code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase_ : Union[str, Any] = 'http://www.mocksite.com/file1.txt' UpperCAmelCase_ : Optional[Any] = '"text": ["foo", "foo"]' UpperCAmelCase_ : Optional[int] = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class SCREAMING_SNAKE_CASE__ : snake_case__ : int = 200 snake_case__ : Any = {'''Content-Length''': '''100'''} snake_case__ : Optional[Any] = {} def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> str: return [bytes(SCREAMING_SNAKE_CASE__ , 'utf-8' )] def SCREAMING_SNAKE_CASE_ ( *__A : Optional[int] , **__A : Tuple ) -> List[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Any ) -> Any: """simple docstring""" import requests monkeypatch.setattr(__A , 'request' , __A ) a_ : Dict = URL if issubclass(__A , __A ): a_ : Any = url elif issubclass(__A , __A ): a_ : Optional[int] = [url] elif issubclass(__A , __A ): a_ : Dict = {'train': url} a_ : Tuple = 'dummy' a_ : Optional[int] = 'downloads' a_ : Optional[int] = tmp_path a_ : List[Any] = DownloadConfig( cache_dir=os.path.join(__A , __A ) , use_etag=__A , ) a_ : str = DownloadManager(dataset_name=__A , download_config=__A ) a_ : Union[str, Any] = dl_manager.download(__A ) a_ : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__A , __A ): a_ : Dict = [downloaded_paths] a_ : Dict = [urls] elif isinstance(__A , __A ): assert "train" in downloaded_paths.keys() a_ : List[str] = downloaded_paths.values() a_ : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__A , __A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] a_ : List[Any] = Path(__A ) a_ : Optional[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() a_ : Any = downloaded_path.read_text() assert content == CONTENT a_ : str = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() a_ : Optional[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : Union[str, Any] , __A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a_ : List[str] = str(__A ) if issubclass(__A , __A ): a_ : Any = filename elif issubclass(__A , __A ): a_ : Tuple = [filename] elif issubclass(__A , __A ): a_ : Union[str, Any] = {'train': filename} a_ : int = 'dummy' a_ : Optional[int] = xz_file.parent a_ : Union[str, Any] = 'extracted' a_ : Dict = DownloadConfig( cache_dir=__A , use_etag=__A , ) a_ : str = DownloadManager(dataset_name=__A , download_config=__A ) a_ : Dict = dl_manager.extract(__A ) a_ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(__A , __A ): a_ : List[Any] = [extracted_paths] a_ : Union[str, Any] = [paths] elif isinstance(__A , __A ): assert "train" in extracted_paths.keys() a_ : Dict = extracted_paths.values() a_ : Optional[Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(__A , __A ): assert extracted_path == dl_manager.extracted_paths[input_path] a_ : int = Path(__A ) a_ : Dict = extracted_path.parts assert parts[-1] == hash_url_to_filename(__A , etag=__A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() a_ : Any = extracted_path.read_text() a_ : str = text_file.read_text() assert extracted_file_content == expected_file_content def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : Optional[Any] ) -> Optional[int]: """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(__A , start=1 ): a_ : Tuple = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : List[Any] ) -> Tuple: """simple docstring""" a_ : Union[str, Any] = request.getfixturevalue(__A ) a_ : Optional[int] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__A ) , start=1 ): _test_jsonl(__A , __A ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : List[Any] ) -> str: """simple docstring""" a_ : Any = request.getfixturevalue(__A ) a_ : Dict = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__A ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__A ) , start=1 ): _test_jsonl(__A , __A ) assert num_tar == 1 assert num_jsonl == 2 def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> str: """simple docstring""" a_ : str = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__A ) , start=1 ): assert os.path.basename(__A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
32
from __future__ import annotations UpperCAmelCase_ : Tuple = [] def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): a_ : Any = 1 solve(__A , row + 1 ) a_ : Tuple = 0 return False def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase_ : List[str] = 8 UpperCAmelCase_ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
32
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : List[str] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
'''simple docstring''' def a_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(1_0_0, 0.25) = }""") print(F"""{price_plus_tax(1_25.50, 0.05) = }""")
0
0
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Optional[int]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" super().__init__() snake_case = module snake_case = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase , bias=lowerCAmelCase ) , nn.Linear(lowerCAmelCase , module.out_features , bias=lowerCAmelCase ) , ) snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case ( self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" return self.module(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) + self.adapter(lowerCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowerCAmelCase : Union[str, Any] = """bigscience/bloom-1b7""" # Constant values _lowerCAmelCase : Any = 2.109_6595_5269_2574 _lowerCAmelCase : int = """Hello my name is""" _lowerCAmelCase : Union[str, Any] = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) _lowerCAmelCase : Any = 10 def snake_case ( self ): """simple docstring""" snake_case = AutoTokenizer.from_pretrained(self.model_name ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().setUp() # Models and tokenizer snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) def snake_case ( self ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" snake_case = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase , 'quantization_config' ) ) snake_case = config.to_dict() snake_case = config.to_diff_dict() snake_case = config.to_json_string() def snake_case ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit snake_case = self.model_fpaa.get_memory_footprint() snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case ( self ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case ( self ): """simple docstring""" snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) def snake_case ( self ): """simple docstring""" snake_case = BitsAndBytesConfig() snake_case = True snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , device_map='auto' ) snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) def snake_case ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase ): snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , load_in_abit=lowerCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def snake_case ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(lowerCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) snake_case = self.model_fpaa.to(torch.floataa ) snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error snake_case = self.model_fpaa.half() # Check this does not throw an error snake_case = self.model_fpaa.float() def snake_case ( self ): """simple docstring""" snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=lowerCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case ( cls ): """simple docstring""" snake_case = 't5-small' snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense snake_case = AutoTokenizer.from_pretrained(cls.model_name ) snake_case = 'Translate in German: Hello, my dog is cute' def snake_case ( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" from transformers import TaForConditionalGeneration snake_case = TaForConditionalGeneration._keep_in_fpaa_modules snake_case = None # test with `t5-small` snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) snake_case = model.generate(**lowerCAmelCase ) # test with `flan-t5-small` snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) snake_case = model.generate(**lowerCAmelCase ) snake_case = modules def snake_case ( self ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) snake_case = model.generate(**lowerCAmelCase ) # test with `flan-t5-small` snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) snake_case = model.generate(**lowerCAmelCase ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().setUp() # model_name snake_case = 'bigscience/bloom-560m' snake_case = 't5-small' # Different types of model snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) # Sequence classification model snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) # CausalLM model snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map='auto' ) # Seq2seq model snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase , device_map='auto' ) def snake_case ( self ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().setUp() def snake_case ( self ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().setUp() def snake_case ( self ): """simple docstring""" snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" snake_case = 'facebook/opt-350m' super().setUp() def snake_case ( self ): """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase ) ): snake_case = LoRALayer(module.q_proj , rank=16 ) snake_case = LoRALayer(module.k_proj , rank=16 ) snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): snake_case = model.forward(**lowerCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[Any] = """gpt2-xl""" _lowerCAmelCase : List[str] = 3.3191_8548_5415_2187
150
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase__ ( _UpperCamelCase : Iterable[str] , _UpperCamelCase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" snake_case = iter(_UpperCamelCase ) while True: snake_case = tuple(itertools.islice(_UpperCamelCase , _UpperCamelCase ) ) if not chunk: return yield chunk def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) snake_case = '' if len(_UpperCamelCase ) < 2: return dirty for i in range(len(_UpperCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_UpperCamelCase ) & 1: clean += "X" return clean def lowerCAmelCase__ ( _UpperCamelCase : str ) -> list[str]: """simple docstring""" snake_case = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler snake_case = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_UpperCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_UpperCamelCase ) return table def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = generate_table(_UpperCamelCase ) snake_case = prepare_input(_UpperCamelCase ) snake_case = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = generate_table(_UpperCamelCase ) snake_case = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
150
1
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : List[str] = '▁' _lowercase : str = {'vocab_file': 'prophetnet.tokenizer'} _lowercase : List[str] = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } _lowercase : Union[str, Any] = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } _lowercase : Any = { 'microsoft/xprophetnet-large-wiki100-cased': 5_12, } def lowercase__ ( snake_case_ :Union[str, Any] ): __UpperCAmelCase = collections.OrderedDict() with open(snake_case_ , '''r''' , encoding='''utf-8''' ) as reader: __UpperCAmelCase = reader.readlines() for index, token in enumerate(snake_case_ ): __UpperCAmelCase = token.rstrip('''\n''' ) __UpperCAmelCase = index return vocab class _UpperCAmelCase ( _lowerCAmelCase ): a__ : int = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : int = ["input_ids", "attention_mask"] def __init__( self : str , _lowercase : Any , _lowercase : Dict="[SEP]" , _lowercase : Optional[int]="[SEP]" , _lowercase : Optional[int]="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Optional[Any]="[MASK]" , _lowercase : Optional[Dict[str, Any]] = None , **_lowercase : Tuple , ): __UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) __UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __UpperCAmelCase = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): __UpperCAmelCase = F'''[unused{i}]''' __UpperCAmelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __UpperCAmelCase = 12 __UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_lowercase ) def __getstate__( self : Dict ): __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : List[Any] , _lowercase : List[Any] ): __UpperCAmelCase = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase = {} __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return ([0] * len(_lowercase )) + [1] return ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a ( self : Optional[Any] ): return len(self.sp_model ) + self.fairseq_offset def a ( self : str ): __UpperCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a ( self : str , _lowercase : str ): return self.sp_model.encode(_lowercase , out_type=_lowercase ) def a ( self : Optional[Any] , _lowercase : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase = self.sp_model.PieceToId(_lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a ( self : Dict , _lowercase : List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a ( self : Optional[int] , _lowercase : Any ): __UpperCAmelCase = ''''''.join(_lowercase ).replace(_lowercase , ''' ''' ).strip() return out_string def a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , '''wb''' ) as fi: __UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] __UpperCAmelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
86
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowercase : str = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : int = 14 ): if group not in primes: raise ValueError('''Unsupported Group''' ) __UpperCAmelCase = primes[group]['''prime'''] __UpperCAmelCase = primes[group]['''generator'''] __UpperCAmelCase = int(hexlify(urandom(32 ) ) , base=16 ) def a ( self : int ): return hex(self.__private_key )[2:] def a ( self : Dict ): __UpperCAmelCase = pow(self.generator , self.__private_key , self.prime ) return hex(_lowercase )[2:] def a ( self : Union[str, Any] , _lowercase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowercase , (self.prime - 1) // 2 , self.prime ) == 1 ) def a ( self : Optional[Any] , _lowercase : str ): __UpperCAmelCase = int(_lowercase , base=16 ) if not self.is_valid_public_key(_lowercase ): raise ValueError('''Invalid public key''' ) __UpperCAmelCase = pow(_lowercase , self.__private_key , self.prime ) return shaaaa(str(_lowercase ).encode() ).hexdigest() @staticmethod def a ( _lowercase : int , _lowercase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowercase , (prime - 1) // 2 , _lowercase ) == 1 ) @staticmethod def a ( _lowercase : str , _lowercase : str , _lowercase : int = 14 ): __UpperCAmelCase = int(_lowercase , base=16 ) __UpperCAmelCase = int(_lowercase , base=16 ) __UpperCAmelCase = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_lowercase , _lowercase ): raise ValueError('''Invalid public key''' ) __UpperCAmelCase = pow(_lowercase , _lowercase , _lowercase ) return shaaaa(str(_lowercase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
86
1
lowerCamelCase : Tuple = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCamelCase : int = ['''a''', '''b''', '''c''', '''d''', '''e'''] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ): __lowercase : Dict = start # add current to visited visited.append(lowerCAmelCase_ ) __lowercase : Dict = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowercase : List[Any] = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # if all neighbors visited add current to sort sort.append(lowerCAmelCase_ ) # if all vertices haven't been visited select a new one to visit if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): for vertice in vertices: if vertice not in visited: __lowercase : Tuple = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # return sort return sort if __name__ == "__main__": lowerCamelCase : Any = topological_sort('''a''', [], []) print(sort)
233
from itertools import permutations def snake_case_ ( lowerCAmelCase_ : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowercase : Dict = [7, 11, 13, 17] for i, test in enumerate(lowerCAmelCase_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def snake_case_ ( lowerCAmelCase_ : int = 10 ): return sum( int("""""".join(map(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) for num in permutations(range(lowerCAmelCase_ ) ) if is_substring_divisible(lowerCAmelCase_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
233
1
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def A_ ( *lowercase , **lowercase ): pass @is_pipeline_test @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @require_torch def A_ ( self ): _lowerCamelCase : Optional[Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _lowerCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : List[Any] = image_classifier(a_ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(a_ ) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) _lowerCamelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], ] , ) @require_tf def A_ ( self ): _lowerCamelCase : str = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _lowerCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Union[str, Any] = image_classifier(a_ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(a_ ) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) _lowerCamelCase : int = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], [ {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, {'score': 0.3_33, 'label': ANY(a_ )}, ], ] , ) @slow @require_torch def A_ ( self ): _lowerCamelCase : List[str] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Union[str, Any] = image_classifier(a_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(a_ ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowerCamelCase : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def A_ ( self ): _lowerCamelCase : Optional[int] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _lowerCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCamelCase : Optional[int] = image_classifier(a_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(a_ ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowerCamelCase : List[Any] = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """facebook/nllb-200-distilled-600M""" lowerCamelCase__ = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) lowerCamelCase__ = """translator""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["""text""", """text""", """text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase , lowercase , lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _lowerCamelCase : str = self.lang_to_code[src_lang] _lowerCamelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase , return_tensors='pt' , src_lang=lowercase , tgt_lang=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase ) def A_ ( self , lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase )
12
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = PegasusConfig SCREAMING_SNAKE_CASE__ : Tuple = {} SCREAMING_SNAKE_CASE__ : Tuple = '''gelu''' def __init__( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Union[str, Any]=7 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :Tuple=99 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Union[str, Any]=4 , lowerCAmelCase__ :List[str]=37 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :str=40 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :List[str]=1 , lowerCAmelCase__ :str=0 , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : Dict = seq_length __SCREAMING_SNAKE_CASE : int = is_training __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = eos_token_id __SCREAMING_SNAKE_CASE : List[str] = pad_token_id __SCREAMING_SNAKE_CASE : Optional[int] = bos_token_id def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE : str = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE : Tuple = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __magic_name__( self :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder() __SCREAMING_SNAKE_CASE : List[Any] = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids[:1, :] __SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE : str = inputs_dict['''head_mask'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # first forward pass __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) __SCREAMING_SNAKE_CASE : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __SCREAMING_SNAKE_CASE : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): if attention_mask is None: __SCREAMING_SNAKE_CASE : str = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = TFPegasusModelTester(self ) __SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] SCREAMING_SNAKE_CASE__ : int = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers SCREAMING_SNAKE_CASE__ : Optional[Any] = '''google/pegasus-xsum''' @cached_property def __magic_name__( self :Tuple ) -> Optional[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__( self :List[str] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__( self :Union[str, Any] , **lowerCAmelCase__ :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.translate_src_text(**lowerCAmelCase__ ) assert self.expected_text == generated_words def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE : str = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ ) return generated_words @slow def __magic_name__( self :Tuple ) -> int: self._assert_generated_batch_equal_expected()
9
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' return "".join(chr(ord(_lowercase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
367
"""simple docstring""" a : Optional[int] = 8.31_4462 # Unit - J mol-1 K-1 def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
