == 0: solutions.append(0 ) continue A__ : Dict = temp_row[1::] A__ : Any = temp_row[::-1] for column_index, column in enumerate(UpperCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(UpperCAmelCase__ ) A__ : Optional[int] = [] for item in solutions: final.append(float(round(UpperCAmelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
353
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
0
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _A ( lowercase , lowercase , lowercase=[] ): """simple docstring""" a =size[0] - overlap_pixels * 2 a =size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels a =np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 a =np.pad(lowercase , mode='''linear_ramp''' , pad_width=lowercase , end_values=0 ) if "l" in remove_borders: a =mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: a =mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: a =mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: a =mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _A ( lowercase , lowercase , lowercase ): """simple docstring""" return max(lowercase , min(lowercase , lowercase ) ) def _A ( lowercase , lowercase , lowercase ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =list(lowercase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap a =clamp_rect(lowercase , [0, 0] , [image_size[0], image_size[1]] ) return rect def _A ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowercase , (original_slice, 0) ) return result def _A ( lowercase , lowercase ): """simple docstring""" a =(original_image_slice * 4, 0, tile.size[0], tile.size[1]) a =tile.crop(lowercase ) return tile def _A ( lowercase , lowercase ): """simple docstring""" a =n % d return n - divisor class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A , __A = 350 , ) -> int: super().__init__( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , low_res_scheduler=__A , scheduler=__A , max_noise_level=__A , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A , __A , **__A ) -> Tuple: torch.manual_seed(0 ) a =( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) a =add_overlap_rect(__A , __A , image.size ) a =image.crop(__A ) a =((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] a =translated_slice_x - (original_image_slice / 2) a =max(0 , __A ) a =squeeze_tile(__A , __A , __A , __A ) a =to_input.size a =to_input.resize((tile_size, tile_size) , Image.BICUBIC ) a =super(__A , self ).__call__(image=__A , **__A ).images[0] a =upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) a =unsqueeze_tile(__A , __A ) a =upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) a =[] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) a =Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__A ) , mode='''L''' , ) final_image.paste( __A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __A ) @torch.no_grad() def __call__( self , __A , __A , __A = 75 , __A = 9.0 , __A = 50 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = None , __A = 1 , __A = 128 , __A = 32 , __A = 32 , ) -> Optional[int]: a =Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) a =math.ceil(image.size[0] / tile_size ) a =math.ceil(image.size[1] / tile_size ) a =tcx * tcy a =0 for y in range(__A ): for x in range(__A ): self._process_tile( __A , __A , __A , __A , __A , __A , __A , prompt=__A , num_inference_steps=__A , guidance_scale=__A , noise_level=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def _A ( ): """simple docstring""" # Run a demo a ='''stabilityai/stable-diffusion-x4-upscaler''' a =StableDiffusionTiledUpscalePipeline.from_pretrained(lowercase , revision='''fp16''' , torch_dtype=torch.floataa ) a =pipe.to('''cuda''' ) a =Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(lowercase ): print(f'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('''diffusers_library_progress.jpg''' ) a =pipe(image=lowercase , prompt='''Black font, white background, vector''' , noise_level=40 , callback=lowercase ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
81
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
0
'''simple docstring''' import numpy as np class __magic_name__ : def __init__( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =(0, 0) _UpperCAmelCase : Any =None _UpperCAmelCase : List[str] =0 _UpperCAmelCase : Dict =0 _UpperCAmelCase : Dict =0 def __eq__( self , snake_case) -> Dict: '''simple docstring''' return self.position == cell.position def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' print(self.position) class __magic_name__ : def __init__( self , snake_case=(5, 5)) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] =np.zeros(snake_case) _UpperCAmelCase : Optional[Any] =world_size[0] _UpperCAmelCase : Any =world_size[1] def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' print(self.w) def lowerCAmelCase ( self , snake_case) -> Any: '''simple docstring''' _UpperCAmelCase : str =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _UpperCAmelCase : int =cell.position[0] _UpperCAmelCase : Optional[Any] =cell.position[1] _UpperCAmelCase : Dict =[] for n in neughbour_cord: _UpperCAmelCase : List[str] =current_x + n[0] _UpperCAmelCase : int =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _UpperCAmelCase : List[Any] =Cell() _UpperCAmelCase : Dict =(x, y) _UpperCAmelCase : Any =cell neighbours.append(snake_case) return neighbours def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : List[Any] =[] _UpperCAmelCase : Union[str, Any] =[] _open.append(__lowerCamelCase ) while _open: _UpperCAmelCase : List[str] =np.argmin([n.f for n in _open] ) _UpperCAmelCase : Optional[int] =_open[min_f] _closed.append(_open.pop(__lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(__lowerCamelCase ): for c in _closed: if c == n: continue _UpperCAmelCase : Tuple =current.g + 1 _UpperCAmelCase : Any =n.position _UpperCAmelCase : List[str] =goal.position _UpperCAmelCase : Optional[int] =(ya - ya) ** 2 + (xa - xa) ** 2 _UpperCAmelCase : Optional[Any] =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__lowerCamelCase ) _UpperCAmelCase : str =[] while current.parent is not None: path.append(current.position ) _UpperCAmelCase : Any =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowercase =Gridworld() # Start position and goal lowercase =Cell() lowercase =(0, 0) lowercase =Cell() lowercase =(4, 4) print(F"""path from {start.position} to {goal.position}""") lowercase =astar(world, start, goal) # Just for visual reasons. for i in s: lowercase =1 print(world.w)
367
'''simple docstring''' import datasets from .evaluate import evaluate lowercase ='\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' lowercase ='\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' lowercase ='\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string'), 'prediction_text': datasets.Value('string')}, 'references': { 'id': datasets.Value('string'), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string'), 'answer_start': datasets.Value('int32'), }), }, }) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def lowerCAmelCase ( self , snake_case , snake_case) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] ={prediction['id']: prediction['prediction_text'] for prediction in predictions} _UpperCAmelCase : Optional[int] =[ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _UpperCAmelCase : List[Any] =evaluate(dataset=snake_case , predictions=snake_case) return score
242
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Any = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = XLMProphetNetTokenizer a__ = False a__ = True def lowerCAmelCase_ (self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = XLMProphetNetTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = '''[PAD]''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(lowercase__ ) , 1_012 ) def lowerCAmelCase_ (self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = XLMProphetNetTokenizer(lowercase__ , keep_accents=lowercase__ ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def lowerCAmelCase_ (self ) -> Tuple: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = '''Hello World!''' __UpperCAmelCase = [35_389, 6_672, 49, 2] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def lowerCAmelCase_ (self ) -> Optional[int]: # fmt: off __UpperCAmelCase = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A__ ( __lowerCamelCase ): return 1.0 / (1.0 + np.exp(-_outputs )) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = np.max(_outputs, axis=-1, keepdims=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=__lowerCamelCase ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="sigmoid" UpperCAmelCase_ ="softmax" UpperCAmelCase_ ="none" @add_end_docstrings( __SCREAMING_SNAKE_CASE , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =False UpperCAmelCase_ =ClassificationFunction.NONE def __init__( self , **_A ) -> Optional[Any]: super().__init__(**_A ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _UpperCamelCase ( self , _A=None , _A=None , _A="" , **_A ) -> Union[str, Any]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" SCREAMING_SNAKE_CASE_ = tokenizer_kwargs SCREAMING_SNAKE_CASE_ = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: SCREAMING_SNAKE_CASE_ = self.model.config.return_all_scores if isinstance(_A , _A ) or top_k is None: SCREAMING_SNAKE_CASE_ = top_k SCREAMING_SNAKE_CASE_ = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , _A , ) if return_all_scores: SCREAMING_SNAKE_CASE_ = None else: SCREAMING_SNAKE_CASE_ = 1 if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: SCREAMING_SNAKE_CASE_ = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_A , **_A ) -> str: SCREAMING_SNAKE_CASE_ = super().__call__(*_A , **_A ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. SCREAMING_SNAKE_CASE_ = '''top_k''' not in kwargs if isinstance(args[0] , _A ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _UpperCamelCase ( self , _A , **_A ) -> Dict[str, GenericTensor]: SCREAMING_SNAKE_CASE_ = self.framework if isinstance(_A , _A ): return self.tokenizer(**_A , return_tensors=_A , **_A ) elif isinstance(_A , _A ) and len(_A ) == 1 and isinstance(inputs[0] , _A ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_A , **_A ) elif isinstance(_A , _A ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(_A , return_tensors=_A , **_A ) def _UpperCamelCase ( self , _A ) -> Tuple: return self.model(**_A ) def _UpperCamelCase ( self , _A , _A=None , _A=1 , _A=True ) -> Optional[int]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: SCREAMING_SNAKE_CASE_ = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: SCREAMING_SNAKE_CASE_ = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: SCREAMING_SNAKE_CASE_ = self.model.config.function_to_apply else: SCREAMING_SNAKE_CASE_ = ClassificationFunction.NONE SCREAMING_SNAKE_CASE_ = model_outputs['''logits'''][0] SCREAMING_SNAKE_CASE_ = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: SCREAMING_SNAKE_CASE_ = sigmoid(_A ) elif function_to_apply == ClassificationFunction.SOFTMAX: SCREAMING_SNAKE_CASE_ = softmax(_A ) elif function_to_apply == ClassificationFunction.NONE: SCREAMING_SNAKE_CASE_ = outputs else: raise ValueError(F'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} SCREAMING_SNAKE_CASE_ = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(_A ) ] if not _legacy: dict_scores.sort(key=lambda _A : x["score"] , reverse=_A ) if top_k is not None: SCREAMING_SNAKE_CASE_ = dict_scores[:top_k] return dict_scores
257
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =None UpperCAmelCase_ =None @property def _UpperCamelCase ( self ) -> Dict: return self.feat_extract_tester.prepare_feat_extract_dict() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_A , '''feature_size''' ) ) self.assertTrue(hasattr(_A , '''sampling_rate''' ) ) self.assertTrue(hasattr(_A , '''padding_value''' ) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_A ) == len(_A ) for x, y in zip(_A , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _UpperCamelCase ( self , _A=False ) -> Tuple: def _inputs_have_equal_length(_A ): SCREAMING_SNAKE_CASE_ = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(_A , _A ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''max_length''' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_A , return_tensors='''np''' , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(all(len(_A ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) SCREAMING_SNAKE_CASE_ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE_ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def _UpperCamelCase ( self , _A=False ) -> Optional[int]: def _inputs_have_equal_length(_A ): SCREAMING_SNAKE_CASE_ = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(_A , _A ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_A , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to middle SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_A , return_tensors='''np''' , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''longest''' , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''longest''' , truncation=_A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_A ): feat_extract.pad(_A , padding='''max_length''' , truncation=_A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE_ = 12 SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , truncation=_A , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE_ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE_ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) def _UpperCamelCase ( self ) -> Dict: self._check_padding(numpify=_A ) def _UpperCamelCase ( self ) -> Dict: self._check_padding(numpify=_A ) def _UpperCamelCase ( self ) -> List[str]: self._check_truncation(numpify=_A ) def _UpperCamelCase ( self ) -> int: self._check_truncation(numpify=_A ) @require_torch def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_A ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = [len(_A ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_A ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = [len(_A ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_A ) SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
257
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = '''biogpt''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any]=4_2_3_8_4 , UpperCAmelCase__ : List[str]=1_0_2_4 , UpperCAmelCase__ : Optional[Any]=2_4 , UpperCAmelCase__ : Optional[int]=1_6 , UpperCAmelCase__ : List[Any]=4_0_9_6 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=1_0_2_4 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Union[str, Any]=1E-12 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : Dict=2 , **UpperCAmelCase__ : List[str] , ) -> int: lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = scale_embedding lowerCAmelCase = use_cache lowerCAmelCase = layerdrop lowerCAmelCase = activation_dropout super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
4
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class __snake_case ( _a): snake_case__ : List[Any] = """data2vec-text""" def __init__( self : str , __lowerCAmelCase : List[str]=3_0_5_2_2 , __lowerCAmelCase : List[str]=7_6_8 , __lowerCAmelCase : Optional[Any]=1_2 , __lowerCAmelCase : Union[str, Any]=1_2 , __lowerCAmelCase : Optional[Any]=3_0_7_2 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Tuple=5_1_2 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : List[Any]=1E-12 , __lowerCAmelCase : str=1 , __lowerCAmelCase : int=0 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Optional[int]="absolute" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : List[str]=None , **__lowerCAmelCase : str , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : Any = classifier_dropout class __snake_case ( _a): @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" if self.task == "multiple-choice": _lowerCamelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCamelCase : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
368
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowerCAmelCase__ = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def snake_case_ ( A_ : int, A_ : Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _lowerCamelCase : Union[str, Any] = int(re.match(R'''.*layer_(\d*).*''', A_ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def snake_case_ ( A_ : List[Any] ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 _lowerCamelCase : List[str] = re.search(R'''[^\d](\d+)$''', str(A_ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) _lowerCamelCase : Optional[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case_ ( A_ : str, A_ : Any, A_ : int, A_ : List[str], A_ : Any ): '''simple docstring''' if bloom_config_file == "": _lowerCamelCase : Dict = BloomConfig() else: _lowerCamelCase : Any = BloomConfig.from_json_file(A_ ) if shard_model: _lowerCamelCase : Optional[int] = os.listdir(A_ ) _lowerCamelCase : List[str] = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s, A_ ) ) _lowerCamelCase : str = {'''weight_map''': {}, '''metadata''': {}} _lowerCamelCase : List[str] = 0 _lowerCamelCase : str = None _lowerCamelCase : str = BloomConfig() for j, file in enumerate(A_ ): print('''Processing file: {}'''.format(A_ ) ) _lowerCamelCase : List[Any] = None for i in range(A_ ): # load all TP files _lowerCamelCase : Any = file.replace('''model_00''', F'''model_0{i}''' ) _lowerCamelCase : Any = torch.load(os.path.join(A_, A_ ), map_location='''cpu''' ) # Rename keys in the transformers names _lowerCamelCase : Optional[Any] = list(temp.keys() ) for key in keys: _lowerCamelCase : List[Any] = temp.pop(A_ ) if tensors is None: _lowerCamelCase : Any = temp else: for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _lowerCamelCase : List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _lowerCamelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _lowerCamelCase : Optional[Any] = tensors[key] / pretraining_tp torch.save( A_, os.path.join( A_, '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ), str(len(A_ ) ).zfill(5 ) ), ), ) for key in tensors.keys(): _lowerCamelCase : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _lowerCamelCase : Tuple = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ), str(len(A_ ) ).zfill(5 ) ) _lowerCamelCase : List[Any] = BloomConfig() _lowerCamelCase : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME _lowerCamelCase : Union[str, Any] = total_size with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A_, WEIGHTS_NAME + '''.index.json''' ), '''w''', encoding='''utf-8''' ) as f: _lowerCamelCase : Any = json.dumps(A_, indent=2, sort_keys=A_ ) + '''\n''' f.write(A_ ) else: _lowerCamelCase : Tuple = BloomModel(A_ ) _lowerCamelCase : Optional[int] = os.listdir(A_ ) _lowerCamelCase : Union[str, Any] = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s, A_ ) ) _lowerCamelCase : int = None for i, file in enumerate(A_ ): _lowerCamelCase : Optional[int] = None for i in range(A_ ): # load all TP files _lowerCamelCase : str = file.replace('''model_00''', F'''model_0{i}''' ) _lowerCamelCase : List[Any] = torch.load(os.path.join(A_, A_ ), map_location='''cpu''' ) # Rename keys in the transformers names _lowerCamelCase : List[Any] = list(temp.keys() ) for key in keys: _lowerCamelCase : Dict = temp.pop(A_ ) if tensors is None: _lowerCamelCase : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _lowerCamelCase : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _lowerCamelCase : Optional[Any] = torch.cat([tensors[key], temp[key]], dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _lowerCamelCase : List[Any] = tensors[key] / pretraining_tp _lowerCamelCase : List[str] = model.load_state_dict(A_, strict=A_ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: _lowerCamelCase : Optional[Any] = set(other_keys.missing_keys ) else: _lowerCamelCase : Union[str, Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(A_, exist_ok=A_ ) _lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _lowerCamelCase : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: _lowerCamelCase : Dict = model.to(config.torch_dtype ) torch.save(model.state_dict(), A_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowerCAmelCase__ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
175
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def snake_case ( A__ ,A__ ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase_ : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ : List[Any] = torch.permute(A__ ,(0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A__ ): # linear layer UpperCAmelCase_ : str = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ : Dict = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase_ : List[str] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def snake_case ( A__ ,A__ ,A__ ): if "metadata" in layer: UpperCAmelCase_ : List[str] = layer.split("metadata" ) UpperCAmelCase_ : Any = "".join(split_layer[0] )[:-1] UpperCAmelCase_ : Any = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: UpperCAmelCase_ : int = layer.split("kvstore" ) UpperCAmelCase_ : Any = "".join(split_layer[0] )[:-1] UpperCAmelCase_ : Tuple = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: UpperCAmelCase_ : Dict = layer.split("/" ) UpperCAmelCase_ : Optional[Any] = "/".join(split_layer[:-1] ) UpperCAmelCase_ : int = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase_ : int = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCAmelCase_ : int = "file" else: UpperCAmelCase_ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def snake_case ( A__ ,A__ ): UpperCAmelCase_ : str = rename_keys(A__ ) UpperCAmelCase_ : Any = {} for k, v in current_block.items(): UpperCAmelCase_ : Any = v UpperCAmelCase_ : List[str] = new_current_block torch.save(A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ = WEIGHTS_NAME ): UpperCAmelCase_ : Dict = convert_file_size_to_int(A__ ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Any = 0 os.makedirs(A__ ,exist_ok=A__ ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" ,"rb" ) as fp: UpperCAmelCase_ : str = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] UpperCAmelCase_ : Optional[Any] = flatten_dict(A__ ,sep="/" ) UpperCAmelCase_ : Optional[int] = {} for layer in checkpoint_info.keys(): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = get_key_and_tensorstore_dict( A__ ,A__ ,A__ ) if curr_real_layer_name in all_layers: UpperCAmelCase_ : Union[str, Any] = content else: UpperCAmelCase_ : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase_ : Optional[int] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase_ : str = torch.tensor(A__ ) UpperCAmelCase_ : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase_ , UpperCAmelCase_ : Tuple = rename_base_flax_keys(tuple(key.split("/" ) ) ,A__ ) UpperCAmelCase_ : Any = "/".join(A__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase_ : Tuple = os.path.join( A__ ,weights_name.replace(".bin" ,F"""-{len(A__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(A__ ,A__ ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Tuple = raw_weights.to(getattr(A__ ,A__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase_ : Optional[int] = os.path.join(A__ ,weights_name.replace(".bin" ,F"""-{len(A__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(A__ ,A__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(A__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Tuple = {} for idx, shard in enumerate(A__ ): UpperCAmelCase_ : Any = weights_name.replace( ".bin" ,F"""-{idx+1:05d}-of-{len(A__ ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCAmelCase_ : Tuple = os.path.join(A__ ,weights_name.replace(".bin" ,F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(A__ ,os.path.join(A__ ,A__ ) ) UpperCAmelCase_ : Dict = shard for key in shard: UpperCAmelCase_ : Union[str, Any] = shard_file # Add the metadata UpperCAmelCase_ : Dict = {"total_size": total_size} UpperCAmelCase_ : Any = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ ,A__ ) ,"w" ,encoding="utf-8" ) as f: UpperCAmelCase_ : int = json.dumps(A__ ,indent=2 ,sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) lowerCamelCase_ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def snake_case ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase_ : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) UpperCAmelCase_ : Any = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" ,device_map="auto" ) UpperCAmelCase_ : Dict = TaTokenizer.from_pretrained("t5-small" ) UpperCAmelCase_ : Optional[int] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." UpperCAmelCase_ : Optional[Any] = tokenizer(A__ ,return_tensors="pt" ).input_ids UpperCAmelCase_ : Tuple = model.generate(A__ ,decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
268
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase_ : # setable values __magic_name__ = None __magic_name__ = None __magic_name__ = None # sigma(t_i) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ) -> Optional[Any]: return cls() @dataclass class UpperCamelCase_ (__A ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 class UpperCamelCase_ (__A , __A ): @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: return True @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : float = 100 , lowerCAmelCase_ : float = 1.0_0_7 , lowerCAmelCase_ : float = 80 , lowerCAmelCase_ : float = 0.0_5 , lowerCAmelCase_ : float = 50 , ) -> Union[str, Any]: pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: return KarrasVeSchedulerState.create() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = () ) -> KarrasVeSchedulerState: UpperCAmelCase_ : Dict = jnp.arange(0 , lowerCAmelCase_ )[::-1].copy() UpperCAmelCase_ : Dict = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase_ , schedule=jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , timesteps=lowerCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase_ : Any = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase_ : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase_ : List[Any] = random.split(lowerCAmelCase_ , num=1 ) UpperCAmelCase_ : List[str] = self.config.s_noise * random.normal(key=lowerCAmelCase_ , shape=sample.shape ) UpperCAmelCase_ : Optional[Any] = sigma + gamma * sigma UpperCAmelCase_ : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: UpperCAmelCase_ : Union[str, Any] = sample_hat + sigma_hat * model_output UpperCAmelCase_ : List[Any] = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase_ : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: UpperCAmelCase_ : str = sample_prev + sigma_prev * model_output UpperCAmelCase_ : Any = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase_ : int = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Dict: raise NotImplementedError()
268
1
'''simple docstring''' def _lowerCAmelCase ( lowercase ) -> int: if not numbers: return 0 if not isinstance(lowercase , (list, tuple) ) or not all( isinstance(lowercase , lowercase ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = numbers[0] for i in range(1 , len(lowercase ) ): # update the maximum and minimum subarray products __lowerCAmelCase = numbers[i] if number < 0: __lowerCAmelCase , __lowerCAmelCase = min_till_now, max_till_now __lowerCAmelCase = max(lowercase , max_till_now * number ) __lowerCAmelCase = min(lowercase , min_till_now * number ) # update the maximum product found till now __lowerCAmelCase = max(lowercase , lowercase ) return max_prod
46
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =KandinskyVaaImgaImgPipeline a : List[Any] =["""image_embeds""", """negative_image_embeds""", """image"""] a : Union[str, Any] =[ """image_embeds""", """negative_image_embeds""", """image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Optional[Any] =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __lowerCAmelCase = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = """A red cartoon frog, 4k""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,strength=0.2,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
177
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __A = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
177
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
16
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase__ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def a__ ( lowerCAmelCase__ ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Dict: from transformers.testing_utils import pytest_terminal_summary_main UpperCAmelCase__ : Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase__ , id=lowerCAmelCase__ )
181
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
181
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = KandinskyInpaintPipeline lowerCamelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] lowerCamelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] lowerCamelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase = False @property def _lowerCAmelCase ( self ) -> Optional[int]: return 32 @property def _lowerCAmelCase ( self ) -> List[str]: return 32 @property def _lowerCAmelCase ( self ) -> Optional[int]: return self.time_input_dim @property def _lowerCAmelCase ( self ) -> List[str]: return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ) -> int: return 1_00 @property def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _lowerCAmelCase =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) _lowerCAmelCase =MultilingualCLIP(__UpperCAmelCase ) _lowerCAmelCase =text_encoder.eval() return text_encoder @property def _lowerCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase =UNetaDConditionModel(**__UpperCAmelCase ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ) -> int: torch.manual_seed(0 ) _lowerCAmelCase =VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =self.dummy_tokenizer _lowerCAmelCase =self.dummy_unet _lowerCAmelCase =self.dummy_movq _lowerCAmelCase =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__UpperCAmelCase , ) _lowerCAmelCase ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any: _lowerCAmelCase =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _lowerCAmelCase =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase ) # create init_image _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask _lowerCAmelCase =np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase =0 if str(__UpperCAmelCase ).startswith("""mps""" ): _lowerCAmelCase =torch.manual_seed(__UpperCAmelCase ) else: _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _lowerCAmelCase ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**__UpperCAmelCase ) _lowerCAmelCase =pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase =pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) _lowerCAmelCase =output.images _lowerCAmelCase =pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase =np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _lowerCAmelCase ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase =np.ones((7_68, 7_68) , dtype=np.floataa ) _lowerCAmelCase =0 _lowerCAmelCase ="""a hat""" _lowerCAmelCase =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) _lowerCAmelCase =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) _lowerCAmelCase =pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase =torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase =pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase =pipeline( __UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
341
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = XGLMConfig lowerCamelCase = {} lowerCamelCase = '''gelu''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =ffn_dim _lowerCAmelCase =activation_function _lowerCAmelCase =activation_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =None _lowerCAmelCase =0 _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Dict: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _lowerCAmelCase ( self ) -> str: _lowerCAmelCase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , ) def _lowerCAmelCase ( self ) -> Dict: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={ """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =TFXGLMModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 ) def _lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _lowerCAmelCase ( self ) -> Union[str, Any]: super().test_resize_token_embeddings() @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) _lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) _lowerCAmelCase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): _lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] ) _lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) _lowerCAmelCase ="""left""" # use different length sentences to test batching _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] _lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase ) _lowerCAmelCase =inputs["""input_ids"""] _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 ) _lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =[ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