79
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Any = logging.get_logger(__name__) snake_case : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class _snake_case ( snake_case ): UpperCamelCase__ = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __magic_name__ : Optional[int] = vocab_size __magic_name__ : List[str] = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Optional[Any] = hidden_act __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : int = type_vocab_size __magic_name__ : Tuple = initializer_range __magic_name__ : Optional[int] = layer_norm_eps __magic_name__ : Tuple = projection_dim __magic_name__ : Dict = position_embedding_type
281
import math def lowerCAmelCase_ ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' return math.pow(_snake_case , 2 ) - a def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' return 2 * x def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' __magic_name__ : Optional[int] = 2.0 while start <= a: __magic_name__ : str = math.pow(_snake_case , 2 ) return start def lowerCAmelCase_ ( _snake_case : float , _snake_case : int = 9999 , _snake_case : float = 0.00_000_000_000_001 ) -> float: '''simple docstring''' if a < 0: raise ValueError("math domain error" ) __magic_name__ : Optional[int] = get_initial_point(_snake_case ) for _ in range(_snake_case ): __magic_name__ : int = value __magic_name__ : str = value - fx(_snake_case , _snake_case ) / fx_derivative(_snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
281
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : List[Any] ) -> str: '''simple docstring''' A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) A__ = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) A__ = InstructBlipProcessor(snake_case_ , snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : List[str] , **snake_case_ : Any ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def __magic_name__ ( self : Union[str, Any] , **snake_case_ : Dict ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def __magic_name__ ( self : Union[str, Any] , **snake_case_ : Tuple ) -> Dict: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).qformer_tokenizer def __magic_name__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A__ = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) A__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) self.assertIsInstance(processor.qformer_tokenizer , snake_case_ ) def __magic_name__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ = self.prepare_image_inputs() A__ = image_processor(snake_case_ , return_tensors="np" ) A__ = processor(images=snake_case_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ = "lower newer" A__ = processor(text=snake_case_ ) A__ = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) A__ = qformer_tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def __magic_name__ ( self : Any ) -> Tuple: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __magic_name__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(snake_case_ ) A__ = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __magic_name__ ( self : Any ) -> int: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
230
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["MobileViTFeatureExtractor"] SCREAMING_SNAKE_CASE = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
230
1
"""simple docstring""" from __future__ import annotations from collections import deque class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []}) for keyword in keywords: self.add_keyword(lowerCAmelCase__) self.set_fail_transitions() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(lowerCAmelCase__, lowerCAmelCase__) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], }) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) snake_case_ = len(self.adlist) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(lowerCAmelCase__) def a_ ( self) -> None: snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(lowerCAmelCase__) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowerCAmelCase__) snake_case_ = self.adlist[r]['fail_state'] while ( self.find_next_state(lowerCAmelCase__, self.adlist[child]['value']) is None and state != 0 ): snake_case_ = self.adlist[state]['fail_state'] snake_case_ = self.find_next_state( lowerCAmelCase__, self.adlist[child]['value']) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def a_ ( self, lowerCAmelCase__) -> dict[str, list[int]]: snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(lowerCAmelCase__)): while ( self.find_next_state(lowerCAmelCase__, string[i]) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]['fail_state'] snake_case_ = self.find_next_state(lowerCAmelCase__, string[i]) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(lowerCAmelCase__) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
69
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Optional[Any] ,__lowercase : Optional[int]=8 ): '''simple docstring''' A_ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A_ : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase , scheduler=lowercase , movq=lowercase , ) A_ : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if latents is None: A_ : List[str] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ : List[str] = latents.to(lowercase ) A_ : int = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Dict = torch.device(F'''cuda:{gpu_id}''' ) A_ : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) A_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: A_ , A_ : int = cpu_offload_with_hook(lowercase , lowercase , prev_module_hook=lowercase ) # We'll offload the last model manually. A_ : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase , lowercase , lowercase = 5_1_2 , lowercase = 5_1_2 , lowercase = 1_0_0 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ): """simple docstring""" A_ : Dict = self._execution_device A_ : Dict = guidance_scale > 1.0 if isinstance(lowercase , lowercase ): A_ : Dict = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : str = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : Optional[Any] = torch.cat(lowercase , dim=0 ) A_ : str = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A_ : str = image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Union[str, Any] = negative_image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Optional[Any] = hint.repeat_interleave(lowercase , dim=0 ) A_ : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) A_ : Optional[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) self.scheduler.set_timesteps(lowercase , device=lowercase ) A_ : Any = self.scheduler.timesteps A_ : str = self.movq.config.latent_channels A_ , A_ : List[Any] = downscale_height_and_width(lowercase , lowercase , self.movq_scale_factor ) # create initial latent A_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = {'image_embeds': image_embeds, 'hint': hint} A_ : Dict = self.unet( sample=lowercase , timestep=lowercase , encoder_hidden_states=lowercase , added_cond_kwargs=lowercase , return_dict=lowercase , )[0] if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) A_ , A_ : List[str] = noise_pred.chunk(2 ) A_ , A_ : List[str] = variance_pred.chunk(2 ) A_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A_ , A_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step( lowercase , lowercase , lowercase , generator=lowercase , )[0] # post-processing A_ : Any = self.movq.decode(lowercase , force_not_quantize=lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: A_ : Optional[Any] = image * 0.5 + 0.5 A_ : int = image.clamp(0 , 1 ) A_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
140
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase_ : Optional[int] = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): '''simple docstring''' UpperCAmelCase = True while ask_again: UpperCAmelCase = input(lowerCAmelCase ) try: if default is not None and len(lowerCAmelCase ) == 0: return default return convert_value(lowerCAmelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCAmelCase ) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=[] , lowerCAmelCase=None , lowerCAmelCase=0 ): '''simple docstring''' UpperCAmelCase = BulletMenu(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = menu.run(default_choice=lowerCAmelCase ) return convert_value(lowerCAmelCase ) if convert_value is not None else result def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = int(lowerCAmelCase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = int(lowerCAmelCase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = int(lowerCAmelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = int(lowerCAmelCase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = int(lowerCAmelCase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class UpperCamelCase_ ( argparse.RawDescriptionHelpFormatter ): def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = super()._format_usage(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = usage.replace("""<command> [<args>] """ , """""" ) return usage
248
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=a_ ) class UpperCamelCase_ ( a_ ): _A : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _A : ClassVar[Features] = Features({'image': Image()} ) _A : ClassVar[Features] = Features({'labels': ClassLabel} ) _A : str = "image" _A : str = "labels" def UpperCamelCase_ ( self , snake_case__ ) -> List[str]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase = copy.deepcopy(self ) UpperCAmelCase = self.label_schema.copy() UpperCAmelCase = features[self.label_column] UpperCAmelCase = label_schema return task_template @property def UpperCamelCase_ ( self ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
248
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[int] = CLIPTokenizer A : Tuple = CLIPTokenizerFast A : Any = True A : Dict = {} A : List[Any] = False def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # fmt: off SCREAMING_SNAKE_CASE : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE : List[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE : str = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : List[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(A ) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : int = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : int = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) @require_ftfy def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : int = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE : Dict = tokenizer_s.tokenize(A ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.tokenize(A ) self.assertListEqual(A, A ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE : Union[str, Any] = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE : List[str] = tokenizer_s.tokenize(A ) SCREAMING_SNAKE_CASE : Any = tokenizer_r.tokenize(A ) self.assertListEqual(A, A ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_s.tokenize(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.tokenize(A ) self.assertListEqual(A, A ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE : Union[str, Any] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_s.tokenize(A ) SCREAMING_SNAKE_CASE : int = tokenizer_r.tokenize(A ) self.assertListEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = F" {text}" SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def UpperCamelCase_ ( self ): '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCamelCase_ ( self ): '''simple docstring''' pass
251
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") UpperCamelCase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowercase__( __UpperCamelCase: str ): """simple docstring""" with open(__UpperCamelCase ,'rb' ) as f: SCREAMING_SNAKE_CASE : List[str] = Image.open(__UpperCamelCase ) return im.convert('RGB' ) @dataclass class _a : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the training data.'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the validation data.'''} ) A : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def UpperCamelCase_ ( self ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class _a : '''simple docstring''' A : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE )} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A : str = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Name or path of preprocessor config.'''} ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = torch.stack([example['pixel_values'] for example in examples] ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' ,__UpperCamelCase ,__UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE : Any = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ,task='image-classification' ,use_auth_token=True if model_args.use_auth_token else None ,) else: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE : Tuple = os.path.join(data_args.train_dir ,'**' ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(data_args.validation_dir ,'**' ) SCREAMING_SNAKE_CASE : str = load_dataset( 'imagefolder' ,data_files=__UpperCamelCase ,cache_dir=model_args.cache_dir ,task='image-classification' ,) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Tuple = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,__UpperCamelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : int = dataset['train'].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : Optional[int] = split['train'] SCREAMING_SNAKE_CASE : int = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE : int = dataset['train'].features['labels'].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = {}, {} for i, label in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE : Any = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase: Dict ): return metric.compute(predictions=np.argmax(p.predictions ,axis=1 ) ,references=p.label_ids ) SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__UpperCamelCase ) ,labelaid=__UpperCamelCase ,idalabel=__UpperCamelCase ,finetuning_task='image-classification' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : Optional[Any] = image_processor.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : List[Any] = (image_processor.size['height'], image_processor.size['width']) SCREAMING_SNAKE_CASE : Dict = Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ) SCREAMING_SNAKE_CASE : Dict = Compose( [ RandomResizedCrop(__UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE : List[Any] = Compose( [ Resize(__UpperCamelCase ), CenterCrop(__UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(__UpperCamelCase: List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(__UpperCamelCase: Dict ): SCREAMING_SNAKE_CASE : List[str] = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Tuple = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__UpperCamelCase ) # Initalize our trainer SCREAMING_SNAKE_CASE : List[Any] = Trainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=dataset['train'] if training_args.do_train else None ,eval_dataset=dataset['validation'] if training_args.do_eval else None ,compute_metrics=__UpperCamelCase ,tokenizer=__UpperCamelCase ,data_collator=__UpperCamelCase ,) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : Any = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[Any] = last_checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' ,train_result.metrics ) trainer.save_metrics('train' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate() trainer.log_metrics('eval' ,__UpperCamelCase ) trainer.save_metrics('eval' ,__UpperCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : List[str] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
251
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = k_size // 2 __UpperCAmelCase : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : Optional[Any] = 1 / (2 * pi * sigma) * exp(-(square(__a ) + square(__a )) / (2 * square(__a )) ) return g def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : int = height - k_size + 1 __UpperCAmelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : Optional[Any] = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : Tuple = 0 for i, j in product(range(__a ), range(__a ) ): __UpperCAmelCase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : str = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : List[Any] = gen_gaussian_kernel(__a, __a ) __UpperCAmelCase : str = ravel(__a ) # reshape and get the dst image __UpperCAmelCase : Optional[int] = dot(__a, __a ).reshape(__a, __a ).astype(__a ) return dst if __name__ == "__main__": # read original image _snake_case = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _snake_case = gaussian_filter(gray, 3, sigma=1) _snake_case = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
"""simple docstring""" from manim import * class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Tuple =Rectangle(height=0.5 , width=0.5 ) lowerCamelCase__ : Optional[Any] =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ : Dict =[mem.copy() for i in range(6 )] lowerCamelCase__ : List[str] =[mem.copy() for i in range(6 )] lowerCamelCase__ : Optional[int] =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : Union[str, Any] =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : List[Any] =VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : Optional[Any] =Text('CPU' , font_size=24 ) lowerCamelCase__ : Union[str, Any] =Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) lowerCamelCase__ : Tuple =[mem.copy() for i in range(1 )] lowerCamelCase__ : Union[str, Any] =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : Dict =Text('GPU' , font_size=24 ) lowerCamelCase__ : List[Any] =Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.align_to(lowerCamelCase_ , lowerCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase_ ) lowerCamelCase__ : Any =[mem.copy() for i in range(6 )] lowerCamelCase__ : List[str] =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : str =Text('Model' , font_size=24 ) lowerCamelCase__ : List[str] =Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , ) lowerCamelCase__ : str =MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) lowerCamelCase__ : Optional[int] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : Tuple =MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=2.5 ) , Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.add(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : Any =[] lowerCamelCase__ : Optional[Any] =[] for i, rect in enumerate(lowerCamelCase_ ): lowerCamelCase__ : str =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase_ ) cpu_target.generate_target() lowerCamelCase__ : Dict =0.46 / 4 lowerCamelCase__ : Tuple =0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase_ , buff=0.0 ) cpu_targs.append(lowerCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase_ ) ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
126
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCAmelCase_ ( ) ->Tuple: lowerCamelCase__ : Dict =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase__ : int =get_sagemaker_input() else: lowerCamelCase__ : List[str] =get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : List[Any]=None ) ->List[str]: if subparsers is not None: lowerCamelCase__ : Union[str, Any] =subparsers.add_parser('config' , description=snake_case_ ) else: lowerCamelCase__ : Tuple =argparse.ArgumentParser('Accelerate config command' , description=snake_case_ ) parser.add_argument( '--config_file' , default=snake_case_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Optional[int] =get_user_input() if args.config_file is not None: lowerCamelCase__ : Dict =args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) lowerCamelCase__ : Optional[Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) ->Optional[Any]: lowerCamelCase__ : Tuple =config_command_parser() lowerCamelCase__ : Tuple =parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
126
1
"""simple docstring""" from functools import lru_cache def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = 2 A__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase__ ) if n > 1: factors.add(UpperCamelCase__ ) return factors @lru_cache def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return len(unique_prime_factors(UpperCamelCase__ ) ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return len(set(UpperCamelCase__ ) ) in (0, 1) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = 2 while True: # Increment each value of a generated range A__ = [base + i for i in range(UpperCamelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. A__ = [upf_len(UpperCamelCase__ ) for x in group] checker.append(UpperCamelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase__ ): return group # Increment our base variable by 1 base += 1 def UpperCAmelCase ( UpperCamelCase__ = 4 ): """simple docstring""" A__ = run(UpperCamelCase__ ) return results[0] if len(UpperCamelCase__ ) else None if __name__ == "__main__": print(solution())
154
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> int: A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) A__ = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) A__ = InstructBlipProcessor(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self ,**__UpperCAmelCase ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).tokenizer def snake_case__ ( self ,**__UpperCAmelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).image_processor def snake_case__ ( self ,**__UpperCAmelCase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ).qformer_tokenizer def snake_case__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> str: A__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> Any: A__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=__UpperCAmelCase ,padding_value=1.0 ) A__ = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer ,__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__UpperCAmelCase ,return_tensors='np' ) A__ = processor(images=__UpperCAmelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = processor(text=__UpperCAmelCase ) A__ = tokenizer(__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) A__ = qformer_tokenizer(__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor['qformer_' + key] ) def snake_case__ ( self ) -> str: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__UpperCAmelCase ) A__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> Any: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = self.get_qformer_tokenizer() A__ = InstructBlipProcessor( tokenizer=__UpperCAmelCase ,image_processor=__UpperCAmelCase ,qformer_tokenizer=__UpperCAmelCase ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=__UpperCAmelCase ,images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) ,['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] ,)
154
1
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _A = logging.get_logger(__name__) @dataclass class _lowerCamelCase : _lowerCamelCase :Dict = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) _lowerCamelCase :Any = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _lowerCamelCase :Dict = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCamelCase :Optional[Any] = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = self.task_name.lower() class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = "train" _lowerCamelCase :int = "dev" _lowerCamelCase :int = "test" class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = 42 _lowerCamelCase :List[Any] = 42 _lowerCamelCase :Any = 42 def __init__( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Dict = None , UpperCamelCase : str = Split.train , UpperCamelCase : Union[str, Any] = None , ) -> int: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , UpperCamelCase , ) lowerCAmelCase__ : Tuple = args lowerCAmelCase__ : Optional[int] = glue_processors[args.task_name]() lowerCAmelCase__ : Any = glue_output_modes[args.task_name] if isinstance(UpperCamelCase , UpperCamelCase ): try: lowerCAmelCase__ : Optional[Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowerCAmelCase__ : Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) lowerCAmelCase__ : Optional[int] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = label_list[2], label_list[1] lowerCAmelCase__ : Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase__ : Union[str, Any] = cached_features_file + """.lock""" with FileLock(UpperCamelCase ): if os.path.exists(UpperCamelCase ) and not args.overwrite_cache: lowerCAmelCase__ : Any = time.time() lowerCAmelCase__ : List[str] = torch.load(UpperCamelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: lowerCAmelCase__ : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase__ : Any = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase__ : int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase__ : Optional[Any] = examples[:limit_length] lowerCAmelCase__ : Optional[int] = glue_convert_examples_to_features( UpperCamelCase , UpperCamelCase , max_length=args.max_seq_length , label_list=UpperCamelCase , output_mode=self.output_mode , ) lowerCAmelCase__ : Optional[int] = time.time() torch.save(self.features , UpperCamelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : str ) -> Union[str, Any]: """simple docstring""" return len(self.features ) def __getitem__( self : List[Any] , UpperCamelCase : Union[str, Any] ) -> InputFeatures: """simple docstring""" return self.features[i] def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return self.label_list
242
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> int: '''simple docstring''' A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = CLIPConfig __lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: '''simple docstring''' super().__init__(lowercase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) A__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(lowercase ): A__ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) A__ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) A__ = cosine_distance(lowercase , self.special_care_embeds ) A__ = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0 , dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
68
0
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : List[str] = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> str: """simple docstring""" if "emb" in name: lowerCAmelCase_ : List[str] = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: lowerCAmelCase_ : str = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: lowerCAmelCase_ : Tuple = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: lowerCAmelCase_ : Dict = name.replace('linear1' , 'fc1' ) if "linear2" in name: lowerCAmelCase_ : Optional[int] = name.replace('linear2' , 'fc2' ) if "norm1" in name: lowerCAmelCase_ : Optional[int] = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: lowerCAmelCase_ : List[str] = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: lowerCAmelCase_ : Optional[Any] = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: lowerCAmelCase_ : str = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: lowerCAmelCase_ : List[Any] = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def UpperCamelCase_ ( lowerCAmelCase__ : OrderedDict , lowerCAmelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" lowerCAmelCase_ : Optional[Any] = list(state_dict.keys() ) lowerCAmelCase_ : List[str] = {} for key in keys: lowerCAmelCase_ : Optional[int] = state_dict.pop(lowerCAmelCase__ ) lowerCAmelCase_ : int = rename_keys(lowerCAmelCase__ ) if "in_proj_weight" in key: # split fused qkv proj lowerCAmelCase_ : Optional[int] = val[:hidden_size, :] lowerCAmelCase_ : Optional[int] = val[hidden_size : 2 * hidden_size, :] lowerCAmelCase_ : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowerCAmelCase_ : Union[str, Any] = val else: lowerCAmelCase_ : Tuple = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values lowerCAmelCase_ : Any = 1024 lowerCAmelCase_ : int = 24 lowerCAmelCase_ : Union[str, Any] = 16 elif checkpoint == "medium": lowerCAmelCase_ : List[str] = 1536 lowerCAmelCase_ : List[Any] = 48 lowerCAmelCase_ : Tuple = 24 elif checkpoint == "large": lowerCAmelCase_ : Optional[int] = 2048 lowerCAmelCase_ : Tuple = 48 lowerCAmelCase_ : List[str] = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) lowerCAmelCase_ : Any = MusicgenDecoderConfig( hidden_size=lowerCAmelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCAmelCase__ , num_attention_heads=lowerCAmelCase__ , ) return config @torch.no_grad() def UpperCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[Any]="cpu" ) -> Any: """simple docstring""" lowerCAmelCase_ : Dict = MusicGen.get_pretrained(lowerCAmelCase__ , device=lowerCAmelCase__ ) lowerCAmelCase_ : str = decoder_config_from_checkpoint(lowerCAmelCase__ ) lowerCAmelCase_ : Any = fairseq_model.lm.state_dict() lowerCAmelCase_ ,lowerCAmelCase_ : Dict = rename_state_dict( lowerCAmelCase__ , hidden_size=decoder_config.hidden_size ) lowerCAmelCase_ : Any = TaEncoderModel.from_pretrained('t5-base' ) lowerCAmelCase_ : Optional[Any] = EncodecModel.from_pretrained('facebook/encodec_32khz' ) lowerCAmelCase_ : Any = MusicgenForCausalLM(lowerCAmelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = decoder.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(lowerCAmelCase__ ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model lowerCAmelCase_ : List[Any] = MusicgenForConditionalGeneration(text_encoder=lowerCAmelCase__ , audio_encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCAmelCase__ ) # check we can do a forward pass lowerCAmelCase_ : int = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowerCAmelCase_ : int = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowerCAmelCase_ : int = model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor lowerCAmelCase_ : int = AutoTokenizer.from_pretrained('t5-base' ) lowerCAmelCase_ : int = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) lowerCAmelCase_ : str = MusicgenProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) # set the appropriate bos/pad token ids lowerCAmelCase_ : Dict = 2048 lowerCAmelCase_ : Dict = 2048 # set other default generation config params lowerCAmelCase_ : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) lowerCAmelCase_ : Any = True lowerCAmelCase_ : Any = 3.0 if pytorch_dump_folder is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(lowerCAmelCase__ ) processor.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
289
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> None: """simple docstring""" lowerCAmelCase_ : List[Any] = len(lowerCAmelCase__ ) print('The following activities are selected:' ) # The first activity is always selected lowerCAmelCase_ : str = 0 print(lowerCAmelCase__ , end=',' ) # Consider rest of the activities for j in range(lowerCAmelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase__ , end=',' ) lowerCAmelCase_ : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : List[str] = [1, 3, 0, 5, 8, 5] lowercase__ : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
289
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
"""simple docstring""" from scipy.stats import pearsonr import datasets lowerCamelCase_ : Optional[int] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ lowerCamelCase_ : Optional[Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ lowerCamelCase_ : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Optional[Any]: if return_pvalue: a =pearsonr(__A , __A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__A , __A )[0] )}
81
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__ : Dict = logging.get_logger('''transformers.models.speecht5''') def a_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : List[str] ) -> int: hf_model.apply_weight_norm() __snake_case : List[Any] = checkpoint['input_conv.weight_g'] __snake_case : Optional[int] = checkpoint['input_conv.weight_v'] __snake_case : int = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): __snake_case : List[Any] = checkpoint[f'''upsamples.{i}.1.weight_g'''] __snake_case : List[str] = checkpoint[f'''upsamples.{i}.1.weight_v'''] __snake_case : Any = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __snake_case : Any = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] __snake_case : Dict = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] __snake_case : Dict = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] __snake_case : Optional[int] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] __snake_case : Any = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] __snake_case : Optional[int] = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] __snake_case : List[Any] = checkpoint['output_conv.1.weight_g'] __snake_case : Any = checkpoint['output_conv.1.weight_v'] __snake_case : List[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[int]=None ,_UpperCAmelCase : Dict=None ,) -> Dict: if config_path is not None: __snake_case : Tuple = SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: __snake_case : Union[str, Any] = SpeechTaHifiGanConfig() __snake_case : Optional[Any] = SpeechTaHifiGan(_UpperCAmelCase ) __snake_case : Dict = torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint['model']['generator'] ,_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : List[Any] = np.load(_UpperCAmelCase ) __snake_case : Optional[int] = stats[0].reshape(-1 ) __snake_case : Dict = stats[1].reshape(-1 ) __snake_case : str = torch.from_numpy(_UpperCAmelCase ).float() __snake_case : str = torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A__ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer A__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : List[Any] = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } A__ : List[Any] = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } A__ : Optional[Any] = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ElectraTokenizer def __init__( self : int , __a : List[Any]=None , __a : int=None , __a : List[str]=True , __a : Any="[UNK]" , __a : Any="[SEP]" , __a : Union[str, Any]="[PAD]" , __a : Dict="[CLS]" , __a : List[Any]="[MASK]" , __a : str=True , __a : Optional[int]=None , **__a : Optional[int] , ) -> str: '''simple docstring''' super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) __snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __a ) != do_lower_case or normalizer_state.get('strip_accents' , __a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars ): __snake_case : List[Any] = getattr(__a , normalizer_state.pop('type' ) ) __snake_case : str = do_lower_case __snake_case : Optional[int] = strip_accents __snake_case : Any = tokenize_chinese_chars __snake_case : Union[str, Any] = normalizer_class(**__a ) __snake_case : Any = do_lower_case def A_ ( self : Any , __a : List[str] , __a : Optional[Any]=None ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __snake_case : Tuple = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
0
1
import math from numpy import inf from scipy.integrate import quad def UpperCamelCase ( __lowerCamelCase : float ): if num <= 0: raise ValueError("math domain error" ) return quad(__lowerCamelCase , 0 , __lowerCamelCase , args=(__lowerCamelCase) )[0] def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float ): return math.pow(__lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
59
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''Hello, World!''' _lowerCAmelCase = '''en_XX''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = Path("data_bin" ) __UpperCamelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(snake_case__ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(snake_case__ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(snake_case__ ) __UpperCamelCase : List[str] = xmod.model.encoder.sentence_encoder __UpperCamelCase : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , snake_case__ ) __UpperCamelCase : Dict = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_tokens.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_positions.weight __UpperCamelCase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __UpperCamelCase : Any = xmod_sent_encoder.layernorm_embedding.weight __UpperCamelCase : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __UpperCamelCase : int = model.roberta.encoder.layer[i] __UpperCamelCase : Any = xmod_sent_encoder.layers[i] # self attention __UpperCamelCase : List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __UpperCamelCase : Dict = xmod_layer.self_attn.q_proj.weight __UpperCamelCase : Optional[Any] = xmod_layer.self_attn.q_proj.bias __UpperCamelCase : Any = xmod_layer.self_attn.k_proj.weight __UpperCamelCase : Tuple = xmod_layer.self_attn.k_proj.bias __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.v_proj.weight __UpperCamelCase : Any = xmod_layer.self_attn.v_proj.bias # self-attention output __UpperCamelCase : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight __UpperCamelCase : str = xmod_layer.self_attn.out_proj.bias __UpperCamelCase : Dict = xmod_layer.self_attn_layer_norm.weight __UpperCamelCase : Any = xmod_layer.self_attn_layer_norm.bias # intermediate __UpperCamelCase : Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __UpperCamelCase : List[Any] = xmod_layer.fca.weight __UpperCamelCase : Optional[int] = xmod_layer.fca.bias # output __UpperCamelCase : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __UpperCamelCase : Tuple = xmod_layer.fca.weight __UpperCamelCase : int = xmod_layer.fca.bias __UpperCamelCase : Dict = xmod_layer.final_layer_norm.weight __UpperCamelCase : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __UpperCamelCase : Any = xmod_layer.adapter_layer_norm.weight __UpperCamelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __UpperCamelCase : Any = bert_output.adapter_modules[lang_code] __UpperCamelCase : Dict = xmod_layer.adapter_modules[lang_code] __UpperCamelCase : int = from_adapter.fca.weight __UpperCamelCase : Dict = from_adapter.fca.bias __UpperCamelCase : List[Any] = from_adapter.fca.weight __UpperCamelCase : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __UpperCamelCase : Tuple = xmod_sent_encoder.layer_norm.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: __UpperCamelCase : Optional[Any] = xmod.model.classification_heads["mnli"].dense.weight __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].dense.bias __UpperCamelCase : Tuple = xmod.model.classification_heads["mnli"].out_proj.weight __UpperCamelCase : List[Any] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __UpperCamelCase : Any = xmod.model.encoder.lm_head.dense.weight __UpperCamelCase : Optional[Any] = xmod.model.encoder.lm_head.dense.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.layer_norm.weight __UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.weight __UpperCamelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __UpperCamelCase : Any = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) __UpperCamelCase : Optional[Any] = model(snake_case__ )[0] if classification_head: __UpperCamelCase : int = xmod.model.classification_heads["mnli"](xmod.extract_features(snake_case__ ) ) else: __UpperCamelCase : Optional[Any] = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __UpperCamelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __UpperCamelCase : Union[str, Any] = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowerCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
298
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : str , _lowercase : int , _lowercase : List[str]=7 , _lowercase : List[str]=3 , _lowercase : Optional[int]=30 , _lowercase : Optional[int]=4_00 , _lowercase : Optional[Any]=True , _lowercase : Dict=None , _lowercase : Any=True , _lowercase : str=1 / 2_55 , _lowercase : str=True , _lowercase : Union[str, Any]=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , _lowercase : str=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCAmelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean __UpperCAmelCase = image_std __UpperCAmelCase = do_pad def a ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a ( self : Dict , _lowercase : Tuple , _lowercase : List[Any]=False ): if not batched: __UpperCAmelCase = image_inputs[0] if isinstance(_lowercase , Image.Image ): __UpperCAmelCase , __UpperCAmelCase = image.size else: __UpperCAmelCase , __UpperCAmelCase = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase = int(self.size['''shortest_edge'''] * h / w ) __UpperCAmelCase = self.size['''shortest_edge'''] elif w > h: __UpperCAmelCase = self.size['''shortest_edge'''] __UpperCAmelCase = int(self.size['''shortest_edge'''] * w / h ) else: __UpperCAmelCase = self.size['''shortest_edge'''] __UpperCAmelCase = self.size['''shortest_edge'''] else: __UpperCAmelCase = [] for image in image_inputs: __UpperCAmelCase , __UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase = max(_lowercase , key=lambda _lowercase : item[0] )[0] __UpperCAmelCase = max(_lowercase , key=lambda _lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Optional[int] = DetrImageProcessor if is_vision_available() else None def a ( self : int ): __UpperCAmelCase = DetrImageProcessingTester(self ) @property def a ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self : str ): __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowercase , '''image_std''' ) ) self.assertTrue(hasattr(_lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowercase , '''do_rescale''' ) ) self.assertTrue(hasattr(_lowercase , '''rescale_factor''' ) ) self.assertTrue(hasattr(_lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowercase , '''size''' ) ) self.assertTrue(hasattr(_lowercase , '''do_pad''' ) ) def a ( self : Tuple ): __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , _lowercase ) __UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowercase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _lowercase ) def a ( self : List[str] ): pass def a ( self : Tuple ): # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) __UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self : Optional[Any] ): # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self : int ): # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self : int ): # prepare image and target __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __UpperCAmelCase = json.loads(f.read() ) __UpperCAmelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them __UpperCAmelCase = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) __UpperCAmelCase = image_processing(images=_lowercase , annotations=_lowercase , return_tensors='''pt''' ) # verify pixel values __UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowercase ) __UpperCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowercase , atol=1E-4 ) ) # verify area __UpperCAmelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowercase ) ) # verify boxes __UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowercase ) __UpperCAmelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowercase , atol=1E-3 ) ) # verify image_id __UpperCAmelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowercase ) ) # verify is_crowd __UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowercase ) ) # verify class_labels __UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowercase ) ) # verify orig_size __UpperCAmelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowercase ) ) # verify size __UpperCAmelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowercase ) ) @slow def a ( self : int ): # prepare image, target and masks_path __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __UpperCAmelCase = json.loads(f.read() ) __UpperCAmelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} __UpperCAmelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __UpperCAmelCase = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) __UpperCAmelCase = image_processing(images=_lowercase , annotations=_lowercase , masks_path=_lowercase , return_tensors='''pt''' ) # verify pixel values __UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowercase ) __UpperCAmelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowercase , atol=1E-4 ) ) # verify area __UpperCAmelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowercase ) ) # verify boxes __UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowercase ) __UpperCAmelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowercase , atol=1E-3 ) ) # verify image_id __UpperCAmelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowercase ) ) # verify is_crowd __UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowercase ) ) # verify class_labels __UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowercase ) ) # verify masks __UpperCAmelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowercase ) # verify orig_size __UpperCAmelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowercase ) ) # verify size __UpperCAmelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowercase ) )