341
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=[1, 1, 2] , __a=1 , __a=32 , __a=4 , __a=8 , __a=37 , __a="gelu_new" , __a=0.1 , __a=0.1 , __a=0.0 , __a=5_12 , __a=3 , __a=0.0_2 , __a=3 , __a=4 , __a=None , __a=False , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = block_sizes __lowerCAmelCase = num_decoder_layers __lowerCAmelCase = d_model __lowerCAmelCase = n_head __lowerCAmelCase = d_head __lowerCAmelCase = d_inner __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = 2 __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = initializer_std # Used in the tests to check the size of the first attention layer __lowerCAmelCase = n_head # Used in the tests to check the size of the first hidden state __lowerCAmelCase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowerCAmelCase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowerCAmelCase = self.num_hidden_layers + 2 def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelModel(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelBaseModel(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelBaseModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelBaseModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelForPreTraining(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelForMaskedLM(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFFunnelForSequenceClassification(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = self.num_choices __lowerCAmelCase = TFFunnelForMultipleChoice(config=__a ) __lowerCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFFunnelForTokenClassification(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelForQuestionAnswering(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase : Tuple =( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] =False __UpperCAmelCase : List[str] =False def snake_case ( self ): __lowerCAmelCase = TFFunnelModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @require_tf class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False def snake_case ( self ): __lowerCAmelCase = TFFunnelModelTester(self , base=__a ) __lowerCAmelCase = ConfigTester(self , config_class=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a )
57
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : Optional[int] = ['torch', 'torchsde'] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
173
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = 1 / 2_5_5 , A = True , A = None , A = True , **A , ) -> None: super().__init__(**A ) snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_2_4} snake_case : Optional[Any] = get_size_dict(A , default_to_square=A ) snake_case : Tuple = crop_size if crop_size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : Any = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : Tuple = size snake_case : Optional[int] = resample snake_case : Tuple = do_rescale snake_case : Optional[int] = rescale_factor snake_case : str = do_center_crop snake_case : Union[str, Any] = crop_size snake_case : Tuple = do_flip_channel_order def UpperCAmelCase ( self , A , A , A = PIL.Image.BILINEAR , A = None , **A , ) -> np.ndarray: snake_case : Union[str, Any] = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : Any = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Optional[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> str: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None ) -> np.ndarray: return flip_channel_order(A , data_format=A ) def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : Dict = do_resize if do_resize is not None else self.do_resize snake_case : Optional[Any] = resample if resample is not None else self.resample snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : int = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case : List[str] = size if size is not None else self.size snake_case : List[Any] = get_size_dict(A , default_to_square=A ) snake_case : int = crop_size if crop_size is not None else self.crop_size snake_case : Union[str, Any] = get_size_dict(A , param_name="""crop_size""" ) snake_case : Dict = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. snake_case : List[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Optional[Any] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : Dict = [self.rescale(image=A , scale=A ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case : int = [self.flip_channel_order(image=A ) for image in images] snake_case : Optional[int] = [to_channel_dimension_format(A , A ) for image in images] snake_case : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A ) def UpperCAmelCase ( self , A , A = None ) -> Optional[int]: snake_case : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A ) != len(A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(A ): snake_case : Tuple = target_sizes.numpy() snake_case : str = [] for idx in range(len(A ) ): snake_case : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=A ) snake_case : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A ) else: snake_case : Optional[Any] = logits.argmax(dim=1 ) snake_case : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
176
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) snake_case : List[str] = MaskFormerConfig(backbone_config=lowercase ) snake_case : List[Any] = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok snake_case : Dict = 847 snake_case : List[str] = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok snake_case : Union[str, Any] = 150 snake_case : List[Any] = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok snake_case : Union[str, Any] = 171 snake_case : int = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO snake_case : Optional[Any] = 133 snake_case : Optional[Any] = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok snake_case : Tuple = 19 snake_case : int = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok snake_case : int = 65 snake_case : Any = """mapillary-vistas-id2label.json""" snake_case : Optional[Any] = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : List[Any] = {int(lowercase ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : Tuple = dct.pop(lowercase ) snake_case : int = val def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) snake_case : Optional[Any] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[Any] = in_proj_weight[:dim, :] snake_case : Optional[int] = in_proj_bias[: dim] snake_case : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] snake_case : List[Any] = in_proj_weight[ -dim :, : ] snake_case : Any = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: # fmt: off snake_case : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case : Any = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) snake_case : Tuple = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[int] = in_proj_weight[: hidden_size, :] snake_case : Any = in_proj_bias[:config.hidden_size] snake_case : Any = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case : int = in_proj_bias[hidden_size : hidden_size * 2] snake_case : Any = in_proj_weight[-hidden_size :, :] snake_case : Union[str, Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) snake_case : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Dict = in_proj_weight[: hidden_size, :] snake_case : Dict = in_proj_bias[:config.hidden_size] snake_case : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] snake_case : Tuple = in_proj_weight[-hidden_size :, :] snake_case : str = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ) -> torch.Tensor: snake_case : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : Any = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = False ) -> Dict: snake_case : List[str] = get_maskformer_config(lowercase ) # load original state_dict with open(lowercase ,"""rb""" ) as f: snake_case : Optional[Any] = pickle.load(lowercase ) snake_case : Optional[Any] = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case : str = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_swin_q_k_v(lowercase ,config.backbone_config ) read_in_decoder_q_k_v(lowercase ,lowercase ) # update to torch tensors for key, value in state_dict.items(): snake_case : List[Any] = torch.from_numpy(lowercase ) # load 🤗 model snake_case : int = MaskFormerForInstanceSegmentation(lowercase ) model.eval() for name, param in model.named_parameters(): print(lowercase ,param.shape ) snake_case , snake_case : Optional[int] = model.load_state_dict(lowercase ,strict=lowercase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results snake_case : List[str] = prepare_img() if "vistas" in model_name: snake_case : Optional[int] = 65 elif "cityscapes" in model_name: snake_case : int = 65535 else: snake_case : List[str] = 255 snake_case : List[Any] = True if """ade""" in model_name else False snake_case : Optional[int] = MaskFormerImageProcessor(ignore_index=lowercase ,reduce_labels=lowercase ) snake_case : Tuple = image_processor(lowercase ,return_tensors="""pt""" ) snake_case : str = model(**lowercase ) print("""Logits:""" ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case : Union[str, Any] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowercase ,atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCamelCase : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
176
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , *__a : Optional[Any] , **__a : Tuple ): warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
63
'''simple docstring''' from ....utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : int , __a : Any=None , __a : Optional[int]=20_48 ): _a = config.__dict__ _a = modal_hidden_size if num_labels: _a = num_labels
63
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case ="""\ Text data. Second line of data.""" __snake_case ="""file""" @pytest.fixture(scope='session' ) def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') lowerCAmelCase = bytes(lowerCamelCase , 'utf-8' ) with zstd.open(lowerCamelCase , 'wb' ) as f: f.write(lowerCamelCase ) return path @pytest.fixture def a_ ( lowerCamelCase : Union[str, Any] ): with open(os.path.join(tmpfs.local_root_dir , lowerCamelCase ) , 'w' ) as f: f.write(lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def a_ ( lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : List[str] ): lowerCAmelCase = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} lowerCAmelCase = input_paths[compression_format] lowerCAmelCase = tmp_path / 'cache' lowerCAmelCase = DownloadConfig(cache_dir=lowerCamelCase , extract_compressed_file=lowerCamelCase ) lowerCAmelCase = cached_path(lowerCamelCase , download_config=lowerCamelCase ) with open(lowerCamelCase ) as f: lowerCAmelCase = f.read() with open(lowerCamelCase ) as f: lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ): lowerCAmelCase = 'custom_cache' lowerCAmelCase = 'custom_extracted_dir' lowerCAmelCase = tmp_path / 'custom_extracted_path' if default_extracted: lowerCAmelCase = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , lowerCamelCase ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(lowerCamelCase ) ) lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCAmelCase = xz_file lowerCAmelCase = ( DownloadConfig(extract_compressed_file=lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCamelCase ) ) lowerCAmelCase = cached_path(lowerCamelCase , download_config=lowerCamelCase ) assert Path(lowerCamelCase ).parent.parts[-2:] == expected def a_ ( lowerCamelCase : Union[str, Any] ): # absolute path lowerCAmelCase = str(Path(lowerCamelCase ).resolve() ) assert cached_path(lowerCamelCase ) == text_file # relative path lowerCAmelCase = str(Path(lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase ) == text_file def a_ ( lowerCamelCase : int ): # absolute path lowerCAmelCase = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(lowerCamelCase ): cached_path(lowerCamelCase ) # relative path lowerCAmelCase = './__missing_file__.txt' with pytest.raises(lowerCamelCase ): cached_path(lowerCamelCase ) def a_ ( lowerCamelCase : str ): lowerCAmelCase = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase ) as f: lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCamelCase ) def a_ ( ): with pytest.raises(lowerCamelCase ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCamelCase ) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowerCamelCase ): http_get('https://huggingface.co' , temp_file=lowerCamelCase ) with pytest.raises(lowerCamelCase ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCamelCase ) def a_ ( lowerCamelCase : int ): lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowerCamelCase ): ftp_get('ftp://huggingface.co' , temp_file=lowerCamelCase ) with pytest.raises(lowerCamelCase ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCamelCase ) def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowerCamelCase ): fsspec_get('s3://huggingface.co' , temp_file=lowerCamelCase ) with pytest.raises(lowerCamelCase ): fsspec_head('s3://huggingface.co' )
55
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Any = StableUnCLIPPipeline lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase = 3_2 lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=UpperCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=UpperCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase__ ) lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase__ , layers_per_block=1 , upcast_attention=UpperCAmelCase__ , use_linear_projection=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL() lowerCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: if str(UpperCAmelCase__ ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase__ ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = pipe('anime turle' , generator=UpperCAmelCase__ , output_type='np' ) lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
55
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Dict = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
168
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
99
0
'''simple docstring''' import os def UpperCAmelCase_ (): """simple docstring""" _a : Any = os.path.dirname(os.path.realpath(__a ) ) _a : Optional[int] = os.path.join(__a , 'triangle.txt' ) with open(__a ) as f: _a : int = f.readlines() _a : str = [] for line in triangle: _a : str = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__a ) ) a.append(__a ) for i in range(1 , len(__a ) ): for j in range(len(a[i] ) ): _a : List[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 _a : int = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__a , __a ) return max(a[-1] ) if __name__ == "__main__": print(solution())
5
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = BlenderbotSmallTokenizer __UpperCAmelCase : Tuple = False def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() _a : List[str] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _a : List[Any] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : List[Any] ,**_a : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Tuple ,_a : int ): '''simple docstring''' _a : Optional[Any] = 'adapt act apte' _a : Dict = 'adapt act apte' return input_text, output_text def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _a : Union[str, Any] = 'adapt act apte' _a : Dict = ['adapt', 'act', 'ap@@', 'te'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _a : Union[str, Any] = 'I am a small frog.' _a : int = tok([src_text] ,padding=_a ,truncation=_a )['input_ids'] _a : str = tok.batch_decode(_a ,skip_special_tokens=_a ,clean_up_tokenization_spaces=_a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _a : Union[str, Any] = 'I am a small frog .' _a : Optional[Any] = '.' _a : Optional[Any] = tok(_a )['input_ids'] _a : Union[str, Any] = tok(_a )['input_ids'] assert encoded[-1] == encoded_dot[0]
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Union[str, Any] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a__: List[str] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) A__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = generator.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''',torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=50,output_type='''numpy''' ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
193
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=3 , lowerCAmelCase=32 , lowerCAmelCase=3 , lowerCAmelCase=10 , lowerCAmelCase=[10, 20, 30, 40] , lowerCAmelCase=[1, 1, 2, 1] , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="relu" , lowerCAmelCase=3 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = image_size snake_case = num_channels snake_case = embeddings_size snake_case = hidden_sizes snake_case = depths snake_case = is_training snake_case = use_labels snake_case = hidden_act snake_case = num_labels snake_case = scope snake_case = len(lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.num_labels ) snake_case = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = TFResNetModel(config=lowerCAmelCase ) snake_case = model(lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = TFResNetForImageClassification(lowerCAmelCase ) snake_case = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case = config_and_inputs snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _lowerCAmelCase : Dict = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Any = False _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : List[str] = False _lowerCAmelCase : int = False def snake_case ( self ): """simple docstring""" snake_case = TFResNetModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(lowerCAmelCase ) snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): snake_case = model_class(lowerCAmelCase ) snake_case = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case = layer_type snake_case = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = TFResNetModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCAmelCase__ ( ) -> Optional[Any]: """simple docstring""" snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" snake_case = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=lowerCAmelCase , return_tensors='tf' ) # forward pass snake_case = model(**lowerCAmelCase ) # verify the logits snake_case = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) snake_case = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase , atol=1E-4 ) )
149
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase : Optional[datasets.Features] = None def lowerCAmelCase__ ( _UpperCamelCase : "pyspark.sql.DataFrame" , _UpperCamelCase : List[int] , ) -> Dict: """simple docstring""" import pyspark def generate_fn(): snake_case = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: snake_case = df_with_partition_id.select('*' ).where(f"""part_id = {partition_id}""" ).drop('part_id' ) snake_case = partition_df.collect() snake_case = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class lowerCAmelCase_ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=None , ): """simple docstring""" snake_case = df snake_case = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): """simple docstring""" yield from self.generate_examples_fn() def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = self.split_shard_indices_by_worker(lowerCAmelCase , lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase ) @property def snake_case ( self ): """simple docstring""" return len(self.partition_order ) class lowerCAmelCase_ ( datasets.DatasetBuilder ): """simple docstring""" _lowerCAmelCase : List[str] = SparkConfig def __init__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): """simple docstring""" import pyspark snake_case = pyspark.sql.SparkSession.builder.getOrCreate() snake_case = df snake_case = working_dir super().__init__( cache_dir=lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **lowerCAmelCase , ) def snake_case ( self ): """simple docstring""" def create_cache_and_write_probe(lowerCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCAmelCase ) snake_case = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCAmelCase , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def snake_case ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def snake_case ( self , lowerCAmelCase ): """simple docstring""" import pyspark def get_arrow_batch_size(lowerCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) snake_case = self.df.count() snake_case = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case = ( self.df.limit(lowerCAmelCase ) .repartition(1 ) .mapInArrow(lowerCAmelCase , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case = min(lowerCAmelCase , int(approx_total_size / max_shard_size ) ) snake_case = self.df.repartition(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" import pyspark snake_case = ParquetWriter if file_format == 'parquet' else ArrowWriter snake_case = os.path.join(self._working_dir , os.path.basename(lowerCAmelCase ) ) if self._working_dir else fpath snake_case = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case = self.config.features snake_case = self._writer_batch_size snake_case = self._fs.storage_options def write_arrow(lowerCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case = pyspark.TaskContext().taskAttemptId() snake_case = next(lowerCAmelCase , lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) snake_case = 0 snake_case = writer_class( features=lowerCAmelCase , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) snake_case = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case ,snake_case = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 snake_case = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase , storage_options=lowerCAmelCase , embed_local_files=lowerCAmelCase , ) snake_case = pa.Table.from_batches([batch] ) writer.write_table(lowerCAmelCase ) if writer._num_bytes > 0: snake_case ,snake_case = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCAmelCase ) ): snake_case = os.path.join(os.path.dirname(lowerCAmelCase ) , os.path.basename(lowerCAmelCase ) ) shutil.move(lowerCAmelCase , lowerCAmelCase ) snake_case = ( self.df.mapInArrow(lowerCAmelCase , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = "arrow" , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): """simple docstring""" self._validate_cache_dir() snake_case = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCAmelCase ) snake_case = not is_remote_filesystem(self._fs ) snake_case = os.path.join if is_local else posixpath.join snake_case = '-TTTTT-SSSSS-of-NNNNN' snake_case = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" snake_case = path_join(self._output_dir , lowerCAmelCase ) snake_case = 0 snake_case = 0 snake_case = 0 snake_case = [] snake_case = [] for task_id, content in self._prepare_split_single(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCAmelCase ) snake_case = total_num_examples snake_case = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: snake_case = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): rename( lowerCAmelCase , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) snake_case = [] snake_case = 0 for i in range(len(lowerCAmelCase ) ): snake_case ,snake_case = task_id_and_num_shards[i] for shard_id in range(lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCAmelCase , len(lowerCAmelCase ) ).map(lambda lowerCAmelCase : _rename_shard(*lowerCAmelCase ) ).collect() else: # don't use any pattern snake_case = 0 snake_case = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(lowerCAmelCase , '' ) , ) def snake_case ( self , lowerCAmelCase , ): """simple docstring""" return SparkExamplesIterable(self.df )
149
1
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A_ : List[str] = """bert-base-cased""" A_ : Tuple = """google/pegasus-xsum""" A_ : Union[str, Any] = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] A_ : List[str] = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] A_ : Dict = """patrickvonplaten/t5-tiny-random""" A_ : int = """sshleifer/bart-tiny-random""" A_ : Optional[int] = """sshleifer/tiny-mbart""" A_ : Any = """sshleifer/tiny-marian-en-de""" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = """\n""".join(lowerCAmelCase_ ) Path(lowerCAmelCase_ ).open("""w""" ).writelines(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase_ , F'''{split}.source''' ) , lowerCAmelCase_ ) _dump_articles(os.path.join(lowerCAmelCase_ , F'''{split}.target''' ) , lowerCAmelCase_ ) return tmp_dir class lowercase ( _lowerCamelCase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) @slow def _snake_case ( self ,a_ ) -> List[Any]: _UpperCAmelCase : str = AutoTokenizer.from_pretrained(a_ ) _UpperCAmelCase : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCAmelCase : Union[str, Any] = max(len(tokenizer.encode(a_ ) ) for a in ARTICLES ) _UpperCAmelCase : Tuple = max(len(tokenizer.encode(a_ ) ) for a in SUMMARIES ) _UpperCAmelCase : Any = 4 _UpperCAmelCase : Optional[int] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _UpperCAmelCase ,_UpperCAmelCase : str = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. _UpperCAmelCase : Dict = SeqaSeqDataset( a_ ,data_dir=a_ ,type_path="""train""" ,max_source_length=a_ ,max_target_length=a_ ,src_lang=a_ ,tgt_lang=a_ ,) _UpperCAmelCase : Tuple = DataLoader(a_ ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(a_ ,a_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _UpperCAmelCase : Any = shift_tokens_right(batch["""labels"""] ,tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _snake_case ( self ,a_ ) -> str: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(a_ ) _UpperCAmelCase : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCAmelCase : List[str] = max(len(tokenizer.encode(a_ ) ) for a in ARTICLES ) _UpperCAmelCase : Tuple = max(len(tokenizer.encode(a_ ) ) for a in SUMMARIES ) _UpperCAmelCase : Tuple = 4 _UpperCAmelCase : List[Any] = LegacySeqaSeqDataset( a_ ,data_dir=a_ ,type_path="""train""" ,max_source_length=20 ,max_target_length=a_ ,) _UpperCAmelCase : int = DataLoader(a_ ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : str = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) _UpperCAmelCase : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _UpperCAmelCase : Dict = tmp_dir.joinpath("""train.source""" ).open().readlines() _UpperCAmelCase : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(a_ ,a_ ,128 ,a_ ) _UpperCAmelCase : List[str] = {x.name for x in tmp_dir.iterdir()} _UpperCAmelCase : Tuple = {x.name for x in save_dir.iterdir()} _UpperCAmelCase : List[str] = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(a_ ) < len(a_ ) assert len(a_ ) == 1 assert len(packed_examples[0] ) == sum(len(a_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE ,reason="""This test requires fairseq""" ) def _snake_case ( self ) -> int: if not FAIRSEQ_AVAILABLE: return _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._get_dataset(max_len=64 ) _UpperCAmelCase : Any = 64 _UpperCAmelCase : List[str] = ds.make_dynamic_sampler(a_ ,required_batch_size_multiple=a_ ) _UpperCAmelCase : Dict = [len(a_ ) for x in batch_sampler] assert len(set(a_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(a_ ) == len(a_ ) # no dropped or added examples _UpperCAmelCase : Union[str, Any] = DataLoader(a_ ,batch_sampler=a_ ,collate_fn=ds.collate_fn ,num_workers=2 ) _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = [] for batch in data_loader: _UpperCAmelCase : Optional[Any] = batch["""input_ids"""].shape _UpperCAmelCase : Tuple = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _UpperCAmelCase : Tuple = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(a_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(a_ ) assert num_src_per_batch[0] == max(a_ ) if failures: raise AssertionError(f'''too many tokens in {len(a_ )} batches''' ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._get_dataset(max_len=512 ) _UpperCAmelCase : Optional[Any] = 2 _UpperCAmelCase : Optional[Any] = ds.make_sortish_sampler(a_ ,shuffle=a_ ) _UpperCAmelCase : Optional[int] = DataLoader(a_ ,batch_size=a_ ,collate_fn=ds.collate_fn ,num_workers=2 ) _UpperCAmelCase : str = DataLoader(a_ ,batch_size=a_ ,collate_fn=ds.collate_fn ,num_workers=2 ,sampler=a_ ) _UpperCAmelCase : Union[str, Any] = tokenizer.pad_token_id def count_pad_tokens(a_ ,a_="input_ids" ): return [batch[k].eq(a_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(a_ ,k="""labels""" ) ) < sum(count_pad_tokens(a_ ,k="""labels""" ) ) assert sum(count_pad_tokens(a_ ) ) < sum(count_pad_tokens(a_ ) ) assert len(a_ ) == len(a_ ) def _snake_case ( self ,a_=1_000 ,a_=128 ) -> List[str]: if os.getenv("""USE_REAL_DATA""" ,a_ ): _UpperCAmelCase : List[Any] = """examples/seq2seq/wmt_en_ro""" _UpperCAmelCase : int = max_len * 2 * 64 if not Path(a_ ).joinpath("""train.len""" ).exists(): save_len_file(a_ ,a_ ) else: _UpperCAmelCase : Any = """examples/seq2seq/test_data/wmt_en_ro""" _UpperCAmelCase : Tuple = max_len * 4 save_len_file(a_ ,a_ ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(a_ ) _UpperCAmelCase : Tuple = SeqaSeqDataset( a_ ,data_dir=a_ ,type_path="""train""" ,max_source_length=a_ ,max_target_length=a_ ,n_obs=a_ ,) return ds, max_tokens, tokenizer def _snake_case ( self ) -> List[str]: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = self._get_dataset() _UpperCAmelCase : Any = set(DistributedSortishSampler(a_ ,256 ,num_replicas=2 ,rank=0 ,add_extra_examples=a_ ) ) _UpperCAmelCase : Dict = set(DistributedSortishSampler(a_ ,256 ,num_replicas=2 ,rank=1 ,add_extra_examples=a_ ) ) assert idsa.intersection(a_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) def _snake_case ( self ,a_ ) -> Any: _UpperCAmelCase : str = AutoTokenizer.from_pretrained(a_ ,use_fast=a_ ) if tok_name == MBART_TINY: _UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( a_ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path="""train""" ,max_source_length=4 ,max_target_length=8 ,src_lang="""EN""" ,tgt_lang="""FR""" ,) _UpperCAmelCase : Dict = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( a_ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path="""train""" ,max_source_length=4 ,max_target_length=8 ,) _UpperCAmelCase : Union[str, Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(a_ ) == 1 if tok_name == BART_TINY else len(a_ ) == 0
215
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } A_ : Dict = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = EfficientNetConfig() _UpperCAmelCase : List[Any] = CONFIG_MAP[model_name]["""hidden_dim"""] _UpperCAmelCase : str = CONFIG_MAP[model_name]["""width_coef"""] _UpperCAmelCase : int = CONFIG_MAP[model_name]["""depth_coef"""] _UpperCAmelCase : Optional[Any] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : List[str] = CONFIG_MAP[model_name]["""dropout_rate"""] _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""dw_padding"""] _UpperCAmelCase : List[str] = """huggingface/label-files""" _UpperCAmelCase : Optional[Any] = """imagenet-1k-id2label.json""" _UpperCAmelCase : List[str] = 1000 _UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : str = {v: k for k, v in idalabel.items()} return config def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Tuple = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : str = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Tuple = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=lowerCAmelCase_ , ) return preprocessor def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : int = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] _UpperCAmelCase : Optional[int] = sorted(set(lowerCAmelCase_ ) ) _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = {b: str(lowerCAmelCase_ ) for b, i in zip(lowerCAmelCase_ , range(lowerCAmelCase_ ) )} _UpperCAmelCase : List[str] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: _UpperCAmelCase : Any = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) _UpperCAmelCase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: _UpperCAmelCase : str = """efficientnet.""" + item[1] _UpperCAmelCase : Optional[Any] = """classifier.weight""" _UpperCAmelCase : Optional[Any] = """classifier.bias""" return key_mapping def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue _UpperCAmelCase : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _UpperCAmelCase : int = torch.from_numpy(np.transpose(lowerCAmelCase_ ) ) else: _UpperCAmelCase : List[str] = torch.from_numpy(lowerCAmelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = model_classes[model_name]( include_top=lowerCAmelCase_ , weights="""imagenet""" , input_tensor=lowerCAmelCase_ , input_shape=lowerCAmelCase_ , pooling=lowerCAmelCase_ , classes=1000 , classifier_activation="""softmax""" , ) _UpperCAmelCase : List[str] = original_model.trainable_variables _UpperCAmelCase : Any = original_model.non_trainable_variables _UpperCAmelCase : Optional[int] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCAmelCase : Dict = param.numpy() _UpperCAmelCase : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model _UpperCAmelCase : List[Any] = get_efficientnet_config(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(lowerCAmelCase_ ).eval() _UpperCAmelCase : int = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) _UpperCAmelCase : Optional[int] = rename_keys(lowerCAmelCase_ ) replace_params(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Initialize preprocessor and preprocess input image _UpperCAmelCase : str = convert_image_processor(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = hf_model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference _UpperCAmelCase : int = False _UpperCAmelCase : Optional[int] = CONFIG_MAP[model_name]["""image_size"""] _UpperCAmelCase : Dict = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _UpperCAmelCase : Optional[Any] = image.img_to_array(lowerCAmelCase_ ) _UpperCAmelCase : str = np.expand_dims(lowerCAmelCase_ , axis=0 ) _UpperCAmelCase : str = original_model.predict(lowerCAmelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase_ ): os.mkdir(lowerCAmelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase_ ) preprocessor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _UpperCAmelCase : List[Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCAmelCase_ ) hf_model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") A_ : Optional[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