86
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _lowercase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : List[Any] , _lowercase : GenericTensor ): if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def a ( self : List[str] , _lowercase : GenericTensor ): __UpperCAmelCase = self.get_masked_index(_lowercase ) __UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def a ( self : Optional[int] , _lowercase : GenericTensor ): if isinstance(_lowercase , _lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowercase ) def a ( self : List[str] , _lowercase : Optional[int] , _lowercase : Tuple=None , **_lowercase : Tuple ): if return_tensors is None: __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase ) self.ensure_exactly_one_mask_token(_lowercase ) return model_inputs def a ( self : Optional[int] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) __UpperCAmelCase = model_inputs['''input_ids'''] return model_outputs def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any]=5 , _lowercase : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __UpperCAmelCase = target_ids.shape[0] __UpperCAmelCase = model_outputs['''input_ids'''][0] __UpperCAmelCase = model_outputs['''logits'''] if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __UpperCAmelCase = outputs.numpy() __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = stable_softmax(_lowercase , axis=-1 ) if target_ids is not None: __UpperCAmelCase = tf.gather_nd(tf.squeeze(_lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) __UpperCAmelCase = tf.expand_dims(_lowercase , 0 ) __UpperCAmelCase = tf.math.top_k(_lowercase , k=_lowercase ) __UpperCAmelCase , __UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __UpperCAmelCase = probs[..., target_ids] __UpperCAmelCase , __UpperCAmelCase = probs.topk(_lowercase ) __UpperCAmelCase = [] __UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: __UpperCAmelCase = target_ids[p].tolist() __UpperCAmelCase = p # Filter padding out: __UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_lowercase ) result.append(_lowercase ) if single_mask: return result[0] return result def a ( self : str , _lowercase : List[Any] , _lowercase : List[Any]=None ): if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = [targets] try: __UpperCAmelCase = self.tokenizer.get_vocab() except Exception: __UpperCAmelCase = {} __UpperCAmelCase = [] for target in targets: __UpperCAmelCase = vocab.get(_lowercase , _lowercase ) if id_ is None: __UpperCAmelCase = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , max_length=1 , truncation=_lowercase , )['''input_ids'''] if len(_lowercase ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue __UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __UpperCAmelCase = list(set(_lowercase ) ) if len(_lowercase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __UpperCAmelCase = np.array(_lowercase ) return target_ids def a ( self : int , _lowercase : Dict=None , _lowercase : Optional[Any]=None ): __UpperCAmelCase = {} if targets is not None: __UpperCAmelCase = self.get_target_ids(_lowercase , _lowercase ) __UpperCAmelCase = target_ids if top_k is not None: __UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Union[str, Any] , _lowercase : Optional[Any] , *_lowercase : Union[str, Any] , **_lowercase : int ): __UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs
86
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ :Optional[Any] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Dict = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] lowercase__ :Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowercase__ :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( A_ ): lowercase__ = ['''pixel_values'''] def __init__( self : Optional[Any] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 255 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , snake_case_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **snake_case_ : Any , ) -> None: '''simple docstring''' super().__init__(**snake_case_ ) A__ = size if size is not None else {"shortest_edge": 224} A__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(snake_case_ , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __magic_name__ ( self : int , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : int , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A__ = int((256 / 224) * size["shortest_edge"] ) A__ = get_resize_output_image_size(snake_case_ , size=snake_case_ , default_to_square=snake_case_ ) A__ = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( snake_case_ , size=(size_dict["height"], size_dict["width"]) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __magic_name__ ( self : int , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Dict , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(snake_case_ , size=(size["height"], size["width"]) , data_format=snake_case_ , **snake_case_ ) def __magic_name__ ( self : str , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : int , ) -> np.ndarray: '''simple docstring''' return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __magic_name__ ( self : str , snake_case_ : ImageInput , snake_case_ : Optional[bool] = None , snake_case_ : Optional[Dict[str, int]] = None , snake_case_ : PILImageResampling = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[Dict[str, int]] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[float] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[Union[float, Iterable[float]]] = None , snake_case_ : Optional[Union[float, Iterable[float]]] = None , snake_case_ : Optional[TensorType] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : int , ) -> BatchFeature: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(snake_case_ , param_name="crop_size" ) A__ = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. A__ = [to_numpy_array(snake_case_ ) for image in images] if do_resize: A__ = [self.resize(snake_case_ , snake_case_ , snake_case_ ) for image in images] if do_center_crop: A__ = [self.center_crop(snake_case_ , snake_case_ ) for image in images] if do_rescale: A__ = [self.rescale(snake_case_ , snake_case_ ) for image in images] if do_normalize: A__ = [self.normalize(snake_case_ , snake_case_ , snake_case_ ) for image in images] A__ = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
230
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10_00 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd A__ = n - 1 A__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) A__ = 0 while count < prec: A__ = random.randint(2 , n - 1 ) A__ = bin_exp_mod(lowercase_ , lowercase_ , lowercase_ ) if b != 1: A__ = True for _ in range(lowercase_ ): if b == n - 1: A__ = False break A__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' __snake_case : str = 1.5 __snake_case : List[str] = int(factor * num_class_images ) __snake_case : Optional[Any] = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=UpperCAmelCase_ , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=UpperCAmelCase_ ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: __snake_case : int = client.query(text=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) >= factor * num_class_images or num_images > 1E4: break else: __snake_case : Union[str, Any] = int(factor * num_images ) __snake_case : str = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=UpperCAmelCase_ , aesthetic_weight=0.1 , ) __snake_case : Dict = 0 __snake_case : Any = 0 __snake_case : List[str] = tqdm(desc='downloading real regularization images' , total=UpperCAmelCase_ ) with open(F"{class_data_dir}/caption.txt" , 'w' ) as fa, open(F"{class_data_dir}/urls.txt" , 'w' ) as fa, open( F"{class_data_dir}/images.txt" , 'w' ) as fa: while total < num_class_images: __snake_case : Union[str, Any] = class_images[count] count += 1 try: __snake_case : str = requests.get(images['url'] ) if img.status_code == 2_00: __snake_case : Dict = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F"{class_data_dir}/images/{total}.jpg" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __UpperCAmelCase ( ) -> Tuple: '''simple docstring''' __snake_case : str = argparse.ArgumentParser('' , add_help=UpperCAmelCase_ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=UpperCAmelCase_ , type=UpperCAmelCase_ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=UpperCAmelCase_ , type=UpperCAmelCase_ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_00 , type=UpperCAmelCase_ ) return parser.parse_args() if __name__ == "__main__": _a : Optional[Any]= parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
172
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Any) -> Optional[int]: __snake_case : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Any , _A : Any) -> str: __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = hidden_states.shape __snake_case : Union[str, Any] = jax.image.resize( _A , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __snake_case : List[Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Optional[Any]) -> List[Any]: __snake_case : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : int , _A : str) -> Any: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __snake_case : Union[str, Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : int = None UpperCAmelCase : float = 0.0 UpperCAmelCase : bool = None UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : List[str]) -> Dict: __snake_case : str = self.in_channels if self.out_channels is None else self.out_channels __snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : Optional[int] = nn.Dense(_A , dtype=self.dtype) __snake_case : int = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Dropout(self.dropout_prob) __snake_case : Dict = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __snake_case : Optional[Any] = None if use_nin_shortcut: __snake_case : List[str] = nn.Conv( _A , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__(self : List[Any] , _A : Union[str, Any] , _A : str , _A : int=True) -> Any: __snake_case : List[Any] = hidden_states __snake_case : Optional[Any] = self.norma(_A) __snake_case : int = nn.swish(_A) __snake_case : Optional[int] = self.conva(_A) __snake_case : Dict = self.time_emb_proj(nn.swish(_A)) __snake_case : List[str] = jnp.expand_dims(jnp.expand_dims(_A , 1) , 1) __snake_case : Any = hidden_states + temb __snake_case : Tuple = self.norma(_A) __snake_case : Dict = nn.swish(_A) __snake_case : Union[str, Any] = self.dropout(_A , _A) __snake_case : Union[str, Any] = self.conva(_A) if self.conv_shortcut is not None: __snake_case : List[Any] = self.conv_shortcut(_A) return hidden_states + residual
172
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _SCREAMING_SNAKE_CASE : Dict = "src/transformers" _SCREAMING_SNAKE_CASE : Dict = "docs/source/en" _SCREAMING_SNAKE_CASE : int = "." def UpperCamelCase_( snake_case : Any , snake_case : Union[str, Any] , snake_case : Optional[Any] ): '''simple docstring''' with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case_ = f.readlines() # Find the start prompt. snake_case_ = 0 while not lines[start_index].startswith(snake_case ): start_index += 1 start_index += 1 snake_case_ = start_index while not lines[end_index].startswith(snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _SCREAMING_SNAKE_CASE : str = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _SCREAMING_SNAKE_CASE : str = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _SCREAMING_SNAKE_CASE : Dict = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE : Dict = direct_transformers_import(TRANSFORMERS_PATH) def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , snake_case ) return [m.group(0 ) for m in matches] def UpperCamelCase_( snake_case : Any , snake_case : Any ): '''simple docstring''' snake_case_ = 2 if text == "✅" or text == "❌" else len(snake_case ) snake_case_ = (width - text_length) // 2 snake_case_ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCamelCase_( ): '''simple docstring''' snake_case_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case_ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } snake_case_ = {name: config.replace("Config" , "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. snake_case_ = collections.defaultdict(snake_case ) snake_case_ = collections.defaultdict(snake_case ) snake_case_ = collections.defaultdict(snake_case ) snake_case_ = collections.defaultdict(snake_case ) snake_case_ = collections.defaultdict(snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(snake_case ): snake_case_ = None if attr_name.endswith("Tokenizer" ): snake_case_ = slow_tokenizers snake_case_ = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): snake_case_ = fast_tokenizers snake_case_ = attr_name[:-1_3] elif _re_tf_models.match(snake_case ) is not None: snake_case_ = tf_models snake_case_ = _re_tf_models.match(snake_case ).groups()[0] elif _re_flax_models.match(snake_case ) is not None: snake_case_ = flax_models snake_case_ = _re_flax_models.match(snake_case ).groups()[0] elif _re_pt_models.match(snake_case ) is not None: snake_case_ = pt_models snake_case_ = _re_pt_models.match(snake_case ).groups()[0] if lookup_dict is not None: while len(snake_case ) > 0: if attr_name in model_name_to_prefix.values(): snake_case_ = True break # Try again after removing the last word in the name snake_case_ = "".join(camel_case_split(snake_case )[:-1] ) # Let's build that table! snake_case_ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) snake_case_ = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). snake_case_ = [len(snake_case ) + 2 for c in columns] snake_case_ = max([len(snake_case ) for name in model_names] ) + 2 # Build the table per se snake_case_ = "|" + "|".join([_center_text(snake_case , snake_case ) for c, w in zip(snake_case , snake_case )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" snake_case_ = {True: "✅", False: "❌"} for name in model_names: snake_case_ = model_name_to_prefix[name] snake_case_ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(snake_case , snake_case ) for l, w in zip(snake_case , snake_case )] ) + "|\n" return table def UpperCamelCase_( snake_case : Any=False ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ = _find_text_in_file( filename=os.path.join(snake_case , "index.md" ) , start_prompt="<!--This table is updated automatically from the auto modules" , end_prompt="<!-- End table-->" , ) snake_case_ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(snake_case , "index.md" ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() check_model_table(args.fix_and_overwrite)
92
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase_( snake_case : str , snake_case : complex , snake_case : str = "x" , snake_case : float = 1_0**-1_0 , snake_case : int = 1 , ): '''simple docstring''' snake_case_ = symbols(snake_case ) snake_case_ = lambdify(snake_case , snake_case ) snake_case_ = lambdify(snake_case , diff(snake_case , snake_case ) ) snake_case_ = starting_point while True: if diff_function(snake_case ) != 0: snake_case_ = prev_guess - multiplicity * func(snake_case ) / diff_function( snake_case ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}", ) # Find root of cos(x) print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
92
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Union[str, Any] = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __snake_case ( __snake_case ): _a : Optional[int]= "donut-swin" _a : Union[str, Any]= { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,snake_case=224 ,snake_case=4 ,snake_case=3 ,snake_case=96 ,snake_case=[2, 2, 6, 2] ,snake_case=[3, 6, 12, 24] ,snake_case=7 ,snake_case=4.0 ,snake_case=True ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case="gelu" ,snake_case=False ,snake_case=0.02 ,snake_case=1e-5 ,**snake_case ,): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowercase : Any = image_size lowercase : Optional[Any] = patch_size lowercase : Union[str, Any] = num_channels lowercase : List[Any] = embed_dim lowercase : Dict = depths lowercase : List[Any] = len(lowerCamelCase_ ) lowercase : Optional[Any] = num_heads lowercase : Optional[Any] = window_size lowercase : Optional[Any] = mlp_ratio lowercase : Any = qkv_bias lowercase : Union[str, Any] = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : str = drop_path_rate lowercase : Dict = hidden_act lowercase : List[Any] = use_absolute_embeddings lowercase : Optional[int] = layer_norm_eps lowercase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : Any = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
20
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
350
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
79
0
def _a ( lowerCamelCase: list ) -> float: '''simple docstring''' __A = 0 while len(lowerCamelCase ) > 1: __A = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __A = files.index(min(lowerCamelCase ) ) temp += files[min_index] files.pop(lowerCamelCase ) files.append(lowerCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
117
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : List[str] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __lowerCAmelCase ( unittest.TestCase ): @require_torch def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) snake_case_ : Tuple = load_dataset('''ashraq/esc50''' ) snake_case_ : Tuple = dataset['''train''']['''audio'''][-1]['''array'''] snake_case_ : Optional[Any] = audio_classifier(__magic_name__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__magic_name__ ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def lowerCamelCase (self ) -> int: '''simple docstring''' pass @slow @require_torch def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog snake_case_ : Any = load_dataset('''ashraq/esc50''' ) snake_case_ : str = dataset['''train''']['''audio'''][-1]['''array'''] snake_case_ : Optional[int] = audio_classifier(__magic_name__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) snake_case_ : int = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) snake_case_ : Optional[int] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' pass
279
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowerCAmelCase_ = '''Dummy User''' lowerCAmelCase_ = '''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''' lowerCAmelCase_ = '''https://hub-ci.huggingface.co''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , _UpperCamelCase ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" HfFolder.save_token(_UpperCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" return HfApi(endpoint=_UpperCamelCase ) @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = HfFolder.get_token() HfFolder.save_token(_UpperCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" def _cleanup_repo(_UpperCamelCase ): hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" @contextmanager def _temporary_repo(_UpperCamelCase ): try: yield repo_id finally: cleanup_repo(_UpperCamelCase ) return _temporary_repo @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = f'''repo_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Any = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data/text_data.txt''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : int = f'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Tuple = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = f'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' snake_case_ : str = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
279
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets A : Optional[Any] = datasets.logging.get_logger(__name__) A : str = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" A : List[str] = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" A : Optional[Any] = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" A : int = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[str] ): '''simple docstring''' if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) lowerCamelCase__ : List[str] = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: lowerCamelCase__ : Any = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCamelCase__ : str = self.config_name.upper() else: raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCamelCase__ : Dict = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCamelCase__ : int = score.BleurtScorer(os.path.join(__lowerCamelCase , __lowerCamelCase ) ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.scorer.score(references=__lowerCamelCase , candidates=__lowerCamelCase ) return {"scores": scores}
184