215
1
import sys from collections import defaultdict class a__ : def __init__( self ) -> int: __a = [] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[Any]: return self.node_position[vertex] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: __a = pos def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __a = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __a = 2 * start + 1 else: __a = 2 * start + 2 if heap[smallest_child] < heap[start]: __a , __a = heap[smallest_child], positions[smallest_child] __a , __a = ( heap[start], positions[start], ) __a , __a = temp, tempa __a = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCAmelCase ) self.top_to_bottom(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: __a = position[index] while index != 0: __a = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __a = heap[parent] __a = position[parent] self.set_position(position[parent] , UpperCAmelCase ) else: __a = val __a = temp self.set_position(UpperCAmelCase , UpperCAmelCase ) break __a = parent else: __a = val __a = temp self.set_position(UpperCAmelCase , 0 ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: __a = len(UpperCAmelCase ) // 2 - 1 for i in range(UpperCAmelCase , -1 , -1 ): self.top_to_bottom(UpperCAmelCase , UpperCAmelCase , len(UpperCAmelCase ) , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: __a = positions[0] __a = sys.maxsize self.top_to_bottom(UpperCAmelCase , 0 , len(UpperCAmelCase ) , UpperCAmelCase ) return temp def lowerCAmelCase( __lowerCamelCase ): __a = Heap() __a = [0] * len(__lowerCamelCase ) __a = [-1] * len(__lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __a = [] # Heap of Distance of vertices from their neighboring vertex __a = [] for vertex in range(len(__lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowerCamelCase ) heap.node_position.append(__lowerCamelCase ) __a = [] __a = 1 __a = sys.maxsize for neighbor, distance in adjacency_list[0]: __a = 0 __a = distance heap.heapify(__lowerCamelCase , __lowerCamelCase ) for _ in range(1 , len(__lowerCamelCase ) ): __a = heap.delete_minimum(__lowerCamelCase , __lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __a = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowerCamelCase )] ): __a = distance heap.bottom_to_top( __lowerCamelCase , heap.get_position(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase ) __a = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCamelCase_ : Optional[int] = int(input("""Enter number of edges: """).strip()) lowerCamelCase_ : Dict = defaultdict(list) for _ in range(edges_number): lowerCamelCase_ : Optional[Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
197
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a__ : def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = inputs['prompt'] __a = inputs['generator'] __a = inputs['num_inference_steps'] __a = inputs['output_type'] if "image" in inputs: __a = inputs['image'] else: __a = None if "mask_image" in inputs: __a = inputs['mask_image'] else: __a = None if "original_image" in inputs: __a = inputs['original_image'] else: __a = None __a , __a = pipe.encode_prompt(UpperCAmelCase ) # inputs with prompt converted to embeddings __a = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __a = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) __a = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = inputs['generator'] __a = inputs['num_inference_steps'] __a = inputs['output_type'] # inputs with prompt converted to embeddings __a = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image __a = pipe_loaded(**UpperCAmelCase )[0] __a = np.abs(to_np(UpperCAmelCase ) - to_np(UpperCAmelCase ) ).max() self.assertLess(UpperCAmelCase , 1e-4 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) __a = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __a = self.get_dummy_inputs(UpperCAmelCase ) __a = pipe_loaded(**UpperCAmelCase )[0] __a = np.abs(to_np(UpperCAmelCase ) - to_np(UpperCAmelCase ) ).max() self.assertLess(UpperCAmelCase , 1e-4 )
197
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] =AltDiffusionPipeline UpperCAmelCase__ : int =TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : Union[str, Any] =TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : List[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : List[str] ) ->int: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextModel(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) SCREAMING_SNAKE_CASE : Tuple = 7_7 SCREAMING_SNAKE_CASE : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any]=0 ) ->Optional[int]: """simple docstring""" if str(UpperCAmelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : Any ) ->List[str]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowercase ( self : Any ) ->Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowercase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE : List[str] = RobertaSeriesModelWithTransformation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = text_encoder SCREAMING_SNAKE_CASE : Any = AltDiffusionPipeline(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = alt_pipe.to(UpperCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = """A photo of an astronaut""" SCREAMING_SNAKE_CASE : Union[str, Any] = alt_pipe(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Dict ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE : Dict = RobertaSeriesModelWithTransformation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = text_encoder SCREAMING_SNAKE_CASE : List[str] = AltDiffusionPipeline(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = alt_pipe.to(UpperCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = alt_pipe(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE : str = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ) ->Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : str ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = alt_pipe.to(UpperCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = alt_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2_0 , output_type="""np""" ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : List[str] ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE : int = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = alt_pipe.to(UpperCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = alt_pipe([prompt] , generator=UpperCAmelCase__ , num_inference_steps=2 , output_type="""numpy""" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE : int = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
245
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCAmelCase__ : Tuple = TypeVar("""T""") class a__ ( Generic[T] ): """simple docstring""" def __init__( self : str , UpperCAmelCase__ : bool = True ) ->None: """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, list[T]] = {} # dictionary of lists SCREAMING_SNAKE_CASE : Dict = directed def _lowercase ( self : int , UpperCAmelCase__ : T , UpperCAmelCase__ : T ) ->GraphAdjacencyList[T]: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) self.adj_list[destination_vertex].append(UpperCAmelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE : Tuple = [destination_vertex] SCREAMING_SNAKE_CASE : str = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE : Dict = [destination_vertex] SCREAMING_SNAKE_CASE : List[Any] = [] return self def __repr__( self : Dict ) ->str: """simple docstring""" return pformat(self.adj_list )
245
1
import logging from transformers.configuration_utils import PretrainedConfig a =logging.getLogger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = '''masked_bert''' def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_5_2_2 ,SCREAMING_SNAKE_CASE__ : str=7_6_8 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=2 ,SCREAMING_SNAKE_CASE__ : List[str]=0.02 ,SCREAMING_SNAKE_CASE__ : str=1E-12 ,SCREAMING_SNAKE_CASE__ : List[str]=0 ,SCREAMING_SNAKE_CASE__ : int="topK" ,SCREAMING_SNAKE_CASE__ : Any="constant" ,SCREAMING_SNAKE_CASE__ : int=0.0 ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Dict = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : Tuple = type_vocab_size __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : Optional[Any] = pruning_method __lowerCamelCase : List[Any] = mask_init __lowerCamelCase : Dict = mask_scale
113
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a ={ """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
113
1
'''simple docstring''' # Lint as: python3 import itertools import os import re __a = re.compile(R'([A-Z]+)([A-Z][a-z])') __a = re.compile(R'([a-z\d])([A-Z])') __a = re.compile(R'(?<!_)_(?!_)') __a = re.compile(R'(_{2,})') __a = R'^\w+(\.\w+)*$' __a = R'<>:/\|?*' def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Any = _uppercase_uppercase_re.sub(r"\1_\2", a_ ) _UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(r"\1_\2", a_ ) return name.lower() def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[Any] = _single_underscore_re.split(a_ ) _UpperCAmelCase : Optional[int] = [_multiple_underscores_re.split(a_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(a_ ) if n != "" ) def __UpperCAmelCase ( a_: Optional[Any] ): if os.path.basename(a_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(a_ ) def __UpperCAmelCase ( a_: Tuple, a_: Optional[Any] ): if os.path.basename(a_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re, a_ ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(a_ )}-{split}""" def __UpperCAmelCase ( a_: List[str], a_: str, a_: Any, a_: Dict=None ): _UpperCAmelCase : Any = filename_prefix_for_split(a_, a_ ) if filetype_suffix: prefix += f""".{filetype_suffix}""" _UpperCAmelCase : List[Any] = os.path.join(a_, a_ ) return f"""{filepath}*""" def __UpperCAmelCase ( a_: Dict, a_: str, a_: Union[str, Any], a_: Optional[Any]=None, a_: Tuple=None ): _UpperCAmelCase : Dict = filename_prefix_for_split(a_, a_ ) _UpperCAmelCase : List[str] = os.path.join(a_, a_ ) if shard_lengths: _UpperCAmelCase : Dict = len(a_ ) _UpperCAmelCase : Optional[Any] = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(a_ )] if filetype_suffix: _UpperCAmelCase : Any = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: _UpperCAmelCase : List[str] = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
145
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''ibert''' def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-12 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Optional[Any]="absolute" , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple="none" , **lowerCAmelCase__ : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Any = quant_mode _UpperCAmelCase : Optional[Any] = force_dequant class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
145
1
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(UpperCAmelCase_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def _snake_case ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(UpperCAmelCase_ ): http_head("""https://huggingface.co""" )
69
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[int] , **UpperCamelCase: Optional[int] ): """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
69
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase__ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } lowerCAmelCase__ = { """facebook/m2m100_418M""": 1_0_2_4, } # fmt: off lowerCAmelCase__ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = ['input_ids', 'attention_mask'] __lowerCamelCase = [] __lowerCamelCase = [] def __init__( self , lowercase , lowercase , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<pad>" , lowercase="<unk>" , lowercase="m2m100" , lowercase = None , lowercase=8 , **lowercase , ) -> None: '''simple docstring''' A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = language_codes A__ = FAIRSEQ_LANGUAGE_CODES[language_codes] A__ = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} A__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) A__ = vocab_file A__ = load_json(lowercase ) A__ = {v: k for k, v in self.encoder.items()} A__ = spm_file A__ = load_spm(lowercase , self.sp_model_kwargs ) A__ = len(self.encoder ) A__ = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } A__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} A__ = {v: k for k, v in self.lang_token_to_id.items()} A__ = src_lang if src_lang is not None else "en" A__ = tgt_lang A__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A__ = num_madeup_words @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self , lowercase ) -> None: '''simple docstring''' A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowercase , out_type=lowercase ) def UpperCamelCase ( self , lowercase ) -> Optional[Any]: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def UpperCamelCase ( self , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = [] A__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token A__ = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def UpperCamelCase ( self , lowercase , lowercase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , lowercase ) -> None: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: '''simple docstring''' A__ = Path(lowercase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) A__ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) A__ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def UpperCamelCase ( self , lowercase , lowercase = "en" , lowercase = None , lowercase = "ro" , **lowercase , ) -> BatchEncoding: '''simple docstring''' A__ = src_lang A__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , **lowercase ) -> Optional[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A__ = src_lang A__ = self(lowercase , add_special_tokens=lowercase , **lowercase ) A__ = self.get_lang_id(lowercase ) A__ = tgt_lang_id return inputs def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self , lowercase ) -> None: '''simple docstring''' A__ = self.get_lang_token(lowercase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def UpperCamelCase ( self , lowercase ) -> None: '''simple docstring''' A__ = self.get_lang_token(lowercase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' A__ = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' A__ = sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE_ ) spm.Load(str(SCREAMING_SNAKE_CASE_ ) ) return spm def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> Union[Dict, List]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , "r" ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str ) -> None: '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=2 )
68
def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(1_00, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
142
0
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( A_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ProphetNetTokenizer _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : Any ): super().setUp() lowerCAmelCase_ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : int = "UNwant\u00E9d,running" lowerCAmelCase_ : Dict = "unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ : int = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Optional[Any] = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Any = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Any = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=snake_case__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ : List[str] = {} for i, token in enumerate(snake_case__ ): lowerCAmelCase_ : Optional[int] = i lowerCAmelCase_ : Tuple = WordpieceTokenizer(vocab=snake_case__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) lowerCAmelCase_ : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCAmelCase_ : Union[str, Any] = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] lowerCAmelCase_ : Optional[Any] = tokenizer(snake_case__ , padding=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase_ : Any = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) lowerCAmelCase_ : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=snake_case__ ) lowerCAmelCase_ : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case__ ) lowerCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(snake_case__ ) lowerCAmelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
360
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> List[Any]: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str=0 ) -> Union[str, Any]: """simple docstring""" return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[column] ) def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=float('inf' ) ) -> Optional[int]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCAmelCase__ ): lowerCAmelCase_ : Union[str, Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCAmelCase_ : Optional[int] = current_dis return min_dis def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=float('inf' ) ) -> Dict: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , lowerCAmelCase__ ): for j in range(max(0 , i - 6 ) , lowerCAmelCase__ ): lowerCAmelCase_ : Any = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCAmelCase_ : Union[str, Any] = current_dis return min_dis def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ) -> Dict: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase__ , lowerCAmelCase__ ) # recursion lowerCAmelCase_ : int = points_counts // 2 lowerCAmelCase_ : Optional[Any] = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[:mid] , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCAmelCase_ : Any = min(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = dis_between_closest_in_strip( lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return min(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : List[str] = column_based_sort(lowerCAmelCase__ , column=0 ) lowerCAmelCase_ : Dict = column_based_sort(lowerCAmelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) ** 0.5 if __name__ == "__main__": lowercase__ : List[str] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
289
0
import heapq def lowerCamelCase__ ( A__ : dict ): '''simple docstring''' __lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A__ , [-1 * len(A__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowerCamelCase = heapq.heappop(A__ )[1][0] chosen_vertices.add(A__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowerCamelCase = elem[1][1].index(A__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
12
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = (PNDMScheduler,) lowerCamelCase = (('''num_inference_steps''', 50),) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> int: A_ : Tuple = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowerCamelCase ) return config def UpperCAmelCase_ ( self , _lowerCamelCase=0 , **_lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = dict(self.forward_default_kwargs ) A_ : Tuple = kwargs.pop("""num_inference_steps""" , _lowerCamelCase ) A_ : Union[str, Any] = self.dummy_sample A_ : str = 0.1 * sample A_ : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ : Any = self.get_scheduler_config(**_lowerCamelCase ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals A_ : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCamelCase ) A_ : Tuple = scheduler_class.from_pretrained(_lowerCamelCase ) new_scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals A_ : Any = dummy_past_residuals[:] A_ : List[str] = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample A_ : str = new_scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ : Union[str, Any] = scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample A_ : int = new_scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self ) -> List[Any]: pass def UpperCAmelCase_ ( self , _lowerCamelCase=0 , **_lowerCamelCase ) -> List[str]: A_ : int = dict(self.forward_default_kwargs ) A_ : int = kwargs.pop("""num_inference_steps""" , _lowerCamelCase ) A_ : Dict = self.dummy_sample A_ : str = 0.1 * sample A_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ : List[Any] = self.get_scheduler_config() A_ : int = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) A_ : Any = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCamelCase ) A_ : int = scheduler_class.from_pretrained(_lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) A_ : Optional[int] = dummy_past_residuals[:] A_ : List[Any] = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample A_ : Tuple = new_scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ : Dict = scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample A_ : Union[str, Any] = new_scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> Union[str, Any]: A_ : List[str] = self.scheduler_classes[0] A_ : str = self.get_scheduler_config(**_lowerCamelCase ) A_ : List[Any] = scheduler_class(**_lowerCamelCase ) A_ : Optional[int] = 10 A_ : Union[str, Any] = self.dummy_model() A_ : str = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): A_ : str = model(_lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A_ : List[str] = model(_lowerCamelCase , _lowerCamelCase ) A_ : int = scheduler.step_plms(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self ) -> int: A_ : str = dict(self.forward_default_kwargs ) A_ : Optional[int] = kwargs.pop("""num_inference_steps""" , _lowerCamelCase ) for scheduler_class in self.scheduler_classes: A_ : Any = self.get_scheduler_config() A_ : Tuple = scheduler_class(**_lowerCamelCase ) A_ : List[str] = self.dummy_sample A_ : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(_lowerCamelCase , """set_timesteps""" ): scheduler.set_timesteps(_lowerCamelCase ) elif num_inference_steps is not None and not hasattr(_lowerCamelCase , """set_timesteps""" ): A_ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ : List[Any] = dummy_past_residuals[:] A_ : Union[str, Any] = scheduler.step_prk(_lowerCamelCase , 0 , _lowerCamelCase , **_lowerCamelCase ).prev_sample A_ : List[str] = scheduler.step_prk(_lowerCamelCase , 1 , _lowerCamelCase , **_lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ : Optional[Any] = scheduler.step_plms(_lowerCamelCase , 0 , _lowerCamelCase , **_lowerCamelCase ).prev_sample A_ : List[Any] = scheduler.step_plms(_lowerCamelCase , 1 , _lowerCamelCase , **_lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self ) -> Optional[Any]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCamelCase ) A_ : Any = self.scheduler_classes[0] A_ : Tuple = self.get_scheduler_config(steps_offset=1 ) A_ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCAmelCase_ ( self ) -> Tuple: for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 A_ : int = 27 for scheduler_class in self.scheduler_classes: A_ : int = self.dummy_sample A_ : List[Any] = 0.1 * sample A_ : Any = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(_lowerCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A_ : List[Any] = scheduler.step_prk(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample def UpperCAmelCase_ ( self ) -> List[Any]: with self.assertRaises(_lowerCamelCase ): A_ : Tuple = self.scheduler_classes[0] A_ : Optional[int] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**_lowerCamelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase_ ( self ) -> int: A_ : List[Any] = self.full_loop() A_ : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def UpperCAmelCase_ ( self ) -> List[str]: A_ : List[Any] = self.full_loop(prediction_type="""v_prediction""" ) A_ : Union[str, Any] = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def UpperCAmelCase_ ( self ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 A_ : Any = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) A_ : Union[str, Any] = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Tuple = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def UpperCAmelCase_ ( self ) -> str: # We specify different beta, so that the first alpha is 0.99 A_ : List[str] = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) A_ : str = torch.sum(torch.abs(_lowerCamelCase ) ) A_ : Optional[int] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase__ : Any = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
164
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A =logging.get_logger(__name__) A ={'vocab_file': 'spiece.model'} A ={ 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class _a ( __snake_case ): def __init__( self : Tuple , lowercase : Tuple , lowercase : List[str]=False , lowercase : List[Any]=True , lowercase : Tuple=False , lowercase : List[Any]="<s>" , lowercase : Dict="</s>" , lowercase : Any="<unk>" , lowercase : Dict="<sep>" , lowercase : List[Any]="<pad>" , lowercase : List[str]="<cls>" , lowercase : Optional[Any]="<mask>" , lowercase : List[Any]=["<eop>", "<eod>"] , lowercase : Optional[Dict[str, Any]] = None , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCAmelCase = 3 UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) UpperCAmelCase = jieba UpperCAmelCase = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A ( self : Dict ): '''simple docstring''' return len(self.sp_model ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Optional[Any] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[Any] , lowercase : int ): '''simple docstring''' if self.remove_space: UpperCAmelCase = """ """.join(inputs.strip().split() ) else: UpperCAmelCase = inputs UpperCAmelCase = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: UpperCAmelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_ ) UpperCAmelCase = """""".join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: UpperCAmelCase = outputs.lower() return outputs def A ( self : Any , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.preprocess_text(lowerCamelCase_ ) UpperCAmelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) UpperCAmelCase = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase = cur_pieces[1:] else: UpperCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def A ( self : str , lowercase : str ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase_ ) def A ( self : Dict , lowercase : int ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase_ ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = """""".join(lowerCamelCase_ ).replace(lowerCamelCase_ , ''' ''' ).strip() return out_string def A ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] return ([0] * len(lowerCamelCase_ )) + [1, 1] def A ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A ( self : Tuple , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def A ( self : Union[str, Any] , *lowercase : Any , **lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = super()._decode(*lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
34
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Tuple = ["small", "medium", "large"] UpperCamelCase : Optional[Any] = "lm_head.decoder.weight" UpperCamelCase : List[str] = "lm_head.weight" def A ( snake_case :str , snake_case :str ) -> Optional[int]: __UpperCamelCase = torch.load(snake_case ) __UpperCamelCase = d.pop(snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) torch.save(snake_case , os.path.join(snake_case , snake_case ) ) if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) UpperCamelCase : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') UpperCamelCase : Any = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
263
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["input_values", "attention_mask"] def __init__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 1_6000 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = False , __UpperCAmelCase = 80 , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = "hann_window" , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 80 , __UpperCAmelCase = 7600 , __UpperCAmelCase = 1E-10 , __UpperCAmelCase = 2 , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = do_normalize __UpperCamelCase = return_attention_mask __UpperCamelCase = num_mel_bins __UpperCamelCase = hop_length __UpperCamelCase = win_length __UpperCamelCase = win_function __UpperCamelCase = frame_signal_scale __UpperCamelCase = fmin __UpperCamelCase = fmax __UpperCamelCase = mel_floor __UpperCamelCase = reduction_factor __UpperCamelCase = win_length * sampling_rate // 1000 __UpperCamelCase = hop_length * sampling_rate // 1000 __UpperCamelCase = optimal_fft_length(self.sample_size ) __UpperCamelCase = (self.n_fft // 2) + 1 __UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCAmelCase ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 ): '''simple docstring''' if attention_mask is not None: __UpperCamelCase = np.array(__UpperCAmelCase , np.intaa ) __UpperCamelCase = [] for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ): __UpperCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __UpperCamelCase = padding_value normed_input_values.append(__UpperCAmelCase ) else: __UpperCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def UpperCAmelCase ( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = spectrogram( __UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: __UpperCamelCase = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = None if audio_target is not None: __UpperCamelCase = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) if inputs is None: return inputs_target else: __UpperCamelCase = inputs_target['input_values'] __UpperCamelCase = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: __UpperCamelCase = decoder_attention_mask return inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = isinstance(__UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): __UpperCamelCase = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [speech] # needed to make pad() work on spectrogram inputs __UpperCamelCase = self.feature_size # convert into correct format for padding if is_target: __UpperCamelCase = [self._extract_mel_features(__UpperCAmelCase ) for waveform in speech] __UpperCamelCase = BatchFeature({'input_values': features} ) __UpperCamelCase = self.num_mel_bins else: __UpperCamelCase = BatchFeature({'input_values': speech} ) __UpperCamelCase = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = feature_size_hack # convert input values to correct format __UpperCamelCase = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __UpperCamelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __UpperCamelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format __UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __UpperCamelCase = ( attention_mask if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __UpperCamelCase = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=__UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: __UpperCamelCase = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. __UpperCamelCase = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
263