def lowercase_ ( _A : int , _A : int ): """simple docstring""" while a != 0: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = b % a, a return b def lowercase_ ( _A : int , _A : int ): """simple docstring""" if gcd(_A , _A ) != 1: lowerCamelCase__ : List[str] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(_A ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = 1, 0, a lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = 0, 1, m while va != 0: lowerCamelCase__ : Tuple = ua // va lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
184
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Optional[int] = tempfile.mkdtemp() # fmt: off lowercase__: List[str] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__: int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase__: Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase__: Optional[int] = {'unk_token': '<unk>'} lowercase__: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) lowercase__: Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowercase__: int = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__: Optional[int] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[str] = self.get_tokenizer() lowercase__: int = self.get_rust_tokenizer() lowercase__: Union[str, Any] = self.get_image_processor() lowercase__: Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__: str = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) lowercase__: int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__: Dict = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[int] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__: Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase__: Optional[Any] = self.get_image_processor(do_normalize=lowerCAmelCase__ ) lowercase__: Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Any = self.get_image_processor() lowercase__: Optional[int] = self.get_tokenizer() lowercase__: int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) lowercase__: Optional[int] = self.prepare_image_inputs() lowercase__: Tuple = image_processor(lowerCAmelCase__ , return_tensors='np' ) lowercase__: List[str] = processor(images=lowerCAmelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Optional[int] = self.get_image_processor() lowercase__: List[str] = self.get_tokenizer() lowercase__: Any = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) lowercase__: List[Any] = 'lower newer' lowercase__: List[Any] = processor(text=lowerCAmelCase__ , return_tensors='np' ) lowercase__: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = self.get_image_processor() lowercase__: str = self.get_tokenizer() lowercase__: Any = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) lowercase__: Optional[int] = 'lower newer' lowercase__: List[Any] = self.prepare_image_inputs() lowercase__: Union[str, Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Any = 'google/owlvit-base-patch32' lowercase__: Tuple = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) lowercase__: Dict = ['cat', 'nasa badge'] lowercase__: List[Any] = processor(text=lowerCAmelCase__ ) lowercase__: Optional[Any] = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = 'google/owlvit-base-patch32' lowercase__: List[Any] = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) lowercase__: Tuple = [['cat', 'nasa badge'], ['person']] lowercase__: Optional[Any] = processor(text=lowerCAmelCase__ ) lowercase__: Dict = 16 lowercase__: List[Any] = len(lowerCAmelCase__ ) lowercase__: int = max([len(lowerCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Dict = 'google/owlvit-base-patch32' lowercase__: Any = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) lowercase__: List[Any] = ['cat', 'nasa badge'] lowercase__: Dict = processor(text=lowerCAmelCase__ ) lowercase__: Dict = 16 lowercase__: List[str] = inputs['input_ids'] lowercase__: Tuple = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: List[Any] = self.get_image_processor() lowercase__: int = self.get_tokenizer() lowercase__: str = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) lowercase__: Optional[int] = self.prepare_image_inputs() lowercase__: Optional[Any] = self.prepare_image_inputs() lowercase__: Union[str, Any] = processor(images=lowerCAmelCase__ , query_images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[str] = self.get_image_processor() lowercase__: str = self.get_tokenizer() lowercase__: Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) lowercase__: List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__: Dict = processor.batch_decode(lowerCAmelCase__ ) lowercase__: List[Any] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
363
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __a ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Any: '''simple docstring''' lowercase__: List[Any] = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowercase__: str = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='test-config' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Dict = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowercase__: Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='valid_org/test-config-org' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) lowercase__: Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__: Tuple = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowercase__: int = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__: List[Any] = c.n_embd + 1 # int lowercase__: Any = c.resid_pdrop + 1.0 # float lowercase__: Any = not c.scale_attn_weights # bool lowercase__: List[str] = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , 'mismatch for key: summary_type' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = PretrainedConfig() lowercase__: Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowercase__: List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(lowerCAmelCase__ )}.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowercase__: str = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__: Optional[Any] = mock.Mock() lowercase__: Tuple = 500 lowercase__: Any = {} lowercase__: Dict = HTTPError lowercase__: Optional[Any] = {} # Download this model to make sure it's in the cache. lowercase__: Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase__ ) as mock_head: lowercase__: List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__: Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowercase__: Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) lowercase__: Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__: str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__: Dict = ['config.42.0.0.json'] lowercase__: int = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , 'config.4.0.0.json' ) , os.path.join(lowerCAmelCase__ , 'config.42.0.0.json' ) ) lowercase__: Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__: Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowercase__: Tuple = 'v4.0.0' lowercase__ , lowercase__: List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__: Union[str, Any] = 'v3.0.0' lowercase__: Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
288
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=7 ,__UpperCAmelCase=3 ,__UpperCAmelCase=18 ,__UpperCAmelCase=30 ,__UpperCAmelCase=400 ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,) -> str: lowerCAmelCase__ : Dict = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Union[str, Any] = num_channels lowerCAmelCase__ : str = image_size lowerCAmelCase__ : Tuple = min_resolution lowerCAmelCase__ : Union[str, Any] = max_resolution lowerCAmelCase__ : Any = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Any = do_normalize def UpperCAmelCase_ ( self ) -> str: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ImageGPTImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Dict = ImageGPTImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase ,"""clusters""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""size""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_normalize""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) lowerCAmelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase__ : List[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCAmelCase ,obj[key] ) ) else: self.assertEqual(obj[key] ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = os.path.join(__UpperCAmelCase ,"""image_processor.json""" ) image_processor_first.to_json_file(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_json_file(__UpperCAmelCase ).to_dict() lowerCAmelCase__ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCAmelCase ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.image_processing_class.from_pretrained(__UpperCAmelCase ).to_dict() lowerCAmelCase__ : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCAmelCase ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,__UpperCAmelCase ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCAmelCase_ ( self ) -> Any: pass def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : str = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowerCAmelCase__ : int = Image.open(dataset[4]["""file"""] ) lowerCAmelCase__ : List[str] = Image.open(dataset[5]["""file"""] ) lowerCAmelCase__ : List[Any] = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Tuple = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowerCAmelCase__ : Union[str, Any] = prepare_images() # test non-batched lowerCAmelCase__ : Any = image_processing(images[0] ,return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) lowerCAmelCase__ : Union[str, Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,__UpperCAmelCase ) # test batched lowerCAmelCase__ : Optional[Any] = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) lowerCAmelCase__ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,__UpperCAmelCase )
37
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] _lowerCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowerCAmelCase = F"""down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowerCAmelCase = F"""up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowerCAmelCase = F"""up_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.conv.""" _lowerCAmelCase = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowerCAmelCase = '''mid_block.attentions.0.''' _lowerCAmelCase = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowerCAmelCase = F"""mid_block.resnets.{j}.""" _lowerCAmelCase = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ : Optional[int] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ : Any = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ : List[Any] = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v lowerCAmelCase__ : Tuple = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowerCAmelCase = F"""encoder.down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.""" _lowerCAmelCase = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowerCAmelCase = F"""decoder.up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowerCAmelCase = F"""mid_block.resnets.{i}.""" _lowerCAmelCase = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ : str = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ : Dict = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v lowerCAmelCase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ : Tuple = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) lowerCAmelCase__ : Optional[int] = reshape_weight_for_sd(UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] _lowerCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowerCAmelCase = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowerCAmelCase = {'''q''': 0, '''k''': 1, '''v''': 2} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCAmelCase__ : Optional[int] = k[: -len(""".q_proj.weight""" )] lowerCAmelCase__ : Tuple = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ : List[Any] = [None, None, None] lowerCAmelCase__ : Dict = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCAmelCase__ : str = k[: -len(""".q_proj.bias""" )] lowerCAmelCase__ : List[str] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ : Union[str, Any] = [None, None, None] lowerCAmelCase__ : Any = v continue lowerCAmelCase__ : Dict = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : Any = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.cat(UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : str = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : List[Any] = torch.cat(UpperCamelCase ) return new_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) _lowerCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowerCAmelCase = load_file(unet_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): _lowerCAmelCase = load_file(vae_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): _lowerCAmelCase = load_file(text_enc_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') _lowerCAmelCase = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model _lowerCAmelCase = convert_unet_state_dict(unet_state_dict) _lowerCAmelCase = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowerCAmelCase = convert_vae_state_dict(vae_state_dict) _lowerCAmelCase = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowerCAmelCase = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowerCAmelCase = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} _lowerCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: _lowerCAmelCase = convert_text_enc_state_dict(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowerCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowerCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowerCAmelCase = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
37
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[Any] =logging.get_logger(__name__) UpperCAmelCase__ : Dict ={ '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class __A ( a ): __A = """encodec""" def __init__( self , UpperCAmelCase_=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , UpperCAmelCase_=24000 , UpperCAmelCase_=1 , UpperCAmelCase_=False , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=128 , UpperCAmelCase_=32 , UpperCAmelCase_=1 , UpperCAmelCase_=[8, 5, 4, 2] , UpperCAmelCase_="weight_norm" , UpperCAmelCase_=7 , UpperCAmelCase_=7 , UpperCAmelCase_=3 , UpperCAmelCase_=2 , UpperCAmelCase_=True , UpperCAmelCase_="reflect" , UpperCAmelCase_=2 , UpperCAmelCase_=2 , UpperCAmelCase_=1.0 , UpperCAmelCase_=1024 , UpperCAmelCase_=None , UpperCAmelCase_=True , **UpperCAmelCase_ , ): lowerCamelCase =target_bandwidths lowerCamelCase =sampling_rate lowerCamelCase =audio_channels lowerCamelCase =normalize lowerCamelCase =chunk_length_s lowerCamelCase =overlap lowerCamelCase =hidden_size lowerCamelCase =num_filters lowerCamelCase =num_residual_layers lowerCamelCase =upsampling_ratios lowerCamelCase =norm_type lowerCamelCase =kernel_size lowerCamelCase =last_kernel_size lowerCamelCase =residual_kernel_size lowerCamelCase =dilation_growth_rate lowerCamelCase =use_causal_conv lowerCamelCase =pad_mode lowerCamelCase =compress lowerCamelCase =num_lstm_layers lowerCamelCase =trim_right_ratio lowerCamelCase =codebook_size lowerCamelCase =codebook_dim if codebook_dim is not None else hidden_size lowerCamelCase =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**UpperCAmelCase_ ) @property def _snake_case ( self ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _snake_case ( self ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _snake_case ( self ): lowerCamelCase =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _snake_case ( self ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
262
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : Union[str, Any] =16 UpperCAmelCase__ : Any =32 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase = 16 ) -> int: lowerCamelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase =datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase =16 elif accelerator.mixed_precision != "no": lowerCamelCase =8 else: lowerCamelCase =None return tokenizer.pad( _UpperCAmelCase , padding="""longest""" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase =DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase =DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Dict =mocked_dataloaders # noqa: F811 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _UpperCAmelCase ) == "1": lowerCamelCase =2 # New Code # lowerCamelCase =int(args.gradient_accumulation_steps ) lowerCamelCase =int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase =config["""lr"""] lowerCamelCase =int(config["""num_epochs"""] ) lowerCamelCase =int(config["""seed"""] ) lowerCamelCase =int(config["""batch_size"""] ) lowerCamelCase =evaluate.load("""glue""" , """mrpc""" ) set_seed(_UpperCAmelCase ) lowerCamelCase , lowerCamelCase =get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase =AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler lowerCamelCase =get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() with LocalSGD( accelerator=_UpperCAmelCase , model=_UpperCAmelCase , local_sgd_steps=_UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =outputs.logits.argmax(dim=-1 ) lowerCamelCase , lowerCamelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _UpperCAmelCase ) def _lowercase ( ) -> Any: lowerCamelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_UpperCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=_UpperCAmelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase =parser.parse_args() lowerCamelCase ={"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
262
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: super().__init__(*lowerCAmelCase__, **lowerCAmelCase__) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def a_ ( self, lowerCAmelCase__=None) -> Dict: snake_case_ = {} if top_k is not None: snake_case_ = top_k return {}, {}, postprocess_params def __call__( self, lowerCAmelCase__, **lowerCAmelCase__) -> List[Any]: return super().__call__(lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = load_image(lowerCAmelCase__) snake_case_ = self.image_processor(images=lowerCAmelCase__, return_tensors=self.framework) return model_inputs def a_ ( self, lowerCAmelCase__) -> str: snake_case_ = self.model(**lowerCAmelCase__) return model_outputs def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=5) -> Tuple: if top_k > self.model.config.num_labels: snake_case_ = self.model.config.num_labels if self.framework == "pt": snake_case_ = model_outputs.logits.softmax(-1)[0] snake_case_ , snake_case_ = probs.topk(lowerCAmelCase__) elif self.framework == "tf": snake_case_ = stable_softmax(model_outputs.logits, axis=-1)[0] snake_case_ = tf.math.top_k(lowerCAmelCase__, k=lowerCAmelCase__) snake_case_ , snake_case_ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}') snake_case_ = scores.tolist() snake_case_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__, lowerCAmelCase__)]
69
def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]]): '''simple docstring''' lowerCAmelCase__ : list[list[float]] = [] for data in source_data: for i, el in enumerate(lowerCamelCase_): if len(lowerCamelCase_) < i + 1: data_lists.append([]) data_lists[i].append(float(lowerCamelCase_)) return data_lists def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]] ,lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : list[list[float]] = [] for dlist, weight in zip(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : str = min(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = max(lowerCamelCase_) lowerCAmelCase__ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: lowerCAmelCase__ : Optional[int] = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowerCamelCase_) score_lists.append(lowerCamelCase_) return score_lists def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]]): '''simple docstring''' lowerCAmelCase__ : list[float] = [0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(lowerCamelCase_): lowerCAmelCase__ : str = final_scores[j] + ele return final_scores def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]] ,lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = get_data(lowerCamelCase_) lowerCAmelCase__ : Dict = calculate_each_score(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = generate_final_scores(lowerCamelCase_) # append scores to source data for i, ele in enumerate(lowerCamelCase_): source_data[i].append(lowerCamelCase_) return source_data
129