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "spiece.model"} UpperCamelCase = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : List[Any]="<sep>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<cls>" , SCREAMING_SNAKE_CASE__ : str="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=["<eop>", "<eod>"] , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : int , ) -> None: lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = 3 lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = remove_space lowerCAmelCase__ = keep_accents lowerCAmelCase__ = vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) lowerCAmelCase__ = jieba lowerCAmelCase__ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def a ( self : List[str] ) -> int: return len(self.sp_model ) def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> int: lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: if self.remove_space: lowerCAmelCase__ = """ """.join(inputs.strip().split() ) else: lowerCAmelCase__ = inputs lowerCAmelCase__ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCAmelCase__ = unicodedata.normalize("NFKD" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__ )] ) if self.do_lower_case: lowerCAmelCase__ = outputs.lower() return outputs def a ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: lowerCAmelCase__ = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase__ = cur_pieces[1:] else: lowerCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE__ ) else: new_pieces.append(SCREAMING_SNAKE_CASE__ ) return new_pieces def a ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: lowerCAmelCase__ = """""".join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , " " ).strip() return out_string def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def a ( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: lowerCAmelCase__ = super()._decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
351
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowerCamelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=512 , SCREAMING_SNAKE_CASE__ : List[Any]=16 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=0 , ) -> List[Any]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = projection_dim def a ( self : Any ) -> Any: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) lowerCAmelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: lowerCAmelCase__ = TFDPRContextEncoder(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: lowerCAmelCase__ = TFDPRQuestionEncoder(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: lowerCAmelCase__ = TFDPRReader(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) snake_case__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : Dict ) -> int: lowerCAmelCase__ = TFDPRModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def a ( self : Tuple ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : List[str] ) -> Union[str, Any]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRReader.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) lowerCAmelCase__ = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase__ = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
221
0
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( _snake_case ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_snake_case ): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : int = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) SCREAMING_SNAKE_CASE__ : Tuple = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format SCREAMING_SNAKE_CASE__ : Tuple = PipelineDataFormat.from_str( format=_snake_case ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(_snake_case ,_snake_case ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = nlp SCREAMING_SNAKE_CASE__ : Tuple = reader @staticmethod def __magic_name__ (SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=SCREAMING_SNAKE_CASE__ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=SCREAMING_SNAKE_CASE__ , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=SCREAMING_SNAKE_CASE__ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=SCREAMING_SNAKE_CASE__ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=SCREAMING_SNAKE_CASE__ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._nlp, [] for entry in self._reader: SCREAMING_SNAKE_CASE__ : List[Any] = nlp(**SCREAMING_SNAKE_CASE__ ) if self._reader.is_multi_columns else nlp(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): outputs.append(SCREAMING_SNAKE_CASE__ ) else: outputs += output # Saving data if self._nlp.binary_output: SCREAMING_SNAKE_CASE__ : Tuple = self._reader.save_binary(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(SCREAMING_SNAKE_CASE__ )
25
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __call__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return {}, {}, {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = (output * 2_55 / np.max(SCREAMING_SNAKE_CASE__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE__ : List[str] = Image.fromarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Any = predicted_depth SCREAMING_SNAKE_CASE__ : Dict = depth return output_dict
25
1
"""simple docstring""" from __future__ import annotations UpperCamelCase_ = list[tuple[int, int]] UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = pos_x a_ = pos_y a_ = (pos_y, pos_x) a_ = goal_x a_ = goal_y a_ = g_cost a_ = parent a_ = self.calculate_heuristic() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = abs(self.pos_x - self.goal_x) a_ = abs(self.pos_y - self.goal_y) return dx + dy def __lt__( self , __UpperCAmelCase) ->str: return self.f_cost < other.f_cost class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _lowercase) a_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _lowercase) a_ = [self.start] a_ = [] a_ = False def UpperCAmelCase__ ( self) ->List[str]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a_ = self.open_nodes.pop(0) if current_node.pos == self.target.pos: a_ = True return self.retrace_path(_lowercase) self.closed_nodes.append(_lowercase) a_ = self.get_successors(_lowercase) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowercase) else: # retrieve the best current path a_ = self.open_nodes.pop(self.open_nodes.index(_lowercase)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowercase) else: self.open_nodes.append(_lowercase) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Dict: a_ = [] for action in delta: a_ = parent.pos_x + action[1] a_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_lowercase) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowercase , _lowercase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _lowercase , )) return successors def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Union[str, Any]: a_ = node a_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) a_ = current_node.parent path.reverse() return path if __name__ == "__main__": UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') UpperCamelCase_ = GreedyBestFirst(init, goal) UpperCamelCase_ = greedy_bf.search() if path: for pos_x, pos_y in path: UpperCamelCase_ = 2 for elem in grid: print(elem)
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" _a : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } _a : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : str ,_lowerCamelCase : str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _lowerCAmelCase : Any = ( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(_lowerCamelCase )}" ) raise ValueError(_lowerCamelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] ,3 ) if __name__ == "__main__": import doctest doctest.testmod()
44
"""simple docstring""" from math import ceil def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ) -> int: _lowerCAmelCase : Dict = list(range(0 ,_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _lowerCAmelCase : Union[str, Any] = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCamelCase ) # Missing blocks _lowerCAmelCase : int = [i for i in blocks if i not in device_map_blocks] _lowerCAmelCase : List[Any] = [i for i in device_map_blocks if i not in blocks] if len(_lowerCamelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Tuple ) -> str: _lowerCAmelCase : Optional[Any] = list(range(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = int(ceil(n_layers / len(_lowerCamelCase ) ) ) _lowerCAmelCase : Optional[int] = [layers[i : i + n_blocks] for i in range(0 ,_lowerCamelCase ,_lowerCamelCase )] return dict(zip(_lowerCamelCase ,_lowerCamelCase ) )
44
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase : Dict = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase : a__ : Union[str, Any] = PegasusConfig a__ : int = {} a__ : Union[str, Any] = "gelu" def __init__( self : Any , _lowercase : Dict , _lowercase : Tuple=13 , _lowercase : Optional[int]=7 , _lowercase : str=True , _lowercase : str=False , _lowercase : Any=99 , _lowercase : Tuple=32 , _lowercase : str=5 , _lowercase : int=4 , _lowercase : Optional[int]=37 , _lowercase : Tuple=0.1 , _lowercase : str=0.1 , _lowercase : Optional[int]=20 , _lowercase : Optional[int]=2 , _lowercase : Union[str, Any]=1 , _lowercase : Optional[int]=0 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id def a ( self : Tuple ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase = prepare_pegasus_inputs_dict(__a , __a , __a ) return config, inputs_dict def a ( self : Union[str, Any] , _lowercase : Dict , _lowercase : int , _lowercase : int ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) __UpperCAmelCase = model.decode(__a , __a ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def a ( self : Any , _lowercase : Any , _lowercase : List[str] , _lowercase : Union[str, Any] ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) __UpperCAmelCase = model.decode(__a , __a , decoder_attention_mask=__a ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowercase__ ( snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :str=None , snake_case_ :Optional[int]=None , ): if attention_mask is None: __UpperCAmelCase = np.not_equal(_UpperCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCAmelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a__ : Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) a__ : Dict = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () a__ : Dict = True a__ : List[Any] = False a__ : Dict = False a__ : Dict = False def a ( self : List[Any] ): __UpperCAmelCase = FlaxPegasusModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a ) def a ( self : List[Any] ): self.config_tester.run_common_tests() def a ( self : Any ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a ) def a ( self : Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(__a , __a ) __UpperCAmelCase = model_class(__a ) @jax.jit def encode_jitted(_lowercase : Union[str, Any] , _lowercase : Optional[Any]=None , **_lowercase : Any ): return model.encode(input_ids=__a , attention_mask=__a ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = encode_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = encode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = model_class(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __UpperCAmelCase = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowercase : List[str] , _lowercase : Dict , _lowercase : int ): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = decode_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = decode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a ( self : Dict ): for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a ) __UpperCAmelCase = np.ones((1, 1) ) __UpperCAmelCase = model(__a ) self.assertIsNotNone(__a ) @slow def a ( self : str ): __UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) __UpperCAmelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) __UpperCAmelCase = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] __UpperCAmelCase = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] __UpperCAmelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a ) __UpperCAmelCase = model.generate(**__a , num_beams=2 ).sequences __UpperCAmelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a ) assert tgt_text == decoded
350
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowercase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : str , *_lowercase : Tuple , **_lowercase : List[Any] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type(_lowercase ) def a ( self : int , _lowercase : Dict=None , _lowercase : List[Any]=None , _lowercase : int=None , **_lowercase : Dict ): __UpperCAmelCase , __UpperCAmelCase = {}, {} if padding is not None: __UpperCAmelCase = padding if truncation is not None: __UpperCAmelCase = truncation if top_k is not None: __UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , _lowercase : Union["Image.Image", str] , _lowercase : str = None , **_lowercase : Optional[Any] ): if isinstance(_lowercase , (Image.Image, str) ) and isinstance(_lowercase , _lowercase ): __UpperCAmelCase = {'''image''': image, '''question''': question} else: __UpperCAmelCase = image __UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) return results def a ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Any=False , _lowercase : Union[str, Any]=False ): __UpperCAmelCase = load_image(inputs['''image'''] ) __UpperCAmelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_lowercase , truncation=_lowercase ) __UpperCAmelCase = self.image_processor(images=_lowercase , return_tensors=self.framework ) model_inputs.update(_lowercase ) return model_inputs def a ( self : Optional[Any] , _lowercase : str ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : str , _lowercase : Optional[int] , _lowercase : Any=5 ): if top_k > self.model.config.num_labels: __UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase = model_outputs.logits.sigmoid()[0] __UpperCAmelCase , __UpperCAmelCase = probs.topk(_lowercase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase = scores.tolist() __UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowercase , _lowercase )]
86
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' __lowercase = parent def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return {} def UpperCAmelCase ( ): """simple docstring""" __lowercase = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __lowercase = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : str = MarkupLMFeatureExtractor if is_bsa_available() else None def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = MarkupLMFeatureExtractionTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.feature_extraction_class() # Test not batched input __lowercase = get_html_strings()[0] __lowercase = feature_extractor(lowerCAmelCase__ ) # fmt: off __lowercase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __lowercase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __lowercase = get_html_strings() __lowercase = feature_extractor(lowerCAmelCase__ ) # fmt: off __lowercase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __lowercase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
210
import requests def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = {'''Content-Type''': '''application/json'''} __lowercase = requests.post(lowercase , json={'''text''': message_body} , headers=lowercase ) if response.status_code != 200: __lowercase = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
210
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger() @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :nn.Module __SCREAMING_SNAKE_CASE :List[nn.Module] = field(default_factory=__a ) __SCREAMING_SNAKE_CASE :list = field(default_factory=__a ) def snake_case__ ( self : List[str] , a__ : str , a__ : Tensor , a__ : Tensor ): __magic_name__ = len(list(m.modules() ) ) == 1 or isinstance(a__ , nn.Convad ) or isinstance(a__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a__ ) def __call__( self : List[Any] , a__ : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a__ ) [x.remove() for x in self.handles] return self @property def snake_case__ ( self : Dict ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE :nn.Module __SCREAMING_SNAKE_CASE :nn.Module __SCREAMING_SNAKE_CASE :int = 0 __SCREAMING_SNAKE_CASE :List = field(default_factory=__a ) __SCREAMING_SNAKE_CASE :List = field(default_factory=__a ) def __call__( self : int , a__ : Tensor ): __magic_name__ = Tracker(self.dest )(a__ ).parametrized __magic_name__ = Tracker(self.src )(a__ ).parametrized __magic_name__ = list(filter(lambda a__ : type(a__ ) not in self.src_skip , a__ ) ) __magic_name__ = list(filter(lambda a__ : type(a__ ) not in self.dest_skip , a__ ) ) if len(a__ ) != len(a__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(a__ )} operations while''' F''' destination module has {len(a__ )}.''' ) for dest_m, src_m in zip(a__ , a__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def UpperCamelCase ( a , a , a , a = True ) -> Any: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): __magic_name__ = timm.create_model(a , pretrained=a ).eval() __magic_name__ = ResNetForImageClassification(a ).eval() __magic_name__ = ModuleTransfer(src=a , dest=a ) __magic_name__ = torch.randn((1, 3, 224, 224) ) module_transfer(a ) assert torch.allclose(from_model(a ) , our_model(a ).logits ), "The model logits don't match the original one." __magic_name__ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(a ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a , ) # we can use the convnext one __magic_name__ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCamelCase ( a , a = None , a = True ) -> int: '''simple docstring''' __magic_name__ = '''imagenet-1k-id2label.json''' __magic_name__ = 1000 __magic_name__ = (1, num_labels) __magic_name__ = '''huggingface/label-files''' __magic_name__ = num_labels __magic_name__ = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(a ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} __magic_name__ = partial(a , num_labels=a , idalabel=a , labelaid=a ) __magic_name__ = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a , names_to_config[model_name] , a , a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a , a , a , a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
98
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , a__ : Union[str, Any] , a__ : Union[str, Any]=7 , a__ : Dict=3 , a__ : Optional[Any]=18 , a__ : Optional[Any]=30 , a__ : Tuple=400 , a__ : Optional[int]=True , a__ : int=None , a__ : Union[str, Any]=True , a__ : Optional[Any]=None , a__ : str=True , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : Tuple=[0.5, 0.5, 0.5] , a__ : Union[str, Any]=False , ): __magic_name__ = size if size is not None else {'''height''': 20, '''width''': 20} __magic_name__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_reduce_labels def snake_case__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCamelCase ( ) -> str: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(dataset[0]['''file'''] ) __magic_name__ = Image.open(dataset[1]['''file'''] ) return image, map def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(ds[0]['''file'''] ) __magic_name__ = Image.open(ds[1]['''file'''] ) __magic_name__ = Image.open(ds[2]['''file'''] ) __magic_name__ = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = BeitImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ): __magic_name__ = BeitImageProcessingTester(self ) @property def snake_case__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) self.assertTrue(hasattr(a__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a__ , '''center_crop''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) def snake_case__ ( self : int ): __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) def snake_case__ ( self : Optional[Any] ): pass def snake_case__ ( self : Dict ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[str] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Union[str, Any] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) __magic_name__ = [] for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_batch_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def snake_case__ ( self : Any ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __magic_name__ = True __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
98
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_50, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_00, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split(),encoding='utf-8',check=lowercase_,) assert hasattr(self,'env' ) def snake_case__ ( self : int,lowercase_ : Optional[Any]=1 )-> Optional[int]: '''simple docstring''' return HuggingFace( entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=F'{self.env.base_job_name}-single',instance_count=lowercase_,instance_type=self.instance_type,debugger_hook_config=lowercase_,hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path},metric_definitions=self.env.metric_definitions,py_version='py36',) def snake_case__ ( self : List[Any],lowercase_ : List[Any] )-> Optional[int]: '''simple docstring''' TrainingJobAnalytics(lowercase_ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' A__ = self.create_estimator() # run training estimator.fit() # result dataframe A__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) A__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds',9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json','w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss},lowercase_ )
7
class A : """simple docstring""" def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]: '''simple docstring''' A__ = name A__ = value A__ = weight def __repr__( self : int )-> Tuple: '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def snake_case__ ( self : Any )-> str: '''simple docstring''' return self.value def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' return self.name def snake_case__ ( self : Any )-> Dict: '''simple docstring''' return self.weight def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' return self.value / self.weight def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' A__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ) A__ = [] A__ , A__ = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _snake_case( ) -> Any: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
7
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ) ->np.ndarray: """simple docstring""" if (ksize % 2) == 0: __snake_case : int = ksize + 1 __snake_case : Optional[int] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_snake_case ): for x in range(_snake_case ): # distance from center __snake_case : List[Any] = x - ksize // 2 __snake_case : Tuple = y - ksize // 2 # degree to radiant __snake_case : Union[str, Any] = theta / 180 * np.pi __snake_case : Dict = np.cos(_theta ) __snake_case : Any = np.sin(_theta ) # get kernel x __snake_case : Optional[Any] = cos_theta * px + sin_theta * py # get kernel y __snake_case : Union[str, Any] = -sin_theta * px + cos_theta * py # fill kernel __snake_case : int = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image SCREAMING_SNAKE_CASE : Tuple = imread("""../image_data/lena.jpg""") # turn image in gray scale value SCREAMING_SNAKE_CASE : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: SCREAMING_SNAKE_CASE : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) SCREAMING_SNAKE_CASE : int = out / out.max() * 255 SCREAMING_SNAKE_CASE : Optional[Any] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
24
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
1
class _A: """simple docstring""" def __init__( self , _A ): __A : Tuple = set_counts __A : Union[str, Any] = max(_A ) __A : List[str] = len(_A ) __A : Union[str, Any] = [1] * num_sets __A : int = list(range(_A ) ) def UpperCAmelCase_ ( self , _A , _A ): __A : Tuple = self.get_parent(_A ) __A : Dict = self.get_parent(_A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __A : Optional[Any] = 0 __A : int = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __A : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __A : Any = 0 __A : Optional[int] = src_parent __A : Optional[Any] = self.set_counts[src_parent] __A : List[str] = max(self.max_set , _A ) return True def UpperCAmelCase_ ( self , _A ): if self.parents[disj_set] == disj_set: return disj_set __A : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
280
import math def _SCREAMING_SNAKE_CASE ( a ) -> list[int]: __A : List[str] = [] __A : Any = 2 __A : Union[str, Any] = int(math.sqrt(a ) ) # Size of every segment __A : Any = [True] * (end + 1) __A : List[Any] = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): __A : Optional[int] = False start += 1 prime += in_prime __A : Any = end + 1 __A : Any = min(2 * end , a ) while low <= n: __A : List[Any] = [True] * (high - low + 1) for each in in_prime: __A : List[str] = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): __A : Optional[int] = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) __A : Optional[int] = high + 1 __A : Tuple = min(high + end , a ) return prime print(sieve(10**6))
280
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCAmelCase_ : def __init__( self : str , UpperCAmelCase__ : Any ) -> List[str]: lowerCAmelCase = data lowerCAmelCase = None class UpperCAmelCase_ : def __init__( self : int ) -> Dict: lowerCAmelCase = None lowerCAmelCase = None def __iter__( self : Dict ) -> Tuple: lowerCAmelCase = self.head while self.head: yield node.data lowerCAmelCase = node.next if node == self.head: break def __len__( self : List[Any] ) -> List[str]: return sum(1 for _ in self ) def __repr__( self : int ) -> Dict: return "->".join(str(__lowerCAmelCase ) for item in iter(self ) ) def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Any ) -> str: self.insert_nth(len(self ) , __lowerCAmelCase ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Any ) -> List[Any]: self.insert_nth(0 , __lowerCAmelCase ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any ) -> Tuple: if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase = Node(__lowerCAmelCase ) if self.head is None: lowerCAmelCase = new_node # first node points itself lowerCAmelCase = lowerCAmelCase = new_node elif index == 0: # insert at head lowerCAmelCase = self.head lowerCAmelCase = lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node if index == len(self ) - 1: # insert at tail lowerCAmelCase = new_node def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: return self.delete_nth(0 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: return self.delete_nth(len(self ) - 1 ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : int = 0 ) -> str: if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase = self.head if self.head == self.tail: # just one node lowerCAmelCase = lowerCAmelCase = None elif index == 0: # delete head node lowerCAmelCase = self.tail.next.next lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next if index == len(self ) - 1: # delete at tail lowerCAmelCase = temp return delete_node.data def __UpperCAmelCase ( self : int ) -> Tuple: return len(self ) == 0 def a_ ( ) -> Any: lowerCAmelCase = CircularLinkedList() assert len(lowerCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCamelCase ) == i circular_linked_list.insert_nth(lowerCamelCase , i + 1 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=9_9 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : List[Any]=1_6 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : str=4 , ) -> Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def __UpperCAmelCase ( self : Any ) -> List[Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCAmelCase ( self : Optional[Any] ) -> int: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : int ) -> int: lowerCAmelCase = FlaxRobertaModelTester(self ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained('roberta-base' , from_pt=UpperCAmelCase__ ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ )
55
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase__ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase__ = 0.01 with locka.acquire(): with pytest.raises(UpperCamelCase__ ): UpperCAmelCase__ = time.time() locka.acquire(UpperCamelCase__ ) assert time.time() - _start > timeout def lowerCAmelCase_ ( __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = """a""" * 1_000 + """.lock""" UpperCAmelCase__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(UpperCamelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase__ ): locka.acquire(0 )
65
"""simple docstring""" import unittest import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ): '''simple docstring''' _a : List[Any] = np.shape(UpperCamelCase__ ) _a : Any = np.shape(UpperCamelCase__ ) _a : Union[str, Any] = np.shape(UpperCamelCase__ ) if shape_a[0] != shape_b[0]: _a : int = ( """Expected the same number of rows for A and B. """ F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(UpperCamelCase__ ) if shape_b[1] != shape_c[1]: _a : Tuple = ( """Expected the same number of columns for B and C. """ F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(UpperCamelCase__ ) _a : int = pseudo_inv if a_inv is None: try: _a : Optional[int] = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> None: _a : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Optional[int] = np.array([[2, 1], [6, 3]] ) _a : Optional[Any] = schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = np.block([[a, b], [b.T, c]] ) _a : int = np.linalg.det(UpperCAmelCase__ ) _a : Union[str, Any] = np.linalg.det(UpperCAmelCase__ ) _a : List[Any] = np.linalg.det(UpperCAmelCase__ ) self.assertAlmostEqual(UpperCAmelCase__ , det_a * det_s ) def _lowercase ( self : int ) -> None: _a : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> None: _a : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) _a : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
294
0
def _a ( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = sylvester(number - 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = num - 1 SCREAMING_SNAKE_CASE__ : Tuple = num return lower * upper + 1 if __name__ == "__main__": print(f"The 8th number in Sylvester's sequence: {sylvester(8)}")
191
def _a ( SCREAMING_SNAKE_CASE__ : int = 50_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = set() SCREAMING_SNAKE_CASE__ : Dict = int((limit - 24) ** (1 / 2) ) SCREAMING_SNAKE_CASE__ : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE__ ) ) ) for primea in primes: SCREAMING_SNAKE_CASE__ : Optional[int] = primea * primea for primea in primes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: SCREAMING_SNAKE_CASE__ : List[str] = primea * primea * primea * primea SCREAMING_SNAKE_CASE__ : Optional[int] = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"{solution() = }")
191
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[Any]: A: Dict = s.rsplit(__lowercase , __lowercase ) return new.join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> List[str]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE( __lowercase ) -> str: A: List[Any] = {} A: Union[str, Any] = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: A: Any = key.replace(F"""{group_key}.""" , F"""{group_key}.group.""" ) if "res_path" in key: A: Dict = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): A: List[str] = rreplace(__lowercase , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): A: Dict = rreplace(__lowercase , '''.b''' , '''.bias''' , 1 ) A: List[Any] = value.float() return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , __lowercase=True ) -> List[str]: from dall_e import Encoder A: Tuple = Encoder() if os.path.exists(__lowercase ): A: str = torch.load(__lowercase ) else: A: Optional[Any] = torch.hub.load_state_dict_from_url(__lowercase ) if isinstance(__lowercase , __lowercase ): A: str = ckpt.state_dict() encoder.load_state_dict(__lowercase ) if config_path is not None: A: Tuple = FlavaImageCodebookConfig.from_pretrained(__lowercase ) else: A: Optional[Any] = FlavaImageCodebookConfig() A: str = FlavaImageCodebook(__lowercase ).eval() A: List[str] = encoder.state_dict() A: Union[str, Any] = upgrade_state_dict(__lowercase ) hf_model.load_state_dict(__lowercase ) A: Optional[int] = hf_model.state_dict() A: Optional[Any] = count_parameters(__lowercase ) A: List[Any] = count_parameters(__lowercase ) assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowercase ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCamelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
319