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Any = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } __A : List[Any] = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } __A : Any = '''</w>''' __A : Union[str, Any] = '''@@ ''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Any = set() lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length __A : str = {'''facebook/s2t-wav2vec2-large-en-de''': 1024} class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = VOCAB_FILES_NAMES lowerCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : int="<pad>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__( unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase : Tuple = do_lower_case with open(UpperCAmelCase_ , encoding='utf-8' ) as vocab_handle: lowerCAmelCase : List[str] = json.load(UpperCAmelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) lowerCAmelCase : str = None lowerCAmelCase : Tuple = None else: with open(UpperCAmelCase_ , encoding='utf-8' ) as merges_handle: lowerCAmelCase : Tuple = merges_handle.read().split('\n' )[:-1] lowerCAmelCase : Dict = [tuple(merge.split()[:2] ) for merge in merges] lowerCAmelCase : List[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[int] = {} @property def lowercase__ ( self : str ): return len(self.decoder ) def lowercase__ ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Any = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCAmelCase : int = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[str] = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase : Optional[Any] = bigram lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = 0 while i < len(UpperCAmelCase_ ): try: lowerCAmelCase : List[str] = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : Dict = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Optional[Any] = tuple(UpperCAmelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCAmelCase_ ) == 1: break else: lowerCAmelCase : Dict = get_pairs(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = ' '.join(UpperCAmelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: lowerCAmelCase : Dict = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCAmelCase_ ): lowerCAmelCase : Optional[int] = word.replace(UpperCAmelCase_ , '' ) lowerCAmelCase : Tuple = word.replace(' ' , UpperCAmelCase_ ) lowerCAmelCase : Dict = word return word def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : str ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: lowerCAmelCase : Optional[Any] = text.lower() lowerCAmelCase : Optional[Any] = text.split() lowerCAmelCase : Optional[int] = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(' ' ) ) ) return split_tokens def lowercase__ ( self : List[str] , UpperCAmelCase_ : str ): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = self.decoder.get(UpperCAmelCase_ , self.unk_token ) return result def lowercase__ ( self : int , UpperCAmelCase_ : List[str] ): lowerCAmelCase : List[Any] = ' '.join(UpperCAmelCase_ ) # make sure @@ tokens are concatenated lowerCAmelCase : int = ''.join(string.split(UpperCAmelCase_ ) ) return string def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : int = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + '\n' ) lowerCAmelCase : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase : List[str] = token_index writer.write(' '.join(UpperCAmelCase_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
323
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
1
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker UpperCAmelCase : Optional[Any] = 'CompVis/stable-diffusion-v1-1' UpperCAmelCase : Dict = 'CompVis/stable-diffusion-v1-2' UpperCAmelCase : Optional[int] = 'CompVis/stable-diffusion-v1-3' UpperCAmelCase : Union[str, Any] = 'CompVis/stable-diffusion-v1-4' class lowerCamelCase__ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Tuple = True , ): '''simple docstring''' super()._init_() __UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) __UpperCAmelCase : int = StableDiffusionPipeline( vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , requires_safety_checker=lowerCAmelCase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return {k: getattr(self , lowerCAmelCase__ ) for k in self.config.keys() if not k.startswith("""_""" )} def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[int] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __UpperCAmelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def lowerCamelCase__ ( self : int ): '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] = 512 , UpperCamelCase : Dict = 512 , UpperCamelCase : int = 50 , UpperCamelCase : Any = 7.5 , UpperCamelCase : Dict = None , UpperCamelCase : Any = 1 , UpperCamelCase : str = 0.0 , UpperCamelCase : List[str] = None , UpperCamelCase : List[str] = None , UpperCamelCase : int = "pil" , UpperCamelCase : Any = True , UpperCamelCase : str = None , UpperCamelCase : Dict = 1 , **UpperCamelCase : str , ): '''simple docstring''' return self.pipea( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) @torch.no_grad() def lowerCamelCase__ ( self : List[str] , UpperCamelCase : int , UpperCamelCase : Dict = 512 , UpperCamelCase : str = 512 , UpperCamelCase : Union[str, Any] = 50 , UpperCamelCase : Optional[Any] = 7.5 , UpperCamelCase : Dict = None , UpperCamelCase : Tuple = 1 , UpperCamelCase : int = 0.0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Any] = None , UpperCamelCase : Optional[int] = "pil" , UpperCamelCase : Optional[Any] = True , UpperCamelCase : Union[str, Any] = None , UpperCamelCase : str = 1 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' return self.pipea( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase : str , UpperCamelCase : List[Any] = 512 , UpperCamelCase : Dict = 512 , UpperCamelCase : Union[str, Any] = 50 , UpperCamelCase : int = 7.5 , UpperCamelCase : Tuple = None , UpperCamelCase : Dict = 1 , UpperCamelCase : str = 0.0 , UpperCamelCase : Union[str, Any] = None , UpperCamelCase : int = None , UpperCamelCase : Union[str, Any] = "pil" , UpperCamelCase : str = True , UpperCamelCase : Tuple = None , UpperCamelCase : List[Any] = 1 , **UpperCamelCase : Tuple , ): '''simple docstring''' return self.pipea( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) @torch.no_grad() def lowerCamelCase__ ( self : int , UpperCamelCase : Dict , UpperCamelCase : Optional[int] = 512 , UpperCamelCase : str = 512 , UpperCamelCase : Optional[Any] = 50 , UpperCamelCase : Optional[Any] = 7.5 , UpperCamelCase : Dict = None , UpperCamelCase : str = 1 , UpperCamelCase : Any = 0.0 , UpperCamelCase : List[Any] = None , UpperCamelCase : List[Any] = None , UpperCamelCase : Dict = "pil" , UpperCamelCase : Union[str, Any] = True , UpperCamelCase : Dict = None , UpperCamelCase : Any = 1 , **UpperCamelCase : Any , ): '''simple docstring''' return self.pipea( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) @torch.no_grad() def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] = 512 , UpperCamelCase : str = 512 , UpperCamelCase : Any = 50 , UpperCamelCase : List[Any] = 7.5 , UpperCamelCase : List[str] = None , UpperCamelCase : Union[str, Any] = 1 , UpperCamelCase : Optional[Any] = 0.0 , UpperCamelCase : Dict = None , UpperCamelCase : str = None , UpperCamelCase : Optional[int] = "pil" , UpperCamelCase : List[Any] = True , UpperCamelCase : Tuple = None , UpperCamelCase : Optional[Any] = 1 , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : str = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(lowerCAmelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 __UpperCAmelCase : List[Any] = self.textaimg_sda_a( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 __UpperCAmelCase : Tuple = self.textaimg_sda_a( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 __UpperCAmelCase : Tuple = self.textaimg_sda_a( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 __UpperCAmelCase : str = self.textaimg_sda_a( prompt=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , **lowerCAmelCase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
115
"""simple docstring""" __UpperCamelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''', '''mask_image''']) __UpperCamelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset(['''input_tokens''']) __UpperCamelCase = frozenset(['''input_tokens'''])
113
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : str = "bart" a : str = ["past_key_values"] a : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, __magic_name__=50265, __magic_name__=1024, __magic_name__=12, __magic_name__=4096, __magic_name__=16, __magic_name__=12, __magic_name__=4096, __magic_name__=16, __magic_name__=0.0, __magic_name__=0.0, __magic_name__="gelu", __magic_name__=1024, __magic_name__=0.1, __magic_name__=0.0, __magic_name__=0.0, __magic_name__=0.02, __magic_name__=0.0, __magic_name__=False, __magic_name__=True, __magic_name__=3, __magic_name__=1, __magic_name__=0, __magic_name__=2, __magic_name__=True, __magic_name__=2, __magic_name__=2, **__magic_name__, ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = vocab_size UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : int = d_model UpperCamelCase__ : Dict = encoder_ffn_dim UpperCamelCase__ : Optional[Any] = encoder_layers UpperCamelCase__ : Optional[Any] = encoder_attention_heads UpperCamelCase__ : Union[str, Any] = decoder_ffn_dim UpperCamelCase__ : Any = decoder_layers UpperCamelCase__ : str = decoder_attention_heads UpperCamelCase__ : Optional[int] = dropout UpperCamelCase__ : Dict = attention_dropout UpperCamelCase__ : str = activation_dropout UpperCamelCase__ : int = activation_function UpperCamelCase__ : List[Any] = init_std UpperCamelCase__ : Dict = encoder_layerdrop UpperCamelCase__ : Union[str, Any] = decoder_layerdrop UpperCamelCase__ : Any = classifier_dropout UpperCamelCase__ : List[Any] = use_cache UpperCamelCase__ : List[Any] = encoder_layers UpperCamelCase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__magic_name__, pad_token_id=__magic_name__, bos_token_id=__magic_name__, eos_token_id=__magic_name__, is_encoder_decoder=__magic_name__, decoder_start_token_id=__magic_name__, forced_eos_token_id=__magic_name__, **__magic_name__, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''', __magic_name__ ): UpperCamelCase__ : str = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCamelCase__ : Optional[Any] = {0: '''batch'''} UpperCamelCase__ : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCamelCase__ : Any = {0: '''batch''', 1: '''decoder_sequence'''} UpperCamelCase__ : str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__magic_name__, direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase__ : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCamelCase__ ,UpperCamelCase__ : str = self.num_layers for i in range(__magic_name__ ): UpperCamelCase__ : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCamelCase__ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCamelCase__ : Union[str, Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : List[str] = super().outputs else: UpperCamelCase__ : Optional[int] = super(__magic_name__, self ).outputs if self.use_past: UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self.num_layers for i in range(__magic_name__ ): UpperCamelCase__ : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCamelCase__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = -1, __magic_name__ = -1, __magic_name__ = False, __magic_name__ = None, ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) # Generate decoder inputs UpperCamelCase__ : Tuple = seq_length if not self.use_past else 1 UpperCamelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) UpperCamelCase__ : int = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase__ : Optional[Any] = dict(**__magic_name__, **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCamelCase__ ,UpperCamelCase__ : Tuple = common_inputs['''input_ids'''].shape UpperCamelCase__ : Tuple = common_inputs['''decoder_input_ids'''].shape[1] UpperCamelCase__ ,UpperCamelCase__ : Any = self.num_attention_heads UpperCamelCase__ : Dict = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ : Optional[int] = decoder_seq_length + 3 UpperCamelCase__ : Any = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase__ : Any = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__magic_name__, __magic_name__ )], dim=1 ) UpperCamelCase__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = self.num_layers UpperCamelCase__ : Union[str, Any] = min(__magic_name__, __magic_name__ ) UpperCamelCase__ : List[Any] = max(__magic_name__, __magic_name__ ) - min_num_layers UpperCamelCase__ : Dict = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. UpperCamelCase__ : Union[str, Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__magic_name__, __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = -1, __magic_name__ = -1, __magic_name__ = False, __magic_name__ = None, ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCamelCase__ : Tuple = seqlen + 2 UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = self.num_layers UpperCamelCase__ ,UpperCamelCase__ : int = self.num_attention_heads UpperCamelCase__ : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ : Any = common_inputs['''attention_mask'''].dtype UpperCamelCase__ : str = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__magic_name__, __magic_name__, dtype=__magic_name__ )], dim=1 ) UpperCamelCase__ : Tuple = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = -1, __magic_name__ = -1, __magic_name__ = False, __magic_name__ = None, ) -> Mapping[str, Any]: """simple docstring""" # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ : Dict = compute_effective_axis_dimension( __magic_name__, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ : Tuple = tokenizer.num_special_tokens_to_add(__magic_name__ ) UpperCamelCase__ : Any = compute_effective_axis_dimension( __magic_name__, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ : int = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase__ : Union[str, Any] = dict(tokenizer(__magic_name__, return_tensors=__magic_name__ ) ) return common_inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = -1, __magic_name__ = -1, __magic_name__ = False, __magic_name__ = None, ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__, batch_size=__magic_name__, seq_length=__magic_name__, is_pair=__magic_name__, framework=__magic_name__ ) elif self.task == "causal-lm": UpperCamelCase__ : List[str] = self._generate_dummy_inputs_for_causal_lm( __magic_name__, batch_size=__magic_name__, seq_length=__magic_name__, is_pair=__magic_name__, framework=__magic_name__ ) else: UpperCamelCase__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__, batch_size=__magic_name__, seq_length=__magic_name__, is_pair=__magic_name__, framework=__magic_name__ ) return common_inputs def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : int = super()._flatten_past_key_values_(__magic_name__, __magic_name__, __magic_name__, __magic_name__ ) else: UpperCamelCase__ : int = super(__magic_name__, self )._flatten_past_key_values_( __magic_name__, __magic_name__, __magic_name__, __magic_name__ )
247
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any]=False ) -> List[Any]: UpperCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Any , __UpperCAmelCase: Dict=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Tuple = '''''' else: UpperCamelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : int = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Optional[Any]: UpperCamelCase__ : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple ) -> Dict: UpperCamelCase__ : List[str] = dct.pop(__UpperCAmelCase ) UpperCamelCase__ : int = val def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any]=True ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : List[str] = 8 # set labels if required if not base_model: UpperCamelCase__ : Union[str, Any] = 1000 UpperCamelCase__ : Optional[Any] = '''huggingface/label-files''' UpperCamelCase__ : Dict = '''imagenet-1k-id2label.json''' UpperCamelCase__ : str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : str = 384 UpperCamelCase__ : str = 1536 UpperCamelCase__ : Tuple = 12 UpperCamelCase__ : Optional[int] = 6 # load original model from torch hub UpperCamelCase__ : Any = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : str = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) UpperCamelCase__ : int = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: UpperCamelCase__ : int = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: UpperCamelCase__ : Optional[int] = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : Dict = ViTImageProcessor() UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Optional[Any] = encoding['''pixel_values'''] UpperCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) if base_model: UpperCamelCase__ : Union[str, Any] = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCamelCase__ : Any = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
247
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_12 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.0_2 , __magic_name__=False , __magic_name__=True , __magic_name__="None" , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ) -> Optional[Any]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def __UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ) -> str: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase ( self ) -> str: _a = self.get_config() _a = 3_00 return config def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: _a = DebertaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )[0] _a = model(__magic_name__ , token_type_ids=__magic_name__ )[0] _a = model(__magic_name__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = DebertaForMaskedLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: _a = self.num_labels _a = DebertaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: _a = self.num_labels _a = DebertaForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = DebertaForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> Tuple: _a = DebertaModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> Optional[int]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DebertaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self ) -> str: pass @slow def __UpperCAmelCase ( self ) -> List[Any]: _a = DebertaModel.from_pretrained('microsoft/deberta-base' ) _a = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(__magic_name__ , attention_mask=__magic_name__ )[0] # compare the actual values for a slice. _a = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
168
'''simple docstring''' import numpy as np class a : def __init__( self ) -> List[str]: _a = (0, 0) _a = None _a = 0 _a = 0 _a = 0 def __eq__( self , __magic_name__ ) -> Optional[int]: return self.position == cell.position def __UpperCAmelCase ( self ) -> Any: print(self.position ) class a : def __init__( self , __magic_name__=(5, 5) ) -> Optional[int]: _a = np.zeros(__magic_name__ ) _a = world_size[0] _a = world_size[1] def __UpperCAmelCase ( self ) -> List[Any]: print(self.w ) def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _a = cell.position[0] _a = cell.position[1] _a = [] for n in neughbour_cord: _a = current_x + n[0] _a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _a = Cell() _a = (x, y) _a = cell neighbours.append(__magic_name__ ) return neighbours def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' _a = [] _a = [] _open.append(lowerCAmelCase__ ) while _open: _a = np.argmin([n.f for n in _open] ) _a = _open[min_f] _closed.append(_open.pop(lowerCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(lowerCAmelCase__ ): for c in _closed: if c == n: continue _a = current.g + 1 _a , _a = n.position _a , _a = goal.position _a = (ya - ya) ** 2 + (xa - xa) ** 2 _a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCAmelCase__ ) _a = [] while current.parent is not None: path.append(current.position ) _a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a_ : str = Gridworld() # Start position and goal a_ : str = Cell() a_ : Dict = (0, 0) a_ : Dict = Cell() a_ : Optional[Any] = (4, 4) print(f'''path from {start.position} to {goal.position}''') a_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: a_ : Any = 1 print(world.w)
168
1
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] ): """simple docstring""" return EnvironmentCommand() def _lowerCamelCase ( lowerCamelCase_ : Tuple ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' @staticmethod def _UpperCamelCase ( snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = parser.add_parser('env' ) download_parser.set_defaults(func=snake_case_ ) download_parser.add_argument( '--accelerate-config_file' , default=snake_case_ , help='The accelerate config file to use for the default values in the launching script.' , ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , *snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = accelerate_config_file def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 'not installed' if is_safetensors_available(): import safetensors UpperCAmelCase_ : Dict = safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors UpperCAmelCase_ : Optional[Any] = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' UpperCAmelCase_ : Any = 'not installed' UpperCAmelCase_ : int = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase_ : str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(snake_case_ ): UpperCAmelCase_ : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase_ : Union[str, Any] = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(snake_case_ , snake_case_ ) else F'''\t{accelerate_config}''' ) UpperCAmelCase_ : List[Any] = 'not installed' UpperCAmelCase_ : Optional[Any] = 'NA' if is_torch_available(): import torch UpperCAmelCase_ : List[str] = torch.__version__ UpperCAmelCase_ : Optional[Any] = torch.cuda.is_available() UpperCAmelCase_ : Union[str, Any] = 'not installed' UpperCAmelCase_ : List[Any] = 'NA' if is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Any = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase_ : str = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase_ : Optional[Any] = bool(tf.config.list_physical_devices('GPU' ) ) UpperCAmelCase_ : str = 'not installed' UpperCAmelCase_ : int = 'not installed' UpperCAmelCase_ : Optional[Any] = 'not installed' UpperCAmelCase_ : int = 'NA' if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase_ : Tuple = flax.__version__ UpperCAmelCase_ : Union[str, Any] = jax.__version__ UpperCAmelCase_ : int = jaxlib.__version__ UpperCAmelCase_ : Optional[Any] = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase_ : Union[str, Any] = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': F'''{safetensors_version}''', 'Accelerate version': F'''{accelerate_version}''', 'Accelerate config': F'''{accelerate_config_str}''', 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'Tensorflow version (GPU?)': F'''{tf_version} ({tf_cuda_available})''', 'Flax version (CPU?/GPU?/TPU?)': F'''{flax_version} ({jax_backend})''', 'Jax version': F'''{jax_version}''', 'JaxLib version': F'''{jaxlib_version}''', 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(snake_case_ ) ) return info @staticmethod def _UpperCamelCase ( snake_case_ ): '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
361
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str = " " ): """simple docstring""" UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[Any] = 0 for index, char in enumerate(lowerCamelCase_ ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase_ : Optional[Any] = index + 1 elif index + 1 == len(lowerCamelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
274
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _a : Any = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _lowerCAmelCase : List[Any] = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" ,type=_lowerCamelCase ,default="""data/dump.txt""" ,help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" ,type=_lowerCamelCase ,default="""bert""" ,choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" ,type=_lowerCamelCase ,default="""bert-base-uncased""" ,help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" ,type=_lowerCamelCase ,default="""data/dump""" ,help="""The dump file prefix.""" ) _lowerCAmelCase : int = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": _lowerCAmelCase : int = BertTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` _lowerCAmelCase : Union[str, Any] = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": _lowerCAmelCase : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase : Union[str, Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` _lowerCAmelCase : Dict = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": _lowerCAmelCase : Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase : Any = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` _lowerCAmelCase : List[Any] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path ,"""r""" ,encoding="""utf8""" ) as fp: _lowerCAmelCase : Tuple = fp.readlines() logger.info("""Start encoding""" ) logger.info(f"{len(_lowerCamelCase )} examples to process." ) _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = 10000 _lowerCAmelCase : str = time.time() for text in data: _lowerCAmelCase : Optional[int] = f"{bos} {text.strip()} {sep}" _lowerCAmelCase : Dict = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) rslt.append(_lowerCamelCase ) iter += 1 if iter % interval == 0: _lowerCAmelCase : int = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) _lowerCAmelCase : List[Any] = time.time() logger.info("""Finished binarization""" ) logger.info(f"{len(_lowerCamelCase )} examples processed." ) _lowerCAmelCase : List[Any] = f"{args.dump_file}.{args.tokenizer_name}.pickle" _lowerCAmelCase : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): _lowerCAmelCase : Tuple = [np.uintaa(_lowerCamelCase ) for d in rslt] else: _lowerCAmelCase : str = [np.intaa(_lowerCamelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(_lowerCamelCase ,"""wb""" ) as handle: pickle.dump(rslt_ ,_lowerCamelCase ,protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
44
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = "cpu" , lowerCAmelCase__ : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase_ : Any = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase_ : str = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Dict = src_path torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
224
0
from bisect import bisect from itertools import accumulate def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda __UpperCamelCase : x[0] / x[1] , reverse=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [i[0] for i in r], [i[1] for i in r] SCREAMING_SNAKE_CASE__ = list(accumulate(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = bisect(__UpperCamelCase , __UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
204
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCamelCase : int = 4 __lowerCamelCase : Dict = 3 class __snake_case ( lowerCamelCase_ ): pass def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" for shard in shards: for i in range(__UpperCamelCase ): yield {"i": i, "shard": shard} def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = int(os.environ["""RANK"""] ) SCREAMING_SNAKE_CASE__ = int(os.environ["""WORLD_SIZE"""] ) SCREAMING_SNAKE_CASE__ = ArgumentParser() parser.add_argument("""--streaming""" , type=__UpperCamelCase ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase ) parser.add_argument("""--num_workers""" , type=__UpperCamelCase , default=0 ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.streaming SCREAMING_SNAKE_CASE__ = args.num_workers SCREAMING_SNAKE_CASE__ = {"""shards""": [f"""shard_{shard_idx}""" for shard_idx in range(__UpperCamelCase )]} SCREAMING_SNAKE_CASE__ = IterableDataset.from_generator(__UpperCamelCase , gen_kwargs=__UpperCamelCase ) if not streaming: SCREAMING_SNAKE_CASE__ = Dataset.from_list(list(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ = split_dataset_by_node(__UpperCamelCase , rank=__UpperCamelCase , world_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = torch.utils.data.DataLoader(__UpperCamelCase , num_workers=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE__ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE__ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
204
1
"""simple docstring""" from __future__ import annotations class UpperCamelCase : def __init__( self, lowerCAmelCase__=None) -> Optional[int]: snake_case_ = data snake_case_ = None def __repr__( self) -> List[str]: snake_case_ = [] snake_case_ = self while temp: string_rep.append(f'{temp.data}') snake_case_ = temp.next return "->".join(_lowerCAmelCase) def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: if not elements_list: raise Exception('The Elements List is empty' ) snake_case_ = snake_case_ = Node(elements_list[0] ) for i in range(1 , len(lowerCAmelCase_ ) ): snake_case_ = Node(elements_list[i] ) snake_case_ = current.next return head def UpperCAmelCase ( UpperCAmelCase ) -> None: if head_node is not None and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCAmelCase ( ) -> Any: from doctest import testmod testmod() snake_case_ = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCAmelCase_ ) print('Elements in Reverse:' ) print_reverse(lowerCAmelCase_ ) if __name__ == "__main__": main()
69
import unittest from knapsack import greedy_knapsack as kp class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : Any ) -> str: """simple docstring""" snake_case_ = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] snake_case_ = [2, 4, 6, 8, 1_0, 1_2] snake_case_ = 1_0_0 self.assertEqual(kp.calc_profit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , 2_1_0 ) def lowerCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "Weight can not be negative." ) def lowerCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "Profit can not be negative." ) def lowerCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.assertRaisesRegex( _lowerCAmelCase , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
159
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'facebook/bart-large-mnli' lowerCamelCase = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) lowerCamelCase = 'text_classifier' lowerCamelCase = AutoTokenizer lowerCamelCase = AutoModelForSequenceClassification lowerCamelCase = ['text', ['text']] lowerCamelCase = ['text'] def snake_case__ ( self : Optional[Any] )-> Union[str, Any]: '''simple docstring''' super().setup() A__ = self.model.config A__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A__ = int(lowercase_ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def snake_case__ ( self : Dict,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> List[Any]: '''simple docstring''' A__ = labels return self.pre_processor( [text] * len(lowercase_ ),[F'This example is {label}' for label in labels],return_tensors='pt',padding='max_length',) def snake_case__ ( self : Any,lowercase_ : Dict )-> List[Any]: '''simple docstring''' A__ = outputs.logits A__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
282
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any],lowercase_ : str )-> List[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'],model_result['ss'] ): A__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sgugger/tiny-distilbert-classification' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,only_pretrain_model=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,torchscript=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu','Cant do half precision' ) def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,fpaa=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu','Can\'t do half precision' ) def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],fpaa=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Optional[int]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,save_to_csv=lowercase_,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(lowercase_,'inf_time.csv' ),train_memory_csv_file=os.path.join(lowercase_,'train_mem.csv' ),inference_memory_csv_file=os.path.join(lowercase_,'inf_mem.csv' ),train_time_csv_file=os.path.join(lowercase_,'train_time.csv' ),env_info_csv_file=os.path.join(lowercase_,'env.csv' ),multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'env.csv' ) ).exists() ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase_ : Optional[Any] ): self.assertTrue(hasattr(lowercase_,'sequential' ) ) self.assertTrue(hasattr(lowercase_,'cumulative' ) ) self.assertTrue(hasattr(lowercase_,'current' ) ) self.assertTrue(hasattr(lowercase_,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(lowercase_,'log.txt' ),log_print=lowercase_,trace_memory_line_by_line=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase_,'log.txt' ) ).exists() )
282
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def __magic_name__ ( *__A : Tuple, **__A : Union[str, Any] ): pass def a__ ( UpperCAmelCase : int ) -> str: UpperCAmelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def a__ ( UpperCAmelCase : Tuple ) -> Dict: UpperCAmelCase : str = np.array(UpperCAmelCase ) UpperCAmelCase : Optional[int] = npimg.shape return {"hash": hashimage(UpperCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __magic_name__ ( self : Dict, __A : Optional[Any], __A : Optional[int], __A : str ): UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=_UpperCamelCase, image_processor=_UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : Optional[int] ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __magic_name__ ( self : int ): pass @slow @require_torch def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = pipeline('''mask-generation''', model='''facebook/sam-vit-huge''' ) UpperCAmelCase : str = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''', points_per_batch=2_5_6 ) # Shortening by hashing UpperCAmelCase : Any = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCamelCase, decimals=4 ), [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_8_7_1} ], ) # fmt: on @require_torch @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = "facebook/sam-vit-huge" UpperCAmelCase : Any = pipeline('''mask-generation''', model=_UpperCamelCase ) UpperCAmelCase : List[str] = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''', pred_iou_thresh=1, points_per_batch=2_5_6 ) # Shortening by hashing UpperCAmelCase : str = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCamelCase, decimals=4 ), [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_0_5_3}, ], )
336
'''simple docstring''' import os import pytest from attr import dataclass _snake_case = 'us-east-1' # defaults region @dataclass class a__ : _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _SCREAMING_SNAKE_CASE : Dict = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } _SCREAMING_SNAKE_CASE : List[str] = {**hyperparameters, 'max_steps': 1000} @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCamelCase ( self ): """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def _lowerCamelCase ( self ): """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _A ( snake_case ) -> Tuple: _lowercase : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
250
0
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): # Base Case if index == len(snake_case_ ): return True # Recursive Step for i in range(snake_case_ ): if valid_coloring(graph[index],snake_case_,snake_case_ ): # Color current vertex _A : int = i # Validate coloring if util_color(snake_case_,snake_case_,snake_case_,index + 1 ): return True # Backtrack _A : int = -1 return False def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [-1] * len(snake_case_ ) if util_color(snake_case_,snake_case_,snake_case_,0 ): return colored_vertices return []
343
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
1
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase__ ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None class lowerCAmelCase__ ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __UpperCamelCase = datasets.Audio() __UpperCamelCase = 'audio' __UpperCamelCase = AudioFolderConfig __UpperCamelCase = 42 # definition at the bottom of the script __UpperCamelCase = AudioClassification(audio_column="audio" , label_column="label" ) UpperCAmelCase_ : Any = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] UpperCAmelCase_ : Union[str, Any] = AUDIO_EXTENSIONS
91
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: List[str] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
0
from ..utils import DummyObject, requires_backends class _A ( metaclass=snake_case__ ): _UpperCamelCase : Optional[Any] = ['''keras_nlp'''] def __init__( self : Dict , *_A : str , **_A : List[str] ) -> str: """simple docstring""" requires_backends(self , ['''keras_nlp'''] )
365
class _A : # Public class to implement a graph def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : Tuple = row lowercase : Union[str, Any] = col lowercase : int = graph def __a ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self : int , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __a ( self : List[str] ) -> int: # And finally, count all islands. """simple docstring""" lowercase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
116
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __A = pytest.mark.integration __A = {"comet"} __A = importlib.util.find_spec("fairseq") is not None __A = {"code_eval"} __A = os.name == "nt" __A = {"bertscore", "frugalscore", "perplexity"} __A = importlib.util.find_spec("transformers") is not None def UpperCamelCase__ ( lowercase__ : Tuple ): @wraps(__lowerCamelCase ) def wrapper(self : Dict , lowercase__ : Tuple ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , __lowerCamelCase ) return wrapper def UpperCamelCase__ ( lowercase__ : Dict ): @wraps(__lowerCamelCase ) def wrapper(self : Optional[int] , lowercase__ : Optional[int] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , __lowerCamelCase ) return wrapper def UpperCamelCase__ ( lowercase__ : List[Any] ): @wraps(__lowerCamelCase ) def wrapper(self : List[Any] , lowercase__ : List[str] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , __lowerCamelCase ) return wrapper def UpperCamelCase__ ( ): snake_case : Tuple = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @local class lowerCamelCase__ ( parameterized.TestCase ): a__ : Optional[Any] = {} a__ : Union[str, Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = "[...]" snake_case : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _A ) ).module_path ) snake_case : Optional[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=_A ) # check parameters snake_case : Dict = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_A , metric_module.__name__ ): with self.use_local_metrics(): try: snake_case : List[str] = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[Any] = "[...]" snake_case : Tuple = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _A ) ).module_path ) # run doctest with self.use_local_metrics(): snake_case : int = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_A ): yield else: yield @contextmanager def lowerCamelCase_ ( self ): """simple docstring""" def load_local_metric(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return load_metric(os.path.join("metrics" , _A ) , *_A , **_A ) with patch("datasets.load_metric" ) as mock_load_metric: snake_case : Union[str, Any] = load_local_metric yield @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE ): """simple docstring""" def wrapper(SCREAMING_SNAKE_CASE ): snake_case : Optional[Any] = contextmanager(_A ) snake_case : Union[str, Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: snake_case : Optional[int] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): import torch def bert_cos_score_idf(lowercase__ : Dict , lowercase__ : List[Any] , *lowercase__ : int , **lowercase__ : Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__lowerCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: snake_case : Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def UpperCamelCase__ ( lowercase__ : List[Any] ): def load_from_checkpoint(lowercase__ : Dict ): class lowerCamelCase__ : def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" assert len(_A ) == 2 snake_case : Any = [0.19, 0.92] return scores, sum(_A ) / len(_A ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: snake_case : Optional[Any] = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: snake_case : Optional[Any] = load_from_checkpoint yield def UpperCamelCase__ ( ): snake_case : Optional[int] = load_metric(os.path.join("metrics" , "seqeval" ) ) snake_case : Optional[int] = "ERROR" snake_case : List[Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(__lowerCamelCase , match=re.escape(__lowerCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=__lowerCamelCase )
148
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = len(_UpperCamelCase ), len(grid[0] ) if ( min(_UpperCamelCase , _UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __lowerCAmelCase = 0 count += depth_first_search(_UpperCamelCase , row + 1 , _UpperCamelCase , _UpperCamelCase ) count += depth_first_search(_UpperCamelCase , row - 1 , _UpperCamelCase , _UpperCamelCase ) count += depth_first_search(_UpperCamelCase , _UpperCamelCase , col + 1 , _UpperCamelCase ) count += depth_first_search(_UpperCamelCase , _UpperCamelCase , col - 1 , _UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
259
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A : Optional[int] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=16 , __a=13 , __a=7 , __a=14 , __a=10 , __a=19 , __a=5 , __a=4 , __a=True , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=[1, 2, 3, 4, 5] , __a=25 , __a=5 , ): __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def snake_case ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def snake_case ( self , __a ): __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case ( self ): __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __a , __a ): __lowerCAmelCase = AutoformerModel(config=__a ).to(__a ).eval() __lowerCAmelCase = model(**__a ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**__a ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCAmelCase : List[Any] =(AutoformerForPrediction,) if is_torch_available() else () __UpperCAmelCase : Tuple ={"""feature-extraction""": AutoformerModel} if is_torch_available() else {} __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False __UpperCAmelCase : Dict =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Optional[Any] =False def snake_case ( self ): __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="Model has no tokens embeddings" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = inspect.signature(getattr(__a , "forward" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , "seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "decoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "encoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "d_model" , __a ) __lowerCAmelCase = getattr(self.model_tester , "num_attention_heads" , __a ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(__a ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def snake_case ( self ): super().test_retain_grad_hidden_states_attentions() def _lowerCamelCase ( _UpperCamelCase="train-batch.pt" ): '''simple docstring''' __lowerCAmelCase = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_UpperCamelCase , repo_type="dataset" ) __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) return batch @require_torch @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowerCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__a ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1 ) )
259
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowerCamelCase ={ """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None ): # Initialise PyTorch model lowerCamelCase : str = XLNetConfig.from_json_file(lowerCamelCase ) lowerCamelCase : str = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) lowerCamelCase : List[str] = finetuning_task lowerCamelCase : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCamelCase : Union[str, Any] = XLNetForSequenceClassification(lowerCamelCase ) elif "squad" in finetuning_task: lowerCamelCase : Union[str, Any] = finetuning_task lowerCamelCase : List[Any] = XLNetForQuestionAnswering(lowerCamelCase ) else: lowerCamelCase : List[str] = XLNetLMHeadModel(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Save pytorch-model lowerCamelCase : List[Any] = os.path.join(lowerCamelCase, lowerCamelCase ) lowerCamelCase : Optional[int] = os.path.join(lowerCamelCase, lowerCamelCase ) print(F'''Save PyTorch model to {os.path.abspath(lowerCamelCase )}''' ) torch.save(model.state_dict(), lowerCamelCase ) print(F'''Save configuration file to {os.path.abspath(lowerCamelCase )}''' ) with open(lowerCamelCase, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) _lowerCamelCase =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