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } UpperCamelCase = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: Tuple = EfficientNetConfig() A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A: Optional[int] = CONFIG_MAP[model_name]['''width_coef'''] A: str = CONFIG_MAP[model_name]['''depth_coef'''] A: Dict = CONFIG_MAP[model_name]['''image_size'''] A: str = CONFIG_MAP[model_name]['''dropout_rate'''] A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A: Optional[Any] = '''huggingface/label-files''' A: List[str] = '''imagenet-1k-id2label.json''' A: Dict = 1_0_0_0 A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()} A: int = idalabel A: Tuple = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[str] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A: List[str] = sorted(set(__lowercase ) ) A: Dict = len(__lowercase ) A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} A: Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A: int = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A: str = '''efficientnet.''' + item[1] A: int = '''classifier.weight''' A: Tuple = '''classifier.bias''' return key_mapping def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue A: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) ) else: A: Any = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: Optional[int] = model_classes[model_name]( include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , ) A: List[str] = original_model.trainable_variables A: Optional[Any] = original_model.non_trainable_variables A: Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A: int = param.numpy() A: Tuple = list(tf_params.keys() ) # Load HuggingFace model A: Dict = get_efficientnet_config(__lowercase ) A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval() A: Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A: int = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image A: List[Any] = convert_image_processor(__lowercase ) A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A: str = hf_model(**__lowercase ) A: List[Any] = outputs.logits.detach().numpy() # Original model inference A: Any = False A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A: str = image.img_to_array(__lowercase ) A: Dict = np.expand_dims(__lowercase , axis=0 ) A: Any = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A: int = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _SCREAMING_SNAKE_CASE : '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' return self.get_dummy_input() @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""") def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[str]=False , ) ->str: '''simple docstring''' lowerCamelCase__: str =4 lowerCamelCase__: Dict =32 lowerCamelCase__: int =(32, 32) lowerCamelCase__: Optional[int] =torch.manual_seed(0) lowerCamelCase__: Dict =torch.device(UpperCAmelCase_) lowerCamelCase__: int =(batch_size, num_channels) + sizes lowerCamelCase__: Union[str, Any] =randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_) lowerCamelCase__: Optional[Any] ={"hidden_states": hidden_states} if include_temb: lowerCamelCase__: Any =128 lowerCamelCase__: Any =randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase_ , device=UpperCAmelCase_) if include_res_hidden_states_tuple: lowerCamelCase__: Tuple =torch.manual_seed(1) lowerCamelCase__: int =(randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_),) if include_encoder_hidden_states: lowerCamelCase__: List[Any] =floats_tensor((batch_size, 32, 32)).to(UpperCAmelCase_) if include_skip_sample: lowerCamelCase__: int =randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase_ , device=UpperCAmelCase_) return dummy_input def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] ={ "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": lowerCamelCase__: Any =32 if self.block_type == "mid": init_dict.pop("out_channels") lowerCamelCase__: Tuple =self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.prepare_init_args_and_inputs_for_common() lowerCamelCase__: Optional[int] =self.block_class(**UpperCAmelCase_) unet_block.to(UpperCAmelCase_) unet_block.eval() with torch.no_grad(): lowerCamelCase__: Union[str, Any] =unet_block(**UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Tuple =output[0] self.assertEqual(output.shape , self.output_shape) lowerCamelCase__: Optional[Any] =output[0, -1, -3:, -3:] lowerCamelCase__: str =torch.tensor(UpperCAmelCase_).to(UpperCAmelCase_) assert torch_all_close(output_slice.flatten() , UpperCAmelCase_ , atol=5E-3) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.prepare_init_args_and_inputs_for_common() lowerCamelCase__: Optional[int] =self.block_class(**UpperCAmelCase_) model.to(UpperCAmelCase_) model.train() lowerCamelCase__: Any =model(**UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[Any] =output[0] lowerCamelCase__: Dict =torch.device(UpperCAmelCase_) lowerCamelCase__: Optional[int] =randn_tensor(output.shape , device=UpperCAmelCase_) lowerCamelCase__: Dict =torch.nn.functional.mse_loss(UpperCAmelCase_ , UpperCAmelCase_) loss.backward()
273
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A = direct_transformers_import(PATH_TO_TRANSFORMERS) __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: List[Any] =None # source code of `config_class` lowerCamelCase__: List[Any] =inspect.getsource(__a ) lowerCamelCase__: str =_re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): lowerCamelCase__: str =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__: Optional[int] =F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCamelCase__: List[Any] =ckpt_name break return checkpoint def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCamelCase__: Union[str, Any] =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCamelCase__: List[Any] =get_checkpoint_from_config_class(__a ) lowerCamelCase__: Tuple =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: lowerCamelCase__: List[str] ="\n".join(sorted(__a ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
273
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json'''} _lowercase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } _lowercase = {'''mgp-str''': 27} class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = VOCAB_FILES_NAMES _lowerCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] ,A_ : str ,A_ : List[Any]="[GO]" ,A_ : Any="[GO]" ,A_ : Union[str, Any]="[s]" ,A_ : Dict="[GO]" ,**A_ : Any ) -> str: super().__init__( unk_token=A_ ,bos_token=A_ ,eos_token=A_ ,pad_token=A_ ,**A_ ,) with open(A_ ,encoding='utf-8' ) as vocab_handle: A = json.load(A_ ) A = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return len(self.vocab ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return dict(self.vocab ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : List[Any] ) -> Union[str, Any]: A = [] for s in text: char_tokens.extend(A_ ) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> List[Any]: return self.vocab.get(A_ ,self.vocab.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[int] ) -> str: return self.decoder.get(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=A_ ,ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
74
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowercase = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : int ,**A_ : Any ) -> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A = deprecated_arg[3:] A = not kwargs.pop(A_ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) A = kwargs.pop('tpu_name' ,self.tpu_name ) A = kwargs.pop('device_idx' ,self.device_idx ) A = kwargs.pop('eager_mode' ,self.eager_mode ) A = kwargs.pop('use_xla' ,self.use_xla ) super().__init__(**A_ ) _lowerCamelCase: str = field( default=_lowercase , metadata={'''help''': '''Name of TPU'''} , ) _lowerCamelCase: int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Benchmark models in eager model.'''} ) _lowerCamelCase: bool = field( default=_lowercase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) A = None if self.tpu: try: if self.tpu_name: A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A = None return tpu @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'GPU' ) A = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] ,'GPU' ) # disable GPU A = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: requires_backends(self ,['tf'] ) return self._setup_tpu is not None @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> "tf.distribute.Strategy": requires_backends(self ,['tf'] ) return self._setup_strategy @property def _SCREAMING_SNAKE_CASE ( self : int ) -> str: requires_backends(self ,['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: requires_backends(self ,['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _SCREAMING_SNAKE_CASE ( self : str ) -> bool: return self.n_gpu > 0
74
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : list[str] | None = None )-> Union[str, Any]: UpperCAmelCase__ : Any = word_bank or [] # create a table UpperCAmelCase__ : int = len(lowerCAmelCase__ ) + 1 UpperCAmelCase__ : list[list[list[str]]] = [] for _ in range(lowerCAmelCase__ ): table.append([] ) # seed value UpperCAmelCase__ : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase__ )] == word: UpperCAmelCase__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase__ )]: combination.reverse() return table[len(lowerCAmelCase__ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a ( lowerCAmelCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , '''num_attention_heads''' ) ) class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=1_3 , __UpperCamelCase : int=6_4 , __UpperCamelCase : Any=3 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : str=1 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : str=[1_2_8, 2_5_6, 3_8_4] , __UpperCamelCase : Dict=[4, 6, 8] , __UpperCamelCase : List[str]=[2, 3, 4] , __UpperCamelCase : Any=[1_6, 1_6, 1_6] , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : Optional[Any]=[2, 2, 2] , __UpperCamelCase : int=[2, 2, 2] , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=2 , )->Union[str, Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = kernel_size _UpperCAmelCase = stride _UpperCAmelCase = padding _UpperCAmelCase = hidden_sizes _UpperCAmelCase = num_attention_heads _UpperCAmelCase = depths _UpperCAmelCase = key_dim _UpperCAmelCase = drop_path_rate _UpperCAmelCase = patch_size _UpperCAmelCase = attention_ratio _UpperCAmelCase = mlp_ratio _UpperCAmelCase = initializer_range _UpperCAmelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range def lowercase__ ( self : Union[str, Any] )->List[Any]: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] )->Union[str, Any]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] )->Union[str, Any]: _UpperCAmelCase = LevitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for _ in range(4 ): _UpperCAmelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = LevitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any )->Tuple: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : List[str] )->Union[str, Any]: _UpperCAmelCase = LevitModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[str] )->Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Union[str, Any] )->Tuple: return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowercase__ ( self : List[str] )->Any: pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowercase__ ( self : List[Any] )->Optional[int]: pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowercase__ ( self : Tuple )->Optional[int]: pass def lowercase__ ( self : str )->Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: def check_hidden_states_output(__UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any ): _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) _UpperCAmelCase = (self.model_tester.image_size, self.model_tester.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for _ in range(4 ): _UpperCAmelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _UpperCAmelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : str )->Tuple: pass def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any]=False )->List[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : Optional[Any] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def lowercase__ ( self : str )->int: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _UpperCAmelCase = False _UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): _UpperCAmelCase = problem_type['''title'''] _UpperCAmelCase = problem_type['''num_labels'''] _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if problem_type["num_labels"] > 1: _UpperCAmelCase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _UpperCAmelCase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list: _UpperCAmelCase = model(**__UpperCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def lowercase__ ( self : Union[str, Any] )->Optional[int]: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LevitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase): """simple docstring""" @cached_property def lowercase__ ( self : Tuple )->Dict: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
260
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _a ( lowerCAmelCase): """simple docstring""" def lowercase__ ( self : List[Any] , __UpperCamelCase : float )->float: return 0.0 def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowercase ( _SCREAMING_SNAKE_CASE : FilterType , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_SCREAMING_SNAKE_CASE ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.abs(np.fft.fft(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = 20 * np.logaa(_SCREAMING_SNAKE_CASE ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds _UpperCAmelCase = get_bounds(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(_SCREAMING_SNAKE_CASE ) plt.show() def lowercase ( _SCREAMING_SNAKE_CASE : FilterType , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_SCREAMING_SNAKE_CASE ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.angle(np.fft.fft(_SCREAMING_SNAKE_CASE ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(_SCREAMING_SNAKE_CASE , -2 * pi ) ) plt.show()
260
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10_00 ): """simple docstring""" _a = -1 _a = 0 for a in range(1, n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _a = (n * n - 2 * a * n) // (2 * n - 2 * a) _a = n - a - b if c * c == (a * a + b * b): _a = a * b * c if candidate >= product: _a = candidate return product if __name__ == "__main__": print(f'{solution() = }')
153
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = '''ylacombe/bark-small''' _a = tempfile.mkdtemp() _a = '''en_speaker_1''' _a = '''This is a test string''' _a = '''speaker_embeddings_path.json''' _a = '''speaker_embeddings''' def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Tuple: return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> str: _a = self.get_tokenizer() _a = BarkProcessor(tokenizer=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _a = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: _a = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _UpperCAmelCase ( self ) -> str: _a = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _a = 35 _a = 2 _a = 8 _a = { '''semantic_prompt''': np.ones(__UpperCAmelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _a = processor(text=self.input_string , voice_preset=__UpperCAmelCase ) _a = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _a = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__UpperCAmelCase , **__UpperCAmelCase ) _a = processor(text=self.input_string , voice_preset=__UpperCAmelCase ) _a = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _a = processor(text=self.input_string , voice_preset=self.voice_preset ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.get_tokenizer() _a = BarkProcessor(tokenizer=__UpperCAmelCase ) _a = processor(text=self.input_string ) _a = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
153
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowercase( __a ): '''simple docstring''' lowercase__ = "speech_to_text_2" lowercase__ = ["past_key_values"] lowercase__ = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self: List[str], a_: str=10_000, a_: str=6, a_: List[Any]=2_048, a_: Optional[int]=4, a_: List[str]=0.0, a_: Optional[int]=True, a_: List[str]="relu", a_: Optional[Any]=256, a_: Any=0.1, a_: List[str]=0.0, a_: Optional[int]=0.0, a_: Optional[Any]=0.02, a_: Union[str, Any]=2, a_: List[str]=True, a_: Optional[Any]=1, a_: Dict=0, a_: Dict=2, a_: Optional[int]=1_024, **a_: Any, ): '''simple docstring''' _snake_case : Union[str, Any] = vocab_size _snake_case : str = d_model _snake_case : Tuple = decoder_ffn_dim _snake_case : Optional[int] = decoder_layers _snake_case : Optional[Any] = decoder_attention_heads _snake_case : Union[str, Any] = dropout _snake_case : List[str] = attention_dropout _snake_case : str = activation_dropout _snake_case : Union[str, Any] = activation_function _snake_case : List[str] = init_std _snake_case : int = decoder_layerdrop _snake_case : int = use_cache _snake_case : str = decoder_layers _snake_case : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : int = max_target_positions super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, decoder_start_token_id=a_, **a_, )
64
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase_ ( ): lowerCamelCase_ , lowerCamelCase_ = 9, 1_4 # noqa: F841 lowerCamelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCamelCase_ = defaultdict(lowerCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ = mst(lowerCamelCase__ ) lowerCamelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ = tuple(answer[:2] ) lowerCamelCase_ = tuple(edge[::-1] ) assert edge in result or reverse in result
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class a__ ( snake_case__ ): _a : Dict = """nllb-moe""" _a : str = ["""past_key_values"""] _a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _A=1_2_8_1_1_2 , _A=1_0_2_4 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=0.05 , _A=0.05 , _A=True , _A=True , _A="relu" , _A=1_0_2_4 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.02 , _A=2 , _A=True , _A=False , _A="float32" , _A=False , _A=1_2_8 , _A=6_4 , _A=4 , _A=4 , _A=0.0_01 , _A=0.0_01 , _A="all" , _A=False , _A=False , _A=1.0 , _A=0.2 , _A=1 , _A=0 , _A=2 , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = router_z_loss_coef __lowerCAmelCase = router_aux_loss_coef __lowerCAmelCase = decoder_sparse_step __lowerCAmelCase = encoder_sparse_step __lowerCAmelCase = num_experts __lowerCAmelCase = expert_capacity __lowerCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowerCAmelCase = router_dtype __lowerCAmelCase = router_ignore_padding_tokens __lowerCAmelCase = batch_prioritized_routing __lowerCAmelCase = second_expert_policy __lowerCAmelCase = normalize_router_prob_before_dropping __lowerCAmelCase = moe_eval_capacity_token_fraction __lowerCAmelCase = moe_token_dropout __lowerCAmelCase = output_router_logits super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , **_A , )
364
import enum import shutil import sys UpperCamelCase__ , UpperCamelCase__ = shutil.get_terminal_size() UpperCamelCase__ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class a__ ( enum.Enum ): _a : Any = 0 _a : Dict = 1 def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict="" ): sys.stdout.write(str(SCREAMING_SNAKE_CASE_ ) + end ) sys.stdout.flush() def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str="" ): forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): forceWrite("\r" ) def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ): forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def _a ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def _a ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
102
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase__ = logging.get_logger(__name__) class A ( enum.Enum ): __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = 1 @add_end_docstrings(UpperCAmelCase_ ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = 'generated' def __init__(self : str , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowercase_ (self : Tuple , __UpperCAmelCase : str=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Union[str, Any] , ) -> Dict: """simple docstring""" UpperCAmelCase__ = {} if truncation is not None: UpperCAmelCase__ = truncation UpperCAmelCase__ = generate_kwargs UpperCAmelCase__ = {} if return_tensors is not None and return_type is None: UpperCAmelCase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase__ = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase__ = self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCAmelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase_ (self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> str: """simple docstring""" return True def lowercase_ (self : Optional[int] , *__UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , __UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" ) UpperCAmelCase__ = ([prefix + arg for arg in args[0]],) UpperCAmelCase__ = True elif isinstance(args[0] , __UpperCAmelCase ): UpperCAmelCase__ = (prefix + args[0],) UpperCAmelCase__ = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) UpperCAmelCase__ = self.tokenizer(*__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self : Dict , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) if ( isinstance(args[0] , __UpperCAmelCase ) and all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for el in args[0] ) and all(len(__UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowercase_ (self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCAmelCase : Dict ) -> Dict: """simple docstring""" UpperCAmelCase__ = self._parse_and_tokenize(__UpperCAmelCase , truncation=__UpperCAmelCase , **__UpperCAmelCase ) return inputs def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict , **__UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.framework == "pt": UpperCAmelCase__ , UpperCAmelCase__ = model_inputs["input_ids"].shape elif self.framework == "tf": UpperCAmelCase__ , UpperCAmelCase__ = tf.shape(model_inputs["input_ids"] ).numpy() UpperCAmelCase__ = generate_kwargs.get("min_length" , self.model.config.min_length ) UpperCAmelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) self.check_inputs(__UpperCAmelCase , generate_kwargs["min_length"] , generate_kwargs["max_length"] ) UpperCAmelCase__ = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase__ = output_ids.reshape(__UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase__ = tf.reshape(__UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowercase_ (self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=ReturnType.TEXT , __UpperCAmelCase : Dict=False ) -> List[str]: """simple docstring""" UpperCAmelCase__ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase__ = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase__ = { f"""{self.return_name}_text""": self.tokenizer.decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) } records.append(__UpperCAmelCase ) return records @add_end_docstrings(UpperCAmelCase_ ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : Union[str, Any] = 'summary' def __call__(self : Dict , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ) -> Any: """simple docstring""" return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ "a summarization task, where outputs shorter than the input are typically wanted, you might " f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCAmelCase_ ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = 'translation' def lowercase_ (self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ "increasing your max_length manually, e.g. translator('...', max_length=400)" ) return True def lowercase_ (self : int , *__UpperCAmelCase : List[Any] , __UpperCAmelCase : Any=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Optional[int]=None ) -> List[Any]: """simple docstring""" if getattr(self.tokenizer , "_build_translation_inputs" , __UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *__UpperCAmelCase , return_tensors=self.framework , truncation=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase ) else: return super()._parse_and_tokenize(*__UpperCAmelCase , truncation=__UpperCAmelCase ) def lowercase_ (self : int , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = super()._sanitize_parameters(**__UpperCAmelCase ) if src_lang is not None: UpperCAmelCase__ = src_lang if tgt_lang is not None: UpperCAmelCase__ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase__ = kwargs.get("task" , self.task ) UpperCAmelCase__ = task.split("_" ) if task and len(__UpperCAmelCase ) == 4: # translation, XX, to YY UpperCAmelCase__ = items[1] UpperCAmelCase__ = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self : Optional[int] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase )
65
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ = [0, 2_5, 5_0] UpperCamelCase__ = [2_5, 5_0, 7_5] UpperCamelCase__ = fuzz.membership.trimf(X, abca) UpperCamelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ = np.ones(7_5) UpperCamelCase__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
65
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (UnCLIPScheduler,) def lowerCamelCase__ ( self : List[str] , **UpperCamelCase_ : int ): lowerCAmelCase : List[str] = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase_ , prev_timestep=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCAmelCase : Union[str, Any] = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_994_987 ) ) < 1E-5 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase_ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=UpperCamelCase_ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=UpperCamelCase_ ) - -0.0_010_011 < 1E-5 def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Tuple = scheduler.timesteps lowerCAmelCase : int = self.dummy_model() lowerCAmelCase : str = self.dummy_sample_deter lowerCAmelCase : Any = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual lowerCAmelCase : Dict = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : str = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Optional[Any] = pred_prev_sample lowerCAmelCase : List[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(2_5 ) lowerCAmelCase : str = scheduler.timesteps lowerCAmelCase : Optional[int] = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter lowerCAmelCase : int = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual lowerCAmelCase : Any = model(UpperCamelCase_ , UpperCamelCase_ ) if i + 1 == timesteps.shape[0]: lowerCAmelCase : Any = None else: lowerCAmelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[int] = scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prev_timestep=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : int = pred_prev_sample lowerCAmelCase : List[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Tuple ): pass
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore _snake_case = namedtuple('covid_data', 'cases deaths recovered') def _A ( snake_case = "https://www.worldometers.info/coronavirus/" ) -> str: _lowercase : int = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(snake_case ).content ).xpath(snake_case ) ) _snake_case = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
250
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A: Tuple = logging.get_logger(__name__) A: List[Any] = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : int = 'blenderbot-small' __lowerCAmelCase : Any = ['past_key_values'] __lowerCAmelCase : str = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=50265 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' UpperCAmelCase : Any = vocab_size UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : str = d_model UpperCAmelCase : List[Any] = encoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Union[str, Any] = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : int = activation_dropout UpperCAmelCase : int = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : List[str] = encoder_layerdrop UpperCAmelCase : List[str] = decoder_layerdrop UpperCAmelCase : List[str] = use_cache UpperCAmelCase : Union[str, Any] = encoder_layers UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : int = {0: """batch"""} UpperCAmelCase : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} UpperCAmelCase : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase : Tuple = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCAmelCase : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : Union[str, Any] = super().outputs else: UpperCAmelCase : int = super(_SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase : Any = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Generate decoder inputs UpperCAmelCase : Optional[Any] = seq_length if not self.use_past else 1 UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase : Union[str, Any] = dict(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase , UpperCAmelCase : int = common_inputs["""input_ids"""].shape UpperCAmelCase : Any = common_inputs["""decoder_input_ids"""].shape[1] UpperCAmelCase , UpperCAmelCase : str = self.num_attention_heads UpperCAmelCase : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase : Union[str, Any] = decoder_seq_length + 3 UpperCAmelCase : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase : Optional[Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCAmelCase : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase : List[Any] = self.num_layers UpperCAmelCase : Optional[Any] = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - min_num_layers UpperCAmelCase : Optional[int] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. UpperCAmelCase : Dict = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase , UpperCAmelCase : Optional[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase : Union[str, Any] = seqlen + 2 UpperCAmelCase , UpperCAmelCase : Optional[int] = self.num_layers UpperCAmelCase , UpperCAmelCase : Dict = self.num_attention_heads UpperCAmelCase : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase : List[Any] = common_inputs["""attention_mask"""].dtype UpperCAmelCase : Any = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCAmelCase : List[str] = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(_SCREAMING_SNAKE_CASE ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase : str = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : List[str] = tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : Dict = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase : Optional[int] = dict(tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": UpperCAmelCase : Optional[int] = self._generate_dummy_inputs_for_causal_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) return common_inputs def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase : List[Any] = super()._flatten_past_key_values_(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Dict = super(_SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
109
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __a ( __UpperCamelCase ): __snake_case : Optional[int] = ["""image_processor"""] __snake_case : Union[str, Any] = """SamImageProcessor""" def __init__( self : Tuple , UpperCAmelCase : List[Any] ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : Any = self.image_processor lowerCAmelCase_ : Tuple = -10 lowerCAmelCase_ : Tuple = self.image_processor.size["""longest_edge"""] def __call__( self : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : List[Any] = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase_ : Tuple = encoding_image_processor["""original_sizes"""] if hasattr(UpperCAmelCase , """numpy""" ): # Checks if Torch or TF tensor lowerCAmelCase_ : Union[str, Any] = original_sizes.numpy() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self._check_and_preprocess_points( input_points=UpperCAmelCase , input_labels=UpperCAmelCase , input_boxes=UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = self._normalize_and_convert( UpperCAmelCase , UpperCAmelCase , input_points=UpperCAmelCase , input_labels=UpperCAmelCase , input_boxes=UpperCAmelCase , return_tensors=UpperCAmelCase , ) return encoding_image_processor def A ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple="pt" , ): if input_points is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): lowerCAmelCase_ : List[Any] = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: lowerCAmelCase_ : Tuple = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , UpperCAmelCase ) for point, original_size in zip(UpperCAmelCase , UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self._pad_points_and_labels(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = np.array(UpperCAmelCase ) if input_labels is not None: lowerCAmelCase_ : Tuple = np.array(UpperCAmelCase ) if input_boxes is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): lowerCAmelCase_ : int = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , original_sizes[0] , is_bounding_box=UpperCAmelCase ) for box in input_boxes ] else: lowerCAmelCase_ : Tuple = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , UpperCAmelCase , is_bounding_box=UpperCAmelCase ) for box, original_size in zip(UpperCAmelCase , UpperCAmelCase ) ] lowerCAmelCase_ : List[Any] = np.array(UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase_ : Optional[int] = torch.from_numpy(UpperCAmelCase ) # boxes batch size of 1 by default lowerCAmelCase_ : List[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase_ : str = tf.convert_to_tensor(UpperCAmelCase ) # boxes batch size of 1 by default lowerCAmelCase_ : Tuple = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": lowerCAmelCase_ : Union[str, Any] = torch.from_numpy(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : List[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase_ : str = tf.convert_to_tensor(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : Any = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase_ : Dict = torch.from_numpy(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : List[Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase_ : int = tf.convert_to_tensor(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : Dict = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int ): lowerCAmelCase_ : List[Any] = max([point.shape[0] for point in input_points] ) lowerCAmelCase_ : List[str] = [] for i, point in enumerate(UpperCAmelCase ): if point.shape[0] != expected_nb_points: lowerCAmelCase_ : Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowerCAmelCase_ : Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(UpperCAmelCase ) lowerCAmelCase_ : int = processed_input_points return input_points, input_labels def A ( self : str , UpperCAmelCase : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=False ): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = original_size lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.image_processor._get_preprocess_shape(UpperCAmelCase , longest_edge=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = deepcopy(UpperCAmelCase ).astype(UpperCAmelCase ) if is_bounding_box: lowerCAmelCase_ : Optional[int] = coords.reshape(-1 , 2 , 2 ) lowerCAmelCase_ : List[str] = coords[..., 0] * (new_w / old_w) lowerCAmelCase_ : str = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase_ : List[str] = coords.reshape(-1 , 4 ) return coords def A ( self : Any , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , ): if input_points is not None: if hasattr(UpperCAmelCase , """numpy""" ): # Checks for TF or Torch tensor lowerCAmelCase_ : Optional[int] = input_points.numpy().tolist() if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_points[0] , UpperCAmelCase ): raise ValueError("""Input points must be a list of list of floating points.""" ) lowerCAmelCase_ : List[str] = [np.array(UpperCAmelCase ) for input_point in input_points] else: lowerCAmelCase_ : Optional[int] = None if input_labels is not None: if hasattr(UpperCAmelCase , """numpy""" ): lowerCAmelCase_ : List[str] = input_labels.numpy().tolist() if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_labels[0] , UpperCAmelCase ): raise ValueError("""Input labels must be a list of list integers.""" ) lowerCAmelCase_ : Optional[Any] = [np.array(UpperCAmelCase ) for label in input_labels] else: lowerCAmelCase_ : List[str] = None if input_boxes is not None: if hasattr(UpperCAmelCase , """numpy""" ): lowerCAmelCase_ : str = input_boxes.numpy().tolist() if ( not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_boxes[0] , UpperCAmelCase ) or not isinstance(input_boxes[0][0] , UpperCAmelCase ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) lowerCAmelCase_ : int = [np.array(UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: lowerCAmelCase_ : Union[str, Any] = None return input_points, input_labels, input_boxes @property def A ( self : Tuple ): lowerCAmelCase_ : str = self.image_processor.model_input_names return list(dict.fromkeys(UpperCAmelCase ) ) def A ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : List[str] ): return self.image_processor.post_process_masks(*UpperCAmelCase , **UpperCAmelCase )
28
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. A : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) A : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING A : int = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" lowercase__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, \"{attribute}\"''' in modeling_source or f'''getattr(self.config, \"{attribute}\"''' in modeling_source ): lowercase__ = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"''' , _UpperCamelCase , ) is not None ): lowercase__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase__ = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] lowercase__ = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed lowercase__ = True if not attribute_used: lowercase__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase__ = True elif attribute.endswith("""_token_id""" ): lowercase__ = True # configuration class specific cases if not case_allowed: lowercase__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" lowercase__ = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase__ = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] lowercase__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase__ = {} if len(config_class.attribute_map ) > 0: lowercase__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase__ = inspect.getsourcefile(_UpperCamelCase ) lowercase__ = os.path.dirname(_UpperCamelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase__ = [os.path.join(_UpperCamelCase , _UpperCamelCase ) for fn in os.listdir(_UpperCamelCase ) if fn.startswith("""modeling_""" )] # Get the source code strings lowercase__ = [] for path in modeling_paths: if os.path.isfile(_UpperCamelCase ): with open(_UpperCamelCase ) as fp: modeling_sources.append(fp.read() ) lowercase__ = [] for config_param, default_value in zip(_UpperCamelCase , _UpperCamelCase ): # `attributes` here is all the variant names for `config_param` lowercase__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCamelCase ) def UpperCamelCase ( ) -> Dict: """simple docstring""" lowercase__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __magic_name__ : inspect.isclass(_UpperCamelCase ) and issubclass(_UpperCamelCase , _UpperCamelCase ) and inspect.getmodule(_UpperCamelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase__ = check_config_attributes_being_used(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: lowercase__ = unused_attributes if len(_UpperCamelCase ) > 0: lowercase__ = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_UpperCamelCase ) if __name__ == "__main__": check_config_attributes()
305
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCamelCase = str(bin(a__ ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(a__ ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(a__ ) , len(a__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(a__ ) , b_binary.zfill(a__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(matrix[0] ) UpperCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase = matrix[i], matrix[row] UpperCamelCase = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
165
0
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
339
import math import unittest def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" self.assertTrue(is_prime(2)) self.assertTrue(is_prime(3)) self.assertTrue(is_prime(5)) self.assertTrue(is_prime(7)) self.assertTrue(is_prime(11)) self.assertTrue(is_prime(13)) self.assertTrue(is_prime(17)) self.assertTrue(is_prime(19)) self.assertTrue(is_prime(23)) self.assertTrue(is_prime(29)) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" with self.assertRaises(A): is_prime(-19) self.assertFalse( is_prime(0) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2)) self.assertFalse(is_prime(2 * 3)) self.assertFalse(is_prime(3 * 3)) self.assertFalse(is_prime(3 * 5)) self.assertFalse(is_prime(3 * 5 * 7)) if __name__ == "__main__": unittest.main()
339
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( A_ : str, A_ : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _lowerCamelCase : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(A_ ) _lowerCamelCase , _lowerCamelCase : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( A_, output_loading_info=A_ ) else: _lowerCamelCase : str = ProphetNetForConditionalGenerationOld.from_pretrained(A_ ) _lowerCamelCase , _lowerCamelCase : Any = ProphetNetForConditionalGeneration.from_pretrained( A_, output_loading_info=A_ ) _lowerCamelCase : Optional[Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] _lowerCamelCase : List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _lowerCamelCase : Union[str, Any] = key.split('''.''' ) if attributes[0] == "lm_head": _lowerCamelCase : str = prophet _lowerCamelCase : List[Any] = prophet_old else: _lowerCamelCase : Optional[int] = prophet.prophetnet _lowerCamelCase : Optional[Any] = prophet_old.model _lowerCamelCase : Any = False for attribute in attributes: if attribute in mapping: _lowerCamelCase : Optional[int] = mapping[attribute] if not hasattr(A_, A_ ) and len(A_ ) > 0: _lowerCamelCase : int = attribute elif hasattr(A_, A_ ): _lowerCamelCase : int = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _lowerCamelCase : Optional[int] = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _lowerCamelCase : List[str] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _lowerCamelCase : int = old_model.bias logger.info(F'''{attribute} is initialized''' ) _lowerCamelCase : Union[str, Any] = True break elif attribute in special_keys and hasattr(A_, '''in_proj_weight''' ): _lowerCamelCase : Tuple = old_model.in_proj_weight.shape[0] // 3 _lowerCamelCase : List[Any] = getattr(A_, A_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _lowerCamelCase : Optional[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _lowerCamelCase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _lowerCamelCase : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _lowerCamelCase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _lowerCamelCase : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _lowerCamelCase : List[str] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _lowerCamelCase : Optional[Any] = True break if attribute.isdigit(): _lowerCamelCase : Optional[int] = model[int(A_ )] _lowerCamelCase : List[Any] = old_model[int(A_ )] else: _lowerCamelCase : List[str] = getattr(A_, A_ ) if old_attribute == "": _lowerCamelCase : str = old_model else: if not hasattr(A_, A_ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _lowerCamelCase : Optional[int] = getattr(A_, A_ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
175
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''dpt''' def __init__( self : str ,A_ : Tuple=768 ,A_ : int=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : List[str]="gelu" ,A_ : str=0.0 ,A_ : int=0.0 ,A_ : str=0.02 ,A_ : str=1e-12 ,A_ : str=384 ,A_ : Dict=16 ,A_ : Union[str, Any]=3 ,A_ : Dict=False ,A_ : Any=True ,A_ : Optional[int]=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : int=[96, 192, 384, 768] ,A_ : int=256 ,A_ : str=-1 ,A_ : Optional[int]=False ,A_ : Optional[int]=True ,A_ : Union[str, Any]=0.4 ,A_ : Union[str, Any]=255 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=[1, 1024, 24, 24] ,A_ : List[str]=[0, 1] ,A_ : List[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
74
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCamelCase = DDIMScheduler() torch.manual_seed(0) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase = CLIPTextModel(lowercase_) _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : List[Any]=0) -> List[str]: """simple docstring""" _UpperCamelCase = torch.manual_seed(lowercase_) _UpperCamelCase = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2]) def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3) def __UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = "french fries" _UpperCamelCase = sd_pipe(**lowercase_ , negative_prompt=lowercase_) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : Dict) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_ , view_batch_size=2) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear") _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , skip_prk_steps=lowercase_) _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[Any] , lowercase_ : Any=0) -> Optional[int]: """simple docstring""" _UpperCamelCase = torch.manual_seed(lowercase_) _UpperCamelCase = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCamelCase = "stabilityai/stable-diffusion-2-base" _UpperCamelCase = DDIMScheduler.from_pretrained(lowercase_ , subfolder="scheduler") _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCamelCase = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ]) assert np.abs(expected_slice - image_slice).max() < 1e-2 def __UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=lowercase_) _UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def __UpperCAmelCase ( self : Any) -> Any: """simple docstring""" _UpperCamelCase = 0 def callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : torch.FloatTensor) -> None: _UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 _UpperCamelCase = False _UpperCamelCase = "stabilityai/stable-diffusion-2-base" _UpperCamelCase = DDIMScheduler.from_pretrained(lowercase_ , subfolder="scheduler") _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_) _UpperCamelCase = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() pipe(**lowercase_ , callback=lowercase_ , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = "stabilityai/stable-diffusion-2-base" _UpperCamelCase = DDIMScheduler.from_pretrained(lowercase_ , subfolder="scheduler") _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_) _UpperCamelCase = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**lowercase_) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
63
from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : Tuple) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : List[str] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : str) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : int) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : str , **lowercase_ : Optional[int]) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : List[str] , **lowercase_ : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Optional[Any] , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Dict , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[int] , **lowercase_ : str) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : int , *lowercase_ : List[Any] , **lowercase_ : Dict) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : str , **lowercase_ : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Tuple , **lowercase_ : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : str , **lowercase_ : int) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Optional[int] , **lowercase_ : Any) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : int , **lowercase_ : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Optional[int] , **lowercase_ : Dict) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Any) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Any , **lowercase_ : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : List[str] , **lowercase_ : Optional[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : Dict , **lowercase_ : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : str , **lowercase_ : Union[str, Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) def lowerCAmelCase__ ( *a__ , **a__ ) ->Optional[Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->Any: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->Union[str, Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->List[Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->List[Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->Union[str, Any]: '''simple docstring''' requires_backends(a__ , ["torch"] ) def lowerCAmelCase__ ( *a__ , **a__ ) ->List[str]: '''simple docstring''' requires_backends(a__ , ["torch"] ) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : List[str] , **lowercase_ : List[Any]) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Optional[Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : List[str] , **lowercase_ : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : List[str] , **lowercase_ : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : Tuple , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : List[str] , **lowercase_ : int) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Any) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Dict , **lowercase_ : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : Optional[int]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Union[str, Any] , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : int , **lowercase_ : Optional[int]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : int , **lowercase_ : Tuple) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : Optional[int]) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : List[str] , **lowercase_ : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : Tuple , **lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : str , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : List[Any] , **lowercase_ : int) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : int , **lowercase_ : int) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : str , **lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : int , **lowercase_ : List[str]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : str , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Any) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any]) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : int , **lowercase_ : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : int , **lowercase_ : Any) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : List[str] , **lowercase_ : Optional[int]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Tuple , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Optional[Any] , **lowercase_ : List[str]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : str , **lowercase_ : int) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : int , **lowercase_ : List[str]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : List[str]) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Optional[int] , **lowercase_ : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Optional[int] , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : int , *lowercase_ : Dict , **lowercase_ : Dict) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : str , **lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : Optional[int] , **lowercase_ : Union[str, Any]) -> int: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : List[str]) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Any , **lowercase_ : Optional[Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : str) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : str , **lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : List[str] , **lowercase_ : str) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : List[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Tuple) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowercase_ : Tuple , **lowercase_ : str) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Any) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : str) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : List[Any]) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Dict , **lowercase_ : List[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : List[Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Dict , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Any , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : List[str] , **lowercase_ : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : str , **lowercase_ : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : List[Any] , **lowercase_ : Tuple) -> int: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : Dict , **lowercase_ : Tuple) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : str , **lowercase_ : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : int , **lowercase_ : Optional[int]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : str , **lowercase_ : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Optional[int] , **lowercase_ : str) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : Union[str, Any] , **lowercase_ : int) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Dict , **lowercase_ : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : List[str]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any]) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : Dict , **lowercase_ : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : str , **lowercase_ : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowercase_ : str , **lowercase_ : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Any , *lowercase_ : Tuple , **lowercase_ : str) -> int: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : str , **lowercase_ : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Any) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Any , **lowercase_ : str) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : str , **lowercase_ : Any) -> Any: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Dict , **lowercase_ : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Dict , *lowercase_ : Union[str, Any] , **lowercase_ : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Any , **lowercase_ : List[Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : str , **lowercase_ : int) -> str: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Dict , *lowercase_ : List[Any] , **lowercase_ : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Any , *lowercase_ : List[str] , **lowercase_ : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : str , *lowercase_ : Dict , **lowercase_ : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowercase_ : Tuple , **lowercase_ : Optional[int]) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : str , *lowercase_ : Dict , **lowercase_ : str) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) class _UpperCAmelCase ( metaclass=lowerCAmelCase ): '''simple docstring''' __A = ['''torch'''] def __init__( self : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any) -> Dict: """simple docstring""" requires_backends(self , ["torch"]) @classmethod def __UpperCAmelCase ( cls : int , *lowercase_ : List[str] , **lowercase_ : int) -> List[str]: """simple docstring""" requires_backends(cls , ["torch"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowercase_ : Tuple , **lowercase_ : Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch"])
63
1
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(snake_case__ )}"""
165
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' if split_mlp_wi: SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] SCREAMING_SNAKE_CASE__ = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def A ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(variables["""target"""] ) SCREAMING_SNAKE_CASE__ = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE__ = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE__ = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = wi[0].T SCREAMING_SNAKE_CASE__ = wi[1].T else: SCREAMING_SNAKE_CASE__ = wi.T SCREAMING_SNAKE_CASE__ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup( snake_case__ , snake_case__ , """encoder""" ).T SCREAMING_SNAKE_CASE__ = old["""encoder/encoder_norm/scale"""] if not scalable_attention: SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup( snake_case__ , 0 , """encoder""" ).T SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup( snake_case__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = wi[0].T SCREAMING_SNAKE_CASE__ = wi[1].T else: SCREAMING_SNAKE_CASE__ = wi.T SCREAMING_SNAKE_CASE__ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T SCREAMING_SNAKE_CASE__ = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE__ = old["""decoder/logits_dense/kernel"""].T return new def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] return state_dict def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = checkpoints.load_tax_checkpoint(snake_case__ ) SCREAMING_SNAKE_CASE__ = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) SCREAMING_SNAKE_CASE__ = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = MTaConfig.from_json_file(snake_case__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE__ = UMTaEncoderModel(snake_case__ ) else: SCREAMING_SNAKE_CASE__ = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) A_ : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
165
1
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A : Dict = 'sshleifer/mar_enro_6_3_student' class __UpperCamelCase ( _A ): def SCREAMING_SNAKE_CASE__ (self : Optional[int]): super().setUp() A = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=__SCREAMING_SNAKE_CASE , ) A = F"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ (self : Optional[int]): MarianMTModel.from_pretrained(__SCREAMING_SNAKE_CASE) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ (self : Tuple): A = { "$MAX_LEN": 6_4, "$BS": 6_4, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script A = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py")[1].strip() A = bash_script.replace("\\\n" , "").strip().replace("\"$@\"" , "") for k, v in env_vars_to_replace.items(): A = bash_script.replace(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE)) A = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") A = F""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future A = ["finetune.py"] + bash_script.split() + args with patch.object(__SCREAMING_SNAKE_CASE , "argv" , __SCREAMING_SNAKE_CASE): A = argparse.ArgumentParser() A = pl.Trainer.add_argparse_args(__SCREAMING_SNAKE_CASE) A = SummarizationModule.add_model_specific_args(__SCREAMING_SNAKE_CASE , os.getcwd()) A = parser.parse_args() A = main(__SCREAMING_SNAKE_CASE) # Check metrics A = load_json(model.metrics_save_path) A = metrics["val"][0] A = metrics["val"][-1] self.assertEqual(len(metrics["val"]) , (args.max_epochs / args.val_check_interval)) assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] , __SCREAMING_SNAKE_CASE) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.0_1) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 1_7) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"]) , 1.1) # check lightning ckpt can be loaded and has a reasonable statedict A = os.listdir(__SCREAMING_SNAKE_CASE) A = [x for x in contents if x.endswith(".ckpt")][0] A = os.path.join(args.output_dir , __SCREAMING_SNAKE_CASE) A = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu") A = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A = {os.path.basename(__SCREAMING_SNAKE_CASE) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"]) == 1 class __UpperCamelCase ( _A ): @timeout_decorator.timeout(6_0_0) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ (self : int): A = F"""{self.test_file_dir_str}/test_data/wmt_en_ro""" A = { "--fp16_opt_level=O1": "", "$MAX_LEN": 1_2_8, "$BS": 1_6, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script A = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py")[1].strip() ) A = bash_script.replace("\\\n" , "").strip().replace("\"$@\"" , "") A = bash_script.replace("--fp16 " , " ") for k, v in env_vars_to_replace.items(): A = bash_script.replace(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE)) A = self.get_auto_remove_tmp_dir() A = bash_script.replace("--fp16" , "") A = 6 A = ( ["distillation.py"] + bash_script.split() + [ F"""--output_dir={output_dir}""", "--gpus=1", "--learning_rate=1e-3", F"""--num_train_epochs={epochs}""", "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(__SCREAMING_SNAKE_CASE , "argv" , __SCREAMING_SNAKE_CASE): A = argparse.ArgumentParser() A = pl.Trainer.add_argparse_args(__SCREAMING_SNAKE_CASE) A = SummarizationDistiller.add_model_specific_args(__SCREAMING_SNAKE_CASE , os.getcwd()) A = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu A = distill_main(__SCREAMING_SNAKE_CASE) # Check metrics A = load_json(model.metrics_save_path) A = metrics["val"][0] A = metrics["val"][-1] assert len(metrics["val"]) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] , __SCREAMING_SNAKE_CASE) # check lightning ckpt can be loaded and has a reasonable statedict A = os.listdir(__SCREAMING_SNAKE_CASE) A = [x for x in contents if x.endswith(".ckpt")][0] A = os.path.join(args.output_dir , __SCREAMING_SNAKE_CASE) A = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu") A = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A = {os.path.basename(__SCREAMING_SNAKE_CASE) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"]) == 1
57
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE ( lowercase__=None ): """simple docstring""" if subparsers is not None: A = subparsers.add_parser("env" ) else: A = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=lowercase__ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = torch.__version__ A = torch.cuda.is_available() A = is_xpu_available() A = is_npu_available() A = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowercase__ ): A = load_config_from_file(args.config_file ).to_dict() A = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(lowercase__ ), "PyTorch NPU available": str(lowercase__ ), "System RAM": F"""{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB""", } if pt_cuda_available: A = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) A = ( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowercase__ , lowercase__ ) else F"""\t{accelerate_config}""" ) print(lowercase__ ) A = accelerate_config return info def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = env_command_parser() A = parser.parse_args() env_command(lowercase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
57
1
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _a : def __init__( self : Any , lowercase : Any , lowercase : int , lowercase : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) UpperCAmelCase = img UpperCAmelCase = img.shape[1] UpperCAmelCase = img.shape[0] UpperCAmelCase = dst_width UpperCAmelCase = dst_height UpperCAmelCase = self.src_w / self.dst_w UpperCAmelCase = self.src_h / self.dst_h UpperCAmelCase = UpperCAmelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def A ( self : Union[str, Any] ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCAmelCase = self.img[self.get_y(lowercase )][self.get_x(lowercase )] def A ( self : Dict , lowercase : int ): '''simple docstring''' return int(self.ratio_x * x ) def A ( self : List[Any] , lowercase : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": A , A =8_00, 6_00 A =imread('image_data/lena.jpg', 1) A =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
34
'''simple docstring''' from __future__ import annotations import math class a_ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = size # approximate the overall size of segment tree with given value UpperCamelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCamelCase = [0 for i in range(0 , 4 * size )] UpperCamelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return idx * 2 def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return idx * 2 + 1 def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if left_element == right_element: UpperCamelCase = a[left_element - 1] else: UpperCamelCase = (left_element + right_element) // 2 self.build(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.build(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE )] ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase = val if left_element != right_element: UpperCamelCase = val UpperCamelCase = val UpperCamelCase = True UpperCamelCase = True return True UpperCamelCase = (left_element + right_element) // 2 self.update(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.update(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE )] ) return True def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | float: """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase = (left_element + right_element) // 2 UpperCamelCase = self.query(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.query(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __str__( self ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] SCREAMING_SNAKE_CASE__ = 1_5 SCREAMING_SNAKE_CASE__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
321
0
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=7, A=True, A=True, A=False, A=True, A=99, A=64, A=5, A=4, A=64, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : str = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : int = use_token_type_ids SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_choices SCREAMING_SNAKE_CASE : int = scope def UpperCamelCase_ ( self ): '''simple docstring''' return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size], self.num_choices ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = MPNetModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(_a, _a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = MPNetForQuestionAnswering(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model( _a, attention_mask=_a, start_positions=_a, end_positions=_a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = MPNetForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_a, attention_mask=_a, labels=_a ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices SCREAMING_SNAKE_CASE : str = MPNetForMultipleChoice(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE : int = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() SCREAMING_SNAKE_CASE : Tuple = model( _a, attention_mask=_a, labels=_a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = MPNetForTokenClassification(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_a, attention_mask=_a, labels=_a ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE) : int = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' A : Dict = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) A : Tuple = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) A : Tuple = False A : Any = True def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self, config_class=_a, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_a ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_a ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_a ) @require_torch class _a ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Any = model(_a )[0] SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, _a ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3], _a, atol=1E-4 ) )
362
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = ['''pixel_values'''] def __init__( self, A = True, A = None, A = PILImageResampling.BICUBIC, A = True, A = None, A = True, A = 1 / 255, A = True, A = IMAGENET_DEFAULT_MEAN, A = IMAGENET_DEFAULT_STD, **A, ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : Any = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE : List[str] = get_size_dict(A, default_to_square=A ) SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : int = get_size_dict(A, param_name='crop_size' ) SCREAMING_SNAKE_CASE : Any = do_resize SCREAMING_SNAKE_CASE : Dict = size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : List[Any] = do_center_crop SCREAMING_SNAKE_CASE : Dict = crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE : Any = rescale_factor SCREAMING_SNAKE_CASE : List[Any] = do_normalize SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self, A, A, A = PILImageResampling.BICUBIC, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = get_size_dict(A, default_to_square=A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE : List[str] = int((256 / 224) * size['shortest_edge'] ) SCREAMING_SNAKE_CASE : int = get_resize_output_image_size(A, size=A, default_to_square=A ) SCREAMING_SNAKE_CASE : List[str] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( A, size=(size_dict['height'], size_dict['width']), resample=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(A, size=(size['height'], size['width']), data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A, ): '''simple docstring''' return rescale(A, scale=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A, A = None, **A, ): '''simple docstring''' return normalize(A, mean=A, std=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = ChannelDimension.FIRST, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : List[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : int = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(A, default_to_square=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(A, param_name='crop_size' ) SCREAMING_SNAKE_CASE : List[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Optional[int] = [to_numpy_array(A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : List[str] = [self.resize(A, A, A ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : List[Any] = [self.center_crop(A, A ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : List[str] = [self.rescale(A, A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Optional[int] = [self.normalize(A, A, A ) for image in images] SCREAMING_SNAKE_CASE : List[str] = [to_channel_dimension_format(A, A ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': images} return BatchFeature(data=A, tensor_type=A )
246
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''ibert''' def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any]=3_05_22 , lowerCamelCase_ : Tuple=7_68 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : List[Any]=5_12 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : List[Any]=1e-12 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Tuple=0 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Tuple="absolute" , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Optional[int]="none" , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : int = quant_mode SCREAMING_SNAKE_CASE : List[str] = force_dequant class UpperCamelCase__ ( lowercase_ ): """simple docstring""" @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
323
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 3_84 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 if "tiny" in model_name: SCREAMING_SNAKE_CASE : List[str] = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif "small" in model_name: SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif "base" in model_name: SCREAMING_SNAKE_CASE : int = 1_28 SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32) SCREAMING_SNAKE_CASE : Optional[Any] = 12 SCREAMING_SNAKE_CASE : str = 5_12 elif "large" in model_name: SCREAMING_SNAKE_CASE : Tuple = 1_92 SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68 # set label information SCREAMING_SNAKE_CASE : List[str] = 1_50 SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files""" SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) SCREAMING_SNAKE_CASE : List[str] = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = val def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :] # fmt: on def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = x.shape[0] SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = x.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name] SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase_ , param.shape ) SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ ) if "bn" in key: SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" ) SCREAMING_SNAKE_CASE : Optional[Any] = val # rename keys SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ ) if "norm" in key: SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor() SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
323
1
import random from typing import Any def UpperCamelCase (lowercase_: list ) -> list[Any]: for _ in range(len(lowercase_ ) ): A__ : List[Any] = random.randint(0 , len(lowercase_ ) - 1 ) A__ : Optional[int] = random.randint(0 , len(lowercase_ ) - 1 ) A__ : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": A_ : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] A_ : Any = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
370
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Dict = '''falcon''' UpperCAmelCase__: Any = ['''past_key_values'''] def __init__( self , A__=6_5024 , A__=4544 , A__=32 , A__=71 , A__=1e-5 , A__=0.0_2 , A__=True , A__=0.0 , A__=0.0 , A__=None , A__=False , A__=False , A__=True , A__=True , A__=False , A__=11 , A__=11 , **A__ , ): A__ : Dict = vocab_size # Backward compatibility with n_embed kwarg A__ : Union[str, Any] = kwargs.pop("""n_embed""" , A__ ) A__ : Optional[Any] = hidden_size if n_embed is None else n_embed A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[Any] = layer_norm_epsilon A__ : Tuple = initializer_range A__ : Tuple = use_cache A__ : str = hidden_dropout A__ : List[str] = attention_dropout A__ : List[Any] = bos_token_id A__ : Optional[Any] = eos_token_id A__ : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads A__ : List[str] = alibi A__ : Tuple = new_decoder_architecture A__ : List[str] = multi_query # Ignored when new_decoder_architecture is True A__ : List[Any] = parallel_attn A__ : int = bias super().__init__(bos_token_id=A__ , eos_token_id=A__ , **A__ ) @property def __A ( self ): return self.hidden_size // self.num_attention_heads @property def __A ( self ): return not self.alibi
141
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ = "cpu" , lowerCAmelCase__ = "openai/clip-vit-large-patch14"): __SCREAMING_SNAKE_CASE = device __SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] __SCREAMING_SNAKE_CASE = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] __SCREAMING_SNAKE_CASE = torchvision.transforms.Normalize(self.image_mean , self.image_std) __SCREAMING_SNAKE_CASE = torchvision.transforms.Resize(2_2_4) __SCREAMING_SNAKE_CASE = torchvision.transforms.CenterCrop(2_2_4) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.resize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.center_crop(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.normalize(lowerCAmelCase__) return images def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.tokenizer(text=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.preprocess_img(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.01 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__="image" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , ): super().__init__() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = device if device else get_device() if vqgan: __SCREAMING_SNAKE_CASE = vqgan else: __SCREAMING_SNAKE_CASE = load_vqgan(self.device , conf_path=lowerCAmelCase__ , ckpt_path=lowerCAmelCase__) self.vqgan.eval() if clip: __SCREAMING_SNAKE_CASE = clip else: __SCREAMING_SNAKE_CASE = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""") self.clip.to(self.device) __SCREAMING_SNAKE_CASE = ProcessorGradientFlow(device=self.device) __SCREAMING_SNAKE_CASE = iterations __SCREAMING_SNAKE_CASE = lr __SCREAMING_SNAKE_CASE = log __SCREAMING_SNAKE_CASE = make_grid __SCREAMING_SNAKE_CASE = return_val __SCREAMING_SNAKE_CASE = quantize __SCREAMING_SNAKE_CASE = self.vqgan.decoder.z_shape def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=5 , lowerCAmelCase__=True): __SCREAMING_SNAKE_CASE = [] if output_path is None: __SCREAMING_SNAKE_CASE = """./animation.gif""" if input_path is None: __SCREAMING_SNAKE_CASE = self.save_path __SCREAMING_SNAKE_CASE = sorted(glob(input_path + """/*""")) if not len(lowerCAmelCase__): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""") if len(lowerCAmelCase__) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""") __SCREAMING_SNAKE_CASE = total_duration / len(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [frame_duration] * len(lowerCAmelCase__) if extend_frames: __SCREAMING_SNAKE_CASE = 1.5 __SCREAMING_SNAKE_CASE = 3 for file_name in paths: if file_name.endswith(""".png"""): images.append(imageio.imread(lowerCAmelCase__)) imageio.mimsave(lowerCAmelCase__ , lowerCAmelCase__ , duration=lowerCAmelCase__) print(f"gif saved to {output_path}") def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None): if not (path or img): raise ValueError("""Input either path or tensor""") if img is not None: raise NotImplementedError __SCREAMING_SNAKE_CASE = preprocess(Image.open(lowerCAmelCase__) , target_image_size=2_5_6).to(self.device) __SCREAMING_SNAKE_CASE = preprocess_vqgan(lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE = self.vqgan.encode(lowerCAmelCase__) return z def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.latent.detach().requires_grad_() __SCREAMING_SNAKE_CASE = base_latent + transform_vector if self.quantize: __SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE = self.vqgan.quantize(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = trans_latent return self.vqgan.decode(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = self.clip_preprocessor(text=lowerCAmelCase__ , images=lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.clip(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = clip_outputs.logits_per_image if weights is not None: __SCREAMING_SNAKE_CASE = similarity_logits * weights return similarity_logits.sum() def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCAmelCase__ , weights=(1 / pos_prompts["""weights"""])) if neg_prompts: __SCREAMING_SNAKE_CASE = self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCAmelCase__ , weights=neg_prompts["""weights"""]) else: __SCREAMING_SNAKE_CASE = torch.tensor([1] , device=self.device) __SCREAMING_SNAKE_CASE = -torch.log(lowerCAmelCase__) + torch.log(lowerCAmelCase__) return loss def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.randn_like(self.latent , requires_grad=lowerCAmelCase__ , device=self.device) __SCREAMING_SNAKE_CASE = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() __SCREAMING_SNAKE_CASE = self._add_vector(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = loop_post_process(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self._get_CLIP_loss(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) print("""CLIP loss""" , lowerCAmelCase__) if self.log: wandb.log({"""CLIP Loss""": clip_loss}) clip_loss.backward(retain_graph=lowerCAmelCase__) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): wandb.init(reinit=lowerCAmelCase__ , project="""face-editor""") wandb.config.update({"""Positive Prompts""": positive_prompts}) wandb.config.update({"""Negative Prompts""": negative_prompts}) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations}) if image_path: __SCREAMING_SNAKE_CASE = Image.open(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.resize((2_5_6, 2_5_6)) wandb.log("""Original Image""" , wandb.Image(lowerCAmelCase__)) def snake_case_ ( self , lowerCAmelCase__): if not prompts: return [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [prompt.strip() for prompt in prompts.split("""|""")] for prompt in prompts: if isinstance(lowerCAmelCase__ , (tuple, list)): __SCREAMING_SNAKE_CASE = prompt[0] __SCREAMING_SNAKE_CASE = float(prompt[1]) elif ":" in prompt: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = prompt.split(""":""") __SCREAMING_SNAKE_CASE = float(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = prompt __SCREAMING_SNAKE_CASE = 1.0 processed_prompts.append(lowerCAmelCase__) weights.append(lowerCAmelCase__) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase__ , device=self.device), } def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=None , ): if image_path: __SCREAMING_SNAKE_CASE = self._get_latent(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) assert pos_prompts, "You must provide at least one positive prompt." __SCREAMING_SNAKE_CASE = self.process_prompts(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.process_prompts(lowerCAmelCase__) if save_final and save_path is None: __SCREAMING_SNAKE_CASE = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""])) if not os.path.exists(lowerCAmelCase__): os.makedirs(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = save_path + """_""" + get_timestamp() os.makedirs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = save_path __SCREAMING_SNAKE_CASE = self.vqgan.decode(self.latent)[0] if show_intermediate: print("""Original Image""") show_pil(custom_to_pil(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = loop_post_process(lowerCAmelCase__) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__)): if show_intermediate: show_pil(lowerCAmelCase__) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}.png")) if self.log: wandb.log({"""Image""": wandb.Image(lowerCAmelCase__)}) if show_final: show_pil(lowerCAmelCase__) if save_final: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}_final.png"))
100
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 100 ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
100
1
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = OpenAIGPTTokenizer __UpperCamelCase = OpenAIGPTTokenizerFast __UpperCamelCase = True __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCamelCase = dict(zip(_a , range(len(_a ) ) ) ) lowerCamelCase = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_a ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_a ) ) def _lowerCAmelCase ( self , _a ): """simple docstring""" return "lower newer", "lower newer" def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase = """lower""" lowerCamelCase = ["""low""", """er</w>"""] lowerCamelCase = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCamelCase = tokens + ["""<unk>"""] lowerCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def _lowerCAmelCase ( self , _a=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained(_a , **_a ) # Simple input lowerCamelCase = """This is a simple input""" lowerCamelCase = ["""This is a simple input 1""", """This is a simple input 2"""] lowerCamelCase = ("""This is a simple input""", """This is a pair""") lowerCamelCase = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="""max_length""" ) # Simple input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="""max_length""" ) # Simple input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="""max_length""" , ) # Pair input self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="""max_length""" ) # Pair input self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="""max_length""" ) # Pair input self.assertRaises( _a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="""max_length""" , ) def _lowerCAmelCase ( self ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' pass
168
"""simple docstring""" import math import random def a__ ( snake_case__ , snake_case__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase : Dict = 0.0_2 def a__ ( snake_case__ , snake_case__ ) -> float: lowerCamelCase = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation lowerCamelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCamelCase = (expected / 1_00) - layer_a # Error delta lowerCamelCase = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Any = int(input("""Expected value: """)) lowerCAmelCase : List[Any] = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
168
1
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[] create_all_state(1, _lowerCamelCase, _lowerCamelCase, [], _lowerCamelCase ) return result def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCamelCase, total_number - level + 2 ): current_list.append(_lowerCamelCase ) create_all_state(i + 1, _lowerCamelCase, level - 1, _lowerCamelCase, _lowerCamelCase ) current_list.pop() def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" for i in total_list: print(*_lowerCamelCase ) if __name__ == "__main__": _lowerCamelCase =4 _lowerCamelCase =2 _lowerCamelCase =generate_all_combinations(n, k) print_all_state(total_list)
334
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" _UpperCamelCase : Dict = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _UpperCamelCase : Optional[int] = "document_qa" _UpperCamelCase : Any = AutoProcessor _UpperCamelCase : Union[str, Any] = VisionEncoderDecoderModel _UpperCamelCase : Union[str, Any] = ["image", "text"] _UpperCamelCase : List[str] = ["text"] def __init__( self , *a__ , **a__ ): if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*a__ , **a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[int] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _lowerCAmelCase : Dict = task_prompt.replace("""{user_input}""" , a__ ) _lowerCAmelCase : str = self.pre_processor.tokenizer( a__ , add_special_tokens=a__ , return_tensors="""pt""" ).input_ids _lowerCAmelCase : Dict = self.pre_processor(a__ , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __A ( self , a__ ): return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=a__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=a__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=a__ , ).sequences def __A ( self , a__ ): _lowerCAmelCase : Tuple = self.pre_processor.batch_decode(a__ )[0] _lowerCAmelCase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) _lowerCAmelCase : List[str] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) _lowerCAmelCase : List[str] = re.sub(r"""<.*?>""" , """""" , a__ , count=1 ).strip() # remove first task start token _lowerCAmelCase : List[str] = self.pre_processor.tokenajson(a__ ) return sequence["answer"]
44
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _a ( _SCREAMING_SNAKE_CASE="" ) -> str: snake_case_ = tempfile.mkdtemp() return os.path.join(_SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ = AgentAudio(UpperCAmelCase_ ) snake_case_ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) # Ensure that the file contains the same value as the original tensor snake_case_ , snake_case_ = sf.read(UpperCAmelCase_ ) self.assertTrue(torch.allclose(UpperCAmelCase_ , torch.tensor(UpperCAmelCase_ ) , atol=1E-4 ) ) def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ = get_new_path(suffix=""".wav""" ) sf.write(UpperCAmelCase_ , UpperCAmelCase_ , 16_000 ) snake_case_ = AgentAudio(UpperCAmelCase_ ) self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , UpperCAmelCase_ ) @require_vision @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ = AgentImage(UpperCAmelCase_ ) snake_case_ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCAmelCase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) def lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" snake_case_ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" snake_case_ = Image.open(UpperCAmelCase_ ) snake_case_ = AgentImage(UpperCAmelCase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" snake_case_ = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" snake_case_ = Image.open(UpperCAmelCase_ ) snake_case_ = AgentImage(UpperCAmelCase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" snake_case_ = """Hey!""" snake_case_ = AgentText(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , agent_type.to_string() ) self.assertEqual(UpperCAmelCase_ , agent_type.to_raw() ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
233
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : int = 32 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = "bert-base-cased" ) -> Optional[Any]: snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: # Initialize accelerator snake_case_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config["""lr"""] snake_case_ = int(config["""num_epochs"""] ) snake_case_ = int(config["""seed"""] ) snake_case_ = int(config["""batch_size"""] ) snake_case_ = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer snake_case_ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case_ = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: snake_case_ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case_ = 1 snake_case_ = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case_ = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: snake_case_ = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over snake_case_ = 0 # We also need to keep track of the stating epoch so files are named properly snake_case_ = 0 # Now we train the model snake_case_ = evaluate.load("""glue""" , """mrpc""" ) snake_case_ = 0 snake_case_ = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case_ = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case_ , snake_case_ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) snake_case_ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: snake_case_ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( ) -> int: snake_case_ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( """--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 , help="""Number of train epochs.""" , ) snake_case_ = parser.parse_args() snake_case_ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
233
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCamelCase__ = 'base_with_context' def lowerCAmelCase_ ( __A, __A ) -> int: '''simple docstring''' UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ), requires_grad=__A ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase__ = weights[f"""layers_{lyr_num}"""] UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) UpperCAmelCase__ = ly_weight["attention"] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowerCAmelCase_ ( __A, __A ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ), requires_grad=__A ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase__ = weights[f"""layers_{lyr_num}"""] UpperCAmelCase__ = ly_weight["attention"] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ), requires_grad=__A ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCAmelCase__ = weights[f"""layers_{lyr_num}"""] UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) UpperCAmelCase__ = ly_weight["self_attention"] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) UpperCAmelCase__ = ly_weight["MultiHeadDotProductAttention_0"] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' UpperCAmelCase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCAmelCase__ = jnp.tree_util.tree_map(onp.array, __A ) UpperCAmelCase__ = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] UpperCAmelCase__ = os.path.join(args.checkpoint_path, "..", "config.gin" ) UpperCAmelCase__ = inference.parse_training_gin_file(__A, __A ) UpperCAmelCase__ = inference.InferenceModel(args.checkpoint_path, __A ) UpperCAmelCase__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2", variance_type="fixed_large" ) UpperCAmelCase__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="gated-gelu", ) UpperCAmelCase__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length["targets_context"], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="gated-gelu", ) UpperCAmelCase__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length["targets_context"], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) UpperCAmelCase__ = load_notes_encoder(ta_checkpoint["target"]["token_encoder"], __A ) UpperCAmelCase__ = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"], __A ) UpperCAmelCase__ = load_decoder(ta_checkpoint["target"]["decoder"], __A ) UpperCAmelCase__ = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) UpperCAmelCase__ = SpectrogramDiffusionPipeline( notes_encoder=__A, continuous_encoder=__A, decoder=__A, scheduler=__A, melgan=__A, ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) UpperCamelCase__ = parser.parse_args() main(args)
65
from __future__ import annotations from collections import deque class A : def __init__(self : Dict , __UpperCAmelCase : list[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__UpperCAmelCase ) self.set_fail_transitions() def lowercase_ (self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase_ (self : Dict , __UpperCAmelCase : str ) -> None: """simple docstring""" UpperCAmelCase__ = 0 for character in keyword: UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ = len(self.adlist ) - 1 else: UpperCAmelCase__ = next_state self.adlist[current_state]["output"].append(__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase__ = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = 0 while q: UpperCAmelCase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(__UpperCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase__ = self.adlist[state]["fail_state"] UpperCAmelCase__ = self.find_next_state( __UpperCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ = 0 UpperCAmelCase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> dict[str, list[int]]: """simple docstring""" UpperCAmelCase__ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ = 0 for i in range(len(__UpperCAmelCase ) ): while ( self.find_next_state(__UpperCAmelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ = self.adlist[current_state]["fail_state"] UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , string[i] ) if next_state is None: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ = [] result[key].append(i - len(__UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
65
1
"""simple docstring""" from __future__ import annotations import math def A_ ( snake_case_ : Optional[Any] ,snake_case_ : int ,snake_case_ : Dict ,snake_case_ : Dict ,snake_case_ : Optional[int] ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 ,node_index * 2 ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) ,) if is_max else min( minimax(depth + 1 ,node_index * 2 ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) ,) ) def A_ ( ): '''simple docstring''' UpperCamelCase : Optional[int] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCamelCase : Union[str, Any] = math.log(len(_lowerCAmelCase ) ,2 ) print(f'Optimal value : {minimax(0 ,0 ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
353
"""simple docstring""" import argparse import os import re __A : Dict = '''src/diffusers''' # Pattern that looks at the indentation in a line. __A : Union[str, Any] = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __A : Dict = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A : Tuple = re.compile(R'''\[([^\]]+)\]''') def A_ ( snake_case_ : Dict ): '''simple docstring''' UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ ) return "" if search is None else search.groups()[0] def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ): '''simple docstring''' UpperCamelCase : Optional[int] = 0 UpperCamelCase : List[Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(snake_case_ ): index += 1 UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )] else: UpperCamelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase : Any = [lines[index]] index += 1 while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(snake_case_ ) ) if index < len(snake_case_ ) - 1: UpperCamelCase : Any = [lines[index + 1]] index += 1 else: UpperCamelCase : List[str] = [] else: blocks.append("""\n""".join(snake_case_ ) ) UpperCamelCase : int = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case_ ) > 0: blocks.append("""\n""".join(snake_case_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' def _inner(snake_case_ : Tuple ): return key(snake_case_ ).lower().replace("""_""" ,"""""" ) return _inner def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(snake_case_ : Dict ): return x if key is None: UpperCamelCase : int = noop # Constants are all uppercase, they go first. UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()] UpperCamelCase : Tuple = ignore_underscore(snake_case_ ) return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) def A_ ( snake_case_ : int ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(snake_case_ : List[Any] ): UpperCamelCase : Any = match.groups()[0] if "," not in imports: return f'[{imports}]' UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase : List[str] = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]" UpperCamelCase : str = import_statement.split("""\n""" ) if len(snake_case_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1 UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] ) UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] ) else: UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase : List[Any] = keys[:-1] UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] ) return "\n".join(snake_case_ ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ ) return import_statement def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ): '''simple docstring''' with open(snake_case_ ,"""r""" ) as f: UpperCamelCase : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase : Dict = split_code_in_indented_blocks( snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(snake_case_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase : Optional[Any] = main_blocks[block_idx] UpperCamelCase : Optional[int] = block.split("""\n""" ) # Get to the start of the imports. UpperCamelCase : Union[str, Any] = 0 while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase : List[str] = len(snake_case_ ) else: line_idx += 1 if line_idx >= len(snake_case_ ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] ) UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None] UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase : str = 0 UpperCamelCase : List[Any] = [] for i in range(len(snake_case_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(snake_case_ ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case_ ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(snake_case_ ,"""w""" ) as f: f.write("""\n""".join(snake_case_ ) ) def A_ ( snake_case_ : int=True ): '''simple docstring''' UpperCamelCase : Any = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ ) if result: UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )] if len(snake_case_ ) > 0: raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __A : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
27
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str =AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=snake_case__ ).to(snake_case__ ) UpperCAmelCase : str =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Any =tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids UpperCAmelCase : int =tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids UpperCAmelCase : Optional[Any] =model(input_ids.to(snake_case__ ) , labels=labels.to(snake_case__ ) ).loss UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : Union[str, Any] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =ort.SessionOptions() UpperCAmelCase : Optional[int] =False return options def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : Any =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
1
from math import isclose, sqrt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = point_y / 4 / point_x _lowerCAmelCase : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _lowerCAmelCase : List[str] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _lowerCAmelCase : Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _lowerCAmelCase : Any = outgoing_gradient**2 + 4 _lowerCAmelCase : Optional[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _lowerCAmelCase : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 _lowerCAmelCase : Any = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _lowerCAmelCase : int = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _lowerCAmelCase : str = x_minus if isclose(_lowerCamelCase , _lowerCamelCase ) else x_plus _lowerCAmelCase : Any = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def A ( _lowerCamelCase = 1.4 , _lowerCamelCase = -9.6 ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : float = first_x_coord _lowerCAmelCase : float = first_y_coord _lowerCAmelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = next_point(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
'''simple docstring''' class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = name lowerCamelCase_ = val def __str__( self ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self , UpperCamelCase ): """simple docstring""" return self.val < other.val class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} lowerCamelCase_ = self.build_heap(UpperCamelCase ) def __getitem__( self , UpperCamelCase ): """simple docstring""" return self.get_value(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return (idx - 1) // 2 def snake_case ( self , UpperCamelCase ): """simple docstring""" return idx * 2 + 1 def snake_case ( self , UpperCamelCase ): """simple docstring""" return idx * 2 + 2 def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.heap_dict[key] def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = len(UpperCamelCase ) - 1 lowerCamelCase_ = self.get_parent_idx(UpperCamelCase ) for idx, i in enumerate(UpperCamelCase ): lowerCamelCase_ = idx lowerCamelCase_ = i.val for i in range(UpperCamelCase , -1 , -1 ): self.sift_down(UpperCamelCase , UpperCamelCase ) return array def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" while True: lowerCamelCase_ = self.get_left_child_idx(UpperCamelCase ) # noqa: E741 lowerCamelCase_ = self.get_right_child_idx(UpperCamelCase ) lowerCamelCase_ = idx if l < len(UpperCamelCase ) and array[l] < array[idx]: lowerCamelCase_ = l if r < len(UpperCamelCase ) and array[r] < array[smallest]: lowerCamelCase_ = r if smallest != idx: lowerCamelCase_ ,lowerCamelCase_ = array[smallest], array[idx] ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCamelCase_ = smallest else: break def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.get_parent_idx(UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCamelCase_ ,lowerCamelCase_ = self.heap[idx], self.heap[p] lowerCamelCase_ ,lowerCamelCase_ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCamelCase_ = p lowerCamelCase_ = self.get_parent_idx(UpperCamelCase ) def snake_case ( self ): """simple docstring""" return self.heap[0] def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.heap[-1], self.heap[0] lowerCamelCase_ ,lowerCamelCase_ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCamelCase_ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def snake_case ( self , UpperCamelCase ): """simple docstring""" self.heap.append(UpperCamelCase ) lowerCamelCase_ = len(self.heap ) - 1 lowerCamelCase_ = node.val self.sift_up(len(self.heap ) - 1 ) def snake_case ( self ): """simple docstring""" return len(self.heap ) == 0 def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCamelCase_ = new_value lowerCamelCase_ = new_value self.sift_up(self.idx_of_element[node] ) a_ : Optional[Any] = Node("""R""", -1) a_ : Dict = Node("""B""", 6) a_ : Tuple = Node("""A""", 3) a_ : str = Node("""X""", 1) a_ : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array a_ : Dict = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''ibert''' def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-12 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Optional[Any]="absolute" , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple="none" , **lowerCAmelCase__ : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Any = quant_mode _UpperCAmelCase : Optional[Any] = force_dequant class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
145
0
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __UpperCAmelCase : Optional[Any] = (low + high) // 2 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = max_subarray(__a, __a, __a ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = max_subarray(__a, mid + 1, __a ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = max_cross_sum(__a, __a, __a, __a ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase , __UpperCAmelCase : int = float("-inf" ), -1 __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = float("-inf" ), -1 __UpperCAmelCase : Any = 0 for i in range(__a, low - 1, -1 ): summ += arr[i] if summ > left_sum: __UpperCAmelCase : Dict = summ __UpperCAmelCase : int = i __UpperCAmelCase : List[str] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: __UpperCAmelCase : List[str] = summ __UpperCAmelCase : Optional[int] = i return max_left, max_right, (left_sum + right_sum) def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = [randint(1, __a ) for _ in range(__a )] __UpperCAmelCase : Optional[int] = time.time() max_subarray(__a, 0, input_size - 1 ) __UpperCAmelCase : List[str] = time.time() return end - start def __UpperCamelCase ( ): __UpperCAmelCase : Any = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] __UpperCAmelCase : List[str] = [time_max_subarray(__a ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(__a, __a ): print(__a, "\t\t", __a ) plt.plot(__a, __a ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
350
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): try: __UpperCAmelCase : Union[str, Any] = float(_UpperCAmelCase ) except ValueError: raise ValueError("Please enter a valid number" ) __UpperCAmelCase : str = decimal - int(_UpperCAmelCase ) if fractional_part == 0: return int(_UpperCAmelCase ), 1 else: __UpperCAmelCase : Dict = len(str(_UpperCAmelCase ).split("." )[1] ) __UpperCAmelCase : List[Any] = int(decimal * (10**number_of_frac_digits) ) __UpperCAmelCase : Any = 10**number_of_frac_digits __UpperCAmelCase , __UpperCAmelCase : Tuple = denominator, numerator while True: __UpperCAmelCase : Dict = dividend % divisor if remainder == 0: break __UpperCAmelCase , __UpperCAmelCase : str = divisor, remainder __UpperCAmelCase , __UpperCAmelCase : List[str] = numerator / divisor, denominator / divisor return int(_UpperCAmelCase ), int(_UpperCAmelCase ) if __name__ == "__main__": print(f"{decimal_to_fraction(2) = }") print(f"{decimal_to_fraction(89.0) = }") print(f"{decimal_to_fraction('67') = }") print(f"{decimal_to_fraction('45.0') = }") print(f"{decimal_to_fraction(1.5) = }") print(f"{decimal_to_fraction('6.25') = }") print(f"{decimal_to_fraction('78td') = }")
37
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : Dict, lowercase__ : Any ): '''simple docstring''' __lowercase =state_dict.pop(lowercase__ ) __lowercase =val def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' __lowercase =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase =key.replace('backbone.0.body', 'backbone.conv_encoder.model' ) __lowercase =value else: __lowercase =value return new_state_dict def __UpperCamelCase ( lowercase__ : Any, lowercase__ : Dict=False ): '''simple docstring''' __lowercase ='' if is_panoptic: __lowercase ='conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __lowercase =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __lowercase =in_proj_weight[:2_56, :] __lowercase =in_proj_bias[:2_56] __lowercase =in_proj_weight[2_56:5_12, :] __lowercase =in_proj_bias[2_56:5_12] __lowercase =in_proj_weight[-2_56:, :] __lowercase =in_proj_bias[-2_56:] def __UpperCamelCase ( ): '''simple docstring''' __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =Image.open(requests.get(lowercase__, stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[Any], lowercase__ : Tuple ): '''simple docstring''' __lowercase =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowercase ='resnet101' if "dc5" in model_name: __lowercase =True __lowercase ='panoptic' in model_name if is_panoptic: __lowercase =2_50 else: __lowercase =91 __lowercase ='huggingface/label-files' __lowercase ='coco-detection-id2label.json' __lowercase =json.load(open(hf_hub_download(lowercase__, lowercase__, repo_type='dataset' ), 'r' ) ) __lowercase ={int(lowercase__ ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} # load image processor __lowercase ='coco_panoptic' if is_panoptic else 'coco_detection' __lowercase =ConditionalDetrImageProcessor(format=lowercase__ ) # prepare image __lowercase =prepare_img() __lowercase =image_processor(images=lowercase__, return_tensors='pt' ) __lowercase =encoding['pixel_values'] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub __lowercase =torch.hub.load('DeppMeng/ConditionalDETR', lowercase__, pretrained=lowercase__ ).eval() __lowercase =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowercase ='conditional_detr.' + src rename_key(lowercase__, lowercase__, lowercase__ ) __lowercase =rename_backbone_keys(lowercase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase__, is_panoptic=lowercase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase ='conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowercase =state_dict.pop(lowercase__ ) __lowercase =val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowercase =state_dict.pop(lowercase__ ) __lowercase =val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowercase =state_dict.pop(lowercase__ ) __lowercase =val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowercase =state_dict.pop(lowercase__ ) __lowercase =val # finally, create HuggingFace model and load state dict __lowercase =ConditionalDetrForSegmentation(lowercase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() model.push_to_hub(repo_id=lowercase__, organization='DepuMeng', commit_message='Add model' ) # verify our conversion __lowercase =conditional_detr(lowercase__ ) __lowercase =model(lowercase__ ) assert torch.allclose(outputs.logits, original_outputs['pred_logits'], atol=1E-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['pred_boxes'], atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['pred_masks'], atol=1E-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
141
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase : Tuple = 'naver-clova-ix/donut-base' class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = DonutProcessor.from_pretrained(UpperCamelCase ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__ = self.processor.tokenajson(UpperCamelCase ) self.assertDictEqual(UpperCamelCase , UpperCamelCase )
2
0
import torch from torch import nn class lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Any=False ) -> Tuple: super().__init__() lowerCamelCase__ : int = n_token lowerCamelCase__ : int = d_embed lowerCamelCase__ : str = d_proj lowerCamelCase__ : Union[str, Any] = cutoffs + [n_token] lowerCamelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCamelCase__ : Dict = div_val lowerCamelCase__ : List[Any] = self.cutoffs[0] lowerCamelCase__ : Dict = len(self.cutoffs ) - 1 lowerCamelCase__ : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCamelCase__ : Dict = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCamelCase__ : str = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCamelCase__ : Dict = nn.ModuleList() lowerCamelCase__ : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) else: self.out_projs.append(UpperCAmelCase ) self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase__ , lowerCamelCase__ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) ) lowerCamelCase__ : Optional[int] = keep_order def A_ ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Any: if proj is None: lowerCamelCase__ : List[str] = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCamelCase__ : Optional[int] = nn.functional.linear(UpperCAmelCase , proj.t().contiguous() ) lowerCamelCase__ : Optional[Any] = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A_ ( self : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=False ) -> Optional[int]: if labels is not None: # Shift so that tokens < n predict n lowerCamelCase__ : List[Any] = hidden[..., :-1, :].contiguous() lowerCamelCase__ : Tuple = labels[..., 1:].contiguous() lowerCamelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCamelCase__ : Optional[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCamelCase__ : Dict = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCamelCase__ : Optional[int] = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCamelCase__ : Dict = labels != -100 lowerCamelCase__ : Optional[Any] = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowerCamelCase__ : int = ( -nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCamelCase__ : Tuple = nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowerCamelCase__ , lowerCamelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCamelCase__ : str = self.out_layers[0].bias[l_idx:r_idx] else: lowerCamelCase__ : List[Any] = self.out_layers[i].weight lowerCamelCase__ : Tuple = self.out_layers[i].bias if i == 0: lowerCamelCase__ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCamelCase__ : Optional[int] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCamelCase__ : Any = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) if labels is None: lowerCamelCase__ : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCamelCase__ : Optional[Any] = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowerCamelCase__ , lowerCamelCase__ : List[str] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCamelCase__ : List[str] = (labels >= l_idx) & (labels < r_idx) lowerCamelCase__ : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCamelCase__ : Tuple = labels.index_select(0 , UpperCAmelCase ) - l_idx lowerCamelCase__ : Any = head_logprob.index_select(0 , UpperCAmelCase ) lowerCamelCase__ : str = hidden.index_select(0 , UpperCAmelCase ) else: lowerCamelCase__ : List[str] = hidden if i == 0: if labels is not None: lowerCamelCase__ : Any = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCamelCase__ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = weights[i], biases[i], self.out_projs[i] lowerCamelCase__ : Any = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Dict = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowerCamelCase__ : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCamelCase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCamelCase__ : Union[str, Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCamelCase__ : Tuple = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A_ ( self : Any , UpperCAmelCase : Tuple ) -> Union[str, Any]: if self.n_clusters == 0: lowerCamelCase__ : Tuple = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowerCamelCase__ , lowerCamelCase__ : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase__ : int = self.out_layers[0].weight[l_idx:r_idx] lowerCamelCase__ : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: lowerCamelCase__ : int = self.out_layers[i].weight lowerCamelCase__ : List[str] = self.out_layers[i].bias if i == 0: lowerCamelCase__ : Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCamelCase__ : Tuple = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = weights[0], biases[0], self.out_projs[0] lowerCamelCase__ : Any = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCamelCase__ : str = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowerCamelCase__ : Any = [0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowerCamelCase__ , lowerCamelCase__ : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCamelCase__ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCamelCase__ : Tuple = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowerCamelCase__ : Any = head_logprob[:, -i] + tail_logprob_i lowerCamelCase__ : int = logprob_i return out
45
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _UpperCAmelCase : Tuple = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _UpperCAmelCase : List[str] = """UperNetConfig""" class lowerCAmelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[int, Tuple[int, int]] , UpperCAmelCase : Union[int, Tuple[int, int], str] = 0 , UpperCAmelCase : bool = False , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() lowerCamelCase__ : Any = nn.Convad( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , bias=UpperCAmelCase , dilation=UpperCAmelCase , ) lowerCamelCase__ : str = nn.BatchNormad(UpperCAmelCase ) lowerCamelCase__ : Tuple = nn.ReLU() def A_ ( self : Tuple , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: lowerCamelCase__ : Tuple = self.conv(UpperCAmelCase ) lowerCamelCase__ : int = self.batch_norm(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.activation(UpperCAmelCase ) return output class lowerCAmelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: super().__init__() lowerCamelCase__ : int = [ nn.AdaptiveAvgPoolad(UpperCAmelCase ), UperNetConvModule(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : Union[str, Any] , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: lowerCamelCase__ : Dict = input for layer in self.layers: lowerCamelCase__ : Tuple = layer(UpperCAmelCase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Tuple[int, ...] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : bool ) -> None: super().__init__() lowerCamelCase__ : int = pool_scales lowerCamelCase__ : Tuple = align_corners lowerCamelCase__ : Union[str, Any] = in_channels lowerCamelCase__ : List[Any] = channels lowerCamelCase__ : Tuple = [] for i, pool_scale in enumerate(UpperCAmelCase ): lowerCamelCase__ : Dict = UperNetPyramidPoolingBlock(pool_scale=UpperCAmelCase , in_channels=UpperCAmelCase , channels=UpperCAmelCase ) self.blocks.append(UpperCAmelCase ) self.add_module(str(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : Optional[int] , UpperCAmelCase : torch.Tensor ) -> List[torch.Tensor]: lowerCamelCase__ : Tuple = [] for ppm in self.blocks: lowerCamelCase__ : Union[str, Any] = ppm(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.functional.interpolate( UpperCAmelCase , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(UpperCAmelCase ) return ppm_outs class lowerCAmelCase ( nn.Module ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Any ) -> int: super().__init__() lowerCamelCase__ : Tuple = config lowerCamelCase__ : Optional[Any] = config.pool_scales # e.g. (1, 2, 3, 6) lowerCamelCase__ : List[Any] = in_channels lowerCamelCase__ : Optional[int] = config.hidden_size lowerCamelCase__ : Dict = False lowerCamelCase__ : List[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCamelCase__ : Tuple = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCamelCase__ : int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCamelCase__ : str = nn.ModuleList() lowerCamelCase__ : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCamelCase__ : str = UperNetConvModule(UpperCAmelCase , self.channels , kernel_size=1 ) lowerCamelCase__ : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCAmelCase ) self.fpn_convs.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def A_ ( self : Tuple ) -> List[Any]: self.apply(self._init_weights ) def A_ ( self : Tuple , UpperCAmelCase : Dict ) -> str: if isinstance(UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> Optional[int]: lowerCamelCase__ : str = inputs[-1] lowerCamelCase__ : List[str] = [x] psp_outs.extend(self.psp_modules(UpperCAmelCase ) ) lowerCamelCase__ : Tuple = torch.cat(UpperCAmelCase , dim=1 ) lowerCamelCase__ : Optional[Any] = self.bottleneck(UpperCAmelCase ) return output def A_ ( self : str , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: # build laterals lowerCamelCase__ : Union[str, Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCAmelCase ) ) # build top-down path lowerCamelCase__ : Tuple = len(UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase__ : Optional[Any] = laterals[i - 1].shape[2:] lowerCamelCase__ : Any = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCAmelCase , mode='bilinear' , align_corners=self.align_corners ) # build outputs lowerCamelCase__ : Any = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCamelCase__ : Optional[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) lowerCamelCase__ : Dict = torch.cat(UpperCAmelCase , dim=1 ) lowerCamelCase__ : List[str] = self.fpn_bottleneck(UpperCAmelCase ) lowerCamelCase__ : int = self.classifier(UpperCAmelCase ) return output class lowerCAmelCase ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 3 , UpperCAmelCase : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() lowerCamelCase__ : Any = config lowerCamelCase__ : Optional[Any] = config.auxiliary_in_channels lowerCamelCase__ : str = config.auxiliary_channels lowerCamelCase__ : Optional[Any] = config.auxiliary_num_convs lowerCamelCase__ : str = config.auxiliary_concat_input lowerCamelCase__ : List[Any] = in_index lowerCamelCase__ : List[str] = (kernel_size // 2) * dilation lowerCamelCase__ : Optional[int] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCAmelCase , padding=UpperCAmelCase , dilation=UpperCAmelCase ) ) if self.num_convs == 0: lowerCamelCase__ : Optional[Any] = nn.Identity() else: lowerCamelCase__ : Optional[Any] = nn.Sequential(*UpperCAmelCase ) if self.concat_input: lowerCamelCase__ : Any = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCAmelCase , padding=kernel_size // 2 ) lowerCamelCase__ : Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def A_ ( self : Tuple ) -> Tuple: self.apply(self._init_weights ) def A_ ( self : Union[str, Any] , UpperCAmelCase : List[Any] ) -> List[str]: if isinstance(UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A_ ( self : Tuple , UpperCAmelCase : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps lowerCamelCase__ : str = encoder_hidden_states[self.in_index] lowerCamelCase__ : Union[str, Any] = self.convs(UpperCAmelCase ) if self.concat_input: lowerCamelCase__ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCamelCase__ : Optional[int] = self.classifier(UpperCAmelCase ) return output class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = UperNetConfig UpperCAmelCase__ = """pixel_values""" UpperCAmelCase__ = True def A_ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: if isinstance(UpperCAmelCase , UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def A_ ( self : str ) -> Tuple: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def A_ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]=False ) -> str: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : Any = value _UpperCAmelCase : List[Any] = R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase : Union[str, Any] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""", __UpperCamelCase, ) class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any] ) -> Dict: super().__init__(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCamelCase__ : List[Any] = UperNetHead(UpperCAmelCase , in_channels=self.backbone.channels ) lowerCamelCase__ : int = UperNetFCNHead(UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def A_ ( self : Union[str, Any] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: lowerCamelCase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__ : str = output_attentions if output_attentions is not None else self.config.output_attentions lowerCamelCase__ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( UpperCAmelCase , output_hidden_states=UpperCAmelCase , output_attentions=UpperCAmelCase ) lowerCamelCase__ : List[str] = outputs.feature_maps lowerCamelCase__ : Optional[int] = self.decode_head(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.functional.interpolate(UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCAmelCase ) lowerCamelCase__ : List[str] = None if self.auxiliary_head is not None: lowerCamelCase__ : List[Any] = self.auxiliary_head(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = nn.functional.interpolate( UpperCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCAmelCase ) lowerCamelCase__ : List[str] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss lowerCamelCase__ : Optional[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCamelCase__ : str = loss_fct(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = loss_fct(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCamelCase__ : List[str] = (logits,) + outputs[1:] else: lowerCamelCase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
45
1
class lowercase__ : def __init__( self : Optional[Any] , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size SCREAMING_SNAKE_CASE : List[str] = [0] * size @staticmethod def __A ( UpperCamelCase__ : int ): '''simple docstring''' return index | (index + 1) @staticmethod def __A ( UpperCamelCase__ : int ): '''simple docstring''' return (index & (index + 1)) - 1 def __A ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = value while index < self.size: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_prev(UpperCamelCase__ ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : Dict = max(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_next(UpperCamelCase__ ) def __A ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE : str = 0 while left <= right: SCREAMING_SNAKE_CASE : List[str] = self.get_prev(UpperCamelCase__ ) if left <= current_left: SCREAMING_SNAKE_CASE : Optional[Any] = max(UpperCamelCase__ , self.tree[right] ) SCREAMING_SNAKE_CASE : int = current_left else: SCREAMING_SNAKE_CASE : Any = max(UpperCamelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
182
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A ( _lowercase ): if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE : int = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *_lowercase , **_lowercase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_lowercase , **_lowercase ) return wrapper
182
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase__ = Features({"audio": Audio()} ) lowerCAmelCase__ = Features({"labels": ClassLabel} ) lowerCAmelCase__ = "audio" lowerCAmelCase__ = "labels" def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) lowercase_ = copy.deepcopy(self ) lowercase_ = self.label_schema.copy() lowercase_ = features[self.label_column] lowercase_ = label_schema return task_template @property def A__ ( self ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
"""simple docstring""" import requests from bsa import BeautifulSoup def __lowerCAmelCase (_UpperCamelCase = "https://www.worldometers.info/coronavirus" ): __lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_UpperCamelCase ).text , 'html.parser' ) __lowerCAmelCase : str = soup.findAll('h1' ) __lowerCAmelCase : str = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(_UpperCamelCase , _UpperCamelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
1
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE : Tuple = "docs/source/en/_toctree.yml" def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Tuple = defaultdict(lowerCamelCase_ ) _lowercase : int = [] _lowercase : str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCamelCase_ ) _lowercase : Optional[int] = new_doc_list _lowercase : str = [key for key, value in counts.items() if value > 1] _lowercase : Union[str, Any] = [] for duplicate_key in duplicates: _lowercase : Optional[Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCamelCase_ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowercase : Optional[int] = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCamelCase_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCamelCase_ ) # Sort return overview_doc def UpperCamelCase_( lowerCamelCase_=False ) -> Any: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Tuple = content[api_idx]['sections'] # Then to the model doc _lowercase : int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowercase : Optional[int] = api_doc[scheduler_idx]['sections'] _lowercase : List[Any] = clean_doc_toc(lowerCamelCase_ ) _lowercase : Optional[Any] = False if new_scheduler_doc != scheduler_doc: _lowercase : Optional[Any] = True if overwrite: _lowercase : str = new_scheduler_doc if diff: if overwrite: _lowercase : Any = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase_( lowerCamelCase_=False ) -> List[str]: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : int = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : str = content[api_idx]['sections'] # Then to the model doc _lowercase : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowercase : Tuple = False _lowercase : Dict = api_doc[pipeline_idx]['sections'] _lowercase : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowercase : Union[str, Any] = pipeline_doc['section'] _lowercase : List[str] = clean_doc_toc(lowerCamelCase_ ) if overwrite: _lowercase : str = new_sub_pipeline_doc new_pipeline_docs.append(lowerCamelCase_ ) # sort overall pipeline doc _lowercase : int = clean_doc_toc(lowerCamelCase_ ) if new_pipeline_docs != pipeline_docs: _lowercase : Tuple = True if overwrite: _lowercase : str = new_pipeline_docs if diff: if overwrite: _lowercase : List[str] = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") SCREAMING_SNAKE_CASE : Any = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
84
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _lowercase : Any = TOKENIZER_CLASSES else: _lowercase : Tuple = {tokenizer_name: getattr(lowerCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _lowercase : Union[str, Any] = TOKENIZER_CLASSES[tokenizer_name] _lowercase : Any = True if checkpoint_name is None: _lowercase : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: _lowercase : List[Any] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _lowercase : Union[str, Any] = tokenizer_class.from_pretrained(lowerCamelCase_ , force_download=lowerCamelCase_ ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _lowercase , _lowercase : str = checkpoint.split('/' ) _lowercase : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) elif add_prefix: _lowercase : Union[str, Any] = checkpoint _lowercase : List[str] = dump_path else: _lowercase : str = None _lowercase : Any = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _lowercase : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _lowercase : List[Any] = file_path.split(lowerCamelCase_ )[-1][0] if next_char == "/": _lowercase : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _lowercase : Optional[Any] = tokenizer.save_pretrained( lowerCamelCase_ , legacy_format=lowerCamelCase_ , filename_prefix=lowerCamelCase_ ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCamelCase_ ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
84
1