287
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCamelCase ={ """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_2_8, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 5_0, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 1_0, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 1_0, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class A__ ( unittest.TestCase): @classmethod def UpperCamelCase__ ( cls ): lowerCamelCase : int = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def UpperCamelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) lowerCamelCase : Any = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__magic_name__ , repo_id="""test-config""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCamelCase : Optional[Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def UpperCamelCase__ ( self ): lowerCamelCase : Dict = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) lowerCamelCase : Optional[int] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __magic_name__ , repo_id="""valid_org/test-config-org""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowerCamelCase : List[str] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def UpperCamelCase__ ( self ): CustomConfig.register_for_auto_class() lowerCamelCase : Optional[Any] = CustomConfig(attribute=4_2 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) lowerCamelCase : List[str] = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 4_2 ) class A__ ( unittest.TestCase): def UpperCamelCase__ ( self ): lowerCamelCase : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase : Optional[int] = c.n_embd + 1 # int lowerCamelCase : Optional[int] = c.resid_pdrop + 1.0 # float lowerCamelCase : Tuple = not c.scale_attn_weights # bool lowerCamelCase : Any = c.summary_type + """foo""" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__magic_name__ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(__magic_name__ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(__magic_name__ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(__magic_name__ , c.summary_type , """mismatch for key: summary_type""" ) def UpperCamelCase__ ( self ): lowerCamelCase : str = PretrainedConfig() lowerCamelCase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __magic_name__ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) lowerCamelCase : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(__magic_name__ , __magic_name__ )] if len(__magic_name__ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F''' {", ".join(__magic_name__ )}.''' ) def UpperCamelCase__ ( self ): with self.assertRaises(__magic_name__ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) lowerCamelCase : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ): # A mock response for an HTTP head request to emulate server down lowerCamelCase : Dict = mock.Mock() lowerCamelCase : Optional[int] = 5_0_0 lowerCamelCase : List[Any] = {} lowerCamelCase : Tuple = HTTPError lowerCamelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__magic_name__ ) as mock_head: lowerCamelCase : Any = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ): # This test is for deprecated behavior and can be removed in v5 lowerCamelCase : List[str] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = AutoConfig.from_pretrained("""bert-base-cased""" ) lowerCamelCase : Optional[Any] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__magic_name__ ) lowerCamelCase : str = 2 json.dump(configuration.to_dict() , open(os.path.join(__magic_name__ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase : Any = ["""config.42.0.0.json"""] lowerCamelCase : Optional[Any] = 7_6_8 configuration.save_pretrained(__magic_name__ ) shutil.move(os.path.join(__magic_name__ , """config.4.0.0.json""" ) , os.path.join(__magic_name__ , """config.42.0.0.json""" ) ) lowerCamelCase : int = AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCamelCase__ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowerCamelCase : str = """hf-internal-testing/test-two-configs""" import transformers as new_transformers lowerCamelCase : Tuple = """v4.0.0""" lowerCamelCase , lowerCamelCase : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( __magic_name__ , return_unused_kwargs=__magic_name__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__magic_name__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase : Tuple = """v3.0.0""" lowerCamelCase : Any = old_transformers.models.auto.AutoConfig.from_pretrained(__magic_name__ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
287
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase__ = "pt" elif is_tf_available(): lowerCamelCase__ = "tf" else: lowerCamelCase__ = "jax" class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Union[str, Any] = ByTaTokenizer A_ : Union[str, Any] = False def __lowerCamelCase ( self ): super().setUp() __lowerCAmelCase : Optional[int] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=5 ): __lowerCAmelCase : List[str] = [] for i in range(len(_snake_case ) ): try: __lowerCAmelCase : Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCAmelCase : Optional[int] = list(filter(lambda _SCREAMING_SNAKE_CASE : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _snake_case ) ) __lowerCAmelCase : Tuple = list(filter(lambda _SCREAMING_SNAKE_CASE : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case ) , _snake_case ) ) if max_length is not None and len(_snake_case ) > max_length: __lowerCAmelCase : Any = toks[:max_length] if min_length is not None and len(_snake_case ) < min_length and len(_snake_case ) > 0: while len(_snake_case ) < min_length: __lowerCAmelCase : Dict = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase : List[Any] = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase : Union[str, Any] = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) if " " not in output_txt and len(_snake_case ) > 1: __lowerCAmelCase : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case ) ) if with_prefix_space: __lowerCAmelCase : Tuple = ' ' + output_txt __lowerCAmelCase : int = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) return output_txt, output_ids def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.ta_base_tokenizer __lowerCAmelCase : Any = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __lowerCAmelCase : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.ta_base_tokenizer __lowerCAmelCase : Dict = 'Unicode €.' __lowerCAmelCase : str = tokenizer(_snake_case ) __lowerCAmelCase : List[str] = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , _snake_case ) # decoding __lowerCAmelCase : Dict = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , 'Unicode €.</s>' ) __lowerCAmelCase : Tuple = tokenizer('e è é ê ë' ) __lowerCAmelCase : str = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , _snake_case ) # decoding __lowerCAmelCase : Optional[Any] = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.ta_base_tokenizer __lowerCAmelCase : Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __lowerCAmelCase : Dict = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __lowerCAmelCase : List[Any] = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) if FRAMEWORK != "jax": __lowerCAmelCase : int = list(batch.input_ids.numpy()[0] ) else: __lowerCAmelCase : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_snake_case , _snake_case ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.ta_base_tokenizer __lowerCAmelCase : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase : Union[str, Any] = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _snake_case ) self.assertIn('attention_mask' , _snake_case ) self.assertNotIn('decoder_input_ids' , _snake_case ) self.assertNotIn('decoder_attention_mask' , _snake_case ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.ta_base_tokenizer __lowerCAmelCase : Union[str, Any] = [ 'Summary of the text.', 'Another summary.', ] __lowerCAmelCase : Dict = tokenizer( text_target=_snake_case , max_length=32 , padding='max_length' , truncation=_snake_case , return_tensors=_snake_case ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.ta_base_tokenizer __lowerCAmelCase : Optional[int] = ['A long paragraph for summarization. </s>'] __lowerCAmelCase : Optional[int] = ['Summary of the text. </s>'] # fmt: off __lowerCAmelCase : List[Any] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __lowerCAmelCase : Tuple = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __lowerCAmelCase : List[Any] = tokenizer(_snake_case , text_target=_snake_case ) self.assertEqual(_snake_case , batch['input_ids'][0] ) self.assertEqual(_snake_case , batch['labels'][0] ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase : List[str] = tempfile.mkdtemp() __lowerCAmelCase : Optional[int] = ' He is very happy, UNwant\u00E9d,running' __lowerCAmelCase : str = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) __lowerCAmelCase : Union[str, Any] = tokenizer.__class__.from_pretrained(_snake_case ) __lowerCAmelCase : Any = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) shutil.rmtree(_snake_case ) __lowerCAmelCase : int = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase : Tuple = tempfile.mkdtemp() __lowerCAmelCase : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __lowerCAmelCase : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __lowerCAmelCase : Dict = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) tokenizer.save_pretrained(_snake_case ) __lowerCAmelCase : Union[str, Any] = tokenizer.__class__.from_pretrained(_snake_case ) __lowerCAmelCase : Union[str, Any] = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCAmelCase : List[str] = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_snake_case ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __lowerCAmelCase : List[str] = json.load(_snake_case ) with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __lowerCAmelCase : int = json.load(_snake_case ) __lowerCAmelCase : Optional[int] = [f"<extra_id_{i}>" for i in range(1_25 )] __lowerCAmelCase : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] __lowerCAmelCase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_snake_case , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_snake_case , _snake_case ) with open(os.path.join(_snake_case , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_snake_case , _snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase : int = tokenizer_class.from_pretrained( _snake_case , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_snake_case )] __lowerCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained( _snake_case , additional_special_tokens=_snake_case , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case ) __lowerCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained(_snake_case ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowerCAmelCase : Dict = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_string(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowerCAmelCase : List[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __lowerCAmelCase : Any = 0 __lowerCAmelCase : int = tokenizer.convert_ids_to_tokens( _snake_case , skip_special_tokens=_snake_case ) for attr in attributes_list: setattr(_snake_case , attr + '_id' , _snake_case ) self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case ) setattr(_snake_case , attr + '_id' , _snake_case ) self.assertEqual(getattr(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(getattr(_snake_case , attr + '_id' ) , _snake_case ) setattr(_snake_case , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [] ) setattr(_snake_case , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_snake_case , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
357
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase) class A__ ( _lowerCamelCase): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True}) A_ : ClassVar[Features] = Features({'text': Value('string')}) A_ : ClassVar[Features] = Features({'labels': ClassLabel}) A_ : str = "text" A_ : str = "labels" def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowerCAmelCase : Any = copy.deepcopy(self ) __lowerCAmelCase : Dict = self.label_schema.copy() __lowerCAmelCase : List[Any] = features[self.label_column] __lowerCAmelCase : Dict = label_schema return task_template @property def __lowerCamelCase ( self ): return { self.text_column: "text", self.label_column: "labels", }
182
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: A__ = ( 'Wrong input data\'s dimensions... ' f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) try: if dataset.shape[1] != value_array.shape[1]: A__ = ( 'Wrong input data\'s shape... ' f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: A__ = ( 'Input data have different datatype... ' f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) A__ = [] for value in value_array: A__ = euclidean(SCREAMING_SNAKE_CASE__ , dataset[0] ) A__ = dataset[0].tolist() for dataset_value in dataset[1:]: A__ = euclidean(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if dist > temp_dist: A__ = temp_dist A__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray ) -> float: '''simple docstring''' return np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / (norm(SCREAMING_SNAKE_CASE__ ) * norm(SCREAMING_SNAKE_CASE__ )) if __name__ == "__main__": import doctest doctest.testmod()
7
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'resnet' lowerCamelCase = ['basic', 'bottleneck'] def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = downsample_in_first_stage A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.11' ) @property def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__ ( self : Any )-> float: '''simple docstring''' return 1E-3
7
1
import requests _snake_case : Any = '''YOUR API KEY''' def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str = giphy_api_key ): __lowerCAmelCase = """+""".join(query.split() ) __lowerCAmelCase = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __lowerCAmelCase = requests.get(lowerCAmelCase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
368
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 6_5_5_3_6 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : str = "fourier" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple[int] = (3_2, 3_2, 6_4) , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) __lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) __lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase = block_out_channels[0] * 4 __lowerCAmelCase = TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None # down __lowerCAmelCase = in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid __lowerCAmelCase = get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up __lowerCAmelCase = list(reversed(lowerCAmelCase_ ) ) __lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase = out_channels else: __lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) __lowerCAmelCase = output_channel # out __lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) __lowerCAmelCase = get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: __lowerCAmelCase = timestep if not torch.is_tensor(lowerCAmelCase_ ): __lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps[None].to(sample.device ) __lowerCAmelCase = self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: __lowerCAmelCase = self.time_mlp(lowerCAmelCase_ ) else: __lowerCAmelCase = timestep_embed[..., None] __lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCAmelCase = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase = downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCAmelCase = down_block_res_samples[-1:] __lowerCAmelCase = down_block_res_samples[:-1] __lowerCAmelCase = upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: __lowerCAmelCase = self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
207
0
"""simple docstring""" A: Dict = 8.314_4598 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A: Dict = 3_0_0 A: Dict = 2_8 A: str = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
109
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( UpperCamelCase : int = 1000000 , UpperCamelCase : int = 10 ): UpperCAmelCase : defaultdict = defaultdict(UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
1
from __future__ import annotations def __snake_case ( _UpperCAmelCase ): __a = len(lowerCamelCase_ ) // 2 # choose the middle 3 elements __a = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
368
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFViTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModelTester(self) __a = TFBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = TFDeiTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFRobertaModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = TFDeiTModelTester(self) __a = TFRobertaModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = TFCLIPVisionModelTester(self) __a = TFBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1E-3))
131
0
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
'''simple docstring''' import pprint import requests UpperCamelCase__ = '''https://zenquotes.io/api''' def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def a__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": UpperCamelCase__ = random_quotes() pprint.pprint(response)
181
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
'''simple docstring''' __lowerCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ (__a : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ (__a : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = 'Morse code here!' print(__a ) _a : Tuple = encrypt(__a ) print(__a ) _a : str = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
5
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> Optional[int]: if not head: return True # split the list to two parts lowerCAmelCase__ , lowerCAmelCase__ : List[str] = head.next, head while fast and fast.next: lowerCAmelCase__ : Any = fast.next.next lowerCAmelCase__ : List[str] = slow.next lowerCAmelCase__ : Tuple = slow.next lowerCAmelCase__ : Dict = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase__ : Dict = None while second: lowerCAmelCase__ : Tuple = second.next lowerCAmelCase__ : Any = node lowerCAmelCase__ : Tuple = second lowerCAmelCase__ : List[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase__ : Optional[Any] = node.next lowerCAmelCase__ : Union[str, Any] = head.next return True def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase__ : List[str] = head while fast and fast.next: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase__ : List[Any] = [slow.val] while slow.next: lowerCAmelCase__ : Any = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase__ : str = cur.next return True def lowercase_ ( __UpperCAmelCase ) -> str: if not head or not head.next: return True lowerCAmelCase__ : str = {} lowerCAmelCase__ : int = 0 while head: if head.val in d: d[head.val].append(__UpperCAmelCase ) else: lowerCAmelCase__ : str = [pos] lowerCAmelCase__ : Any = head.next pos += 1 lowerCAmelCase__ : Optional[int] = pos - 1 lowerCAmelCase__ : Any = 0 for v in d.values(): if len(__UpperCAmelCase ) % 2 != 0: middle += 1 else: lowerCAmelCase__ : Dict = 0 for i in range(0 , len(__UpperCAmelCase ) ): if v[i] + v[len(__UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
242
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = 0 ) -> list: lowerCAmelCase__ : Optional[Any] = length or len(__UpperCAmelCase ) lowerCAmelCase__ : int = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = list_data[i + 1], list_data[i] lowerCAmelCase__ : List[str] = True return list_data if not swapped else bubble_sort(__UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
242
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any]): lowercase__ : Any = UniSpeechSatForSequenceClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase) lowercase__ : Union[str, Any] = downstream_dict["projector.weight"] lowercase__ : int = downstream_dict["projector.bias"] lowercase__ : int = downstream_dict["model.post_net.linear.weight"] lowercase__ : int = downstream_dict["model.post_net.linear.bias"] return model def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Dict): lowercase__ : Any = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase) lowercase__ : int = downstream_dict["model.linear.weight"] lowercase__ : str = downstream_dict["model.linear.bias"] return model def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : List[str]): lowercase__ : Tuple = UniSpeechSatForXVector.from_pretrained(_lowerCamelCase , config=_lowerCamelCase) lowercase__ : Union[str, Any] = downstream_dict["connector.weight"] lowercase__ : str = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel): lowercase__ : Tuple = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ : Union[str, Any] = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowercase__ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowercase__ : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowercase__ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowercase__ : Optional[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ : str = torch.load(_lowerCamelCase , map_location="cpu") lowercase__ : Optional[Any] = checkpoint["Downstream"] lowercase__ : Dict = UniSpeechSatConfig.from_pretrained(_lowerCamelCase) lowercase__ : str = WavaVecaFeatureExtractor.from_pretrained( _lowerCamelCase , return_attention_mask=_lowerCamelCase , do_normalize=_lowerCamelCase) lowercase__ : Union[str, Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification"): lowercase__ : int = convert_classification(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) elif arch.endswith("ForAudioFrameClassification"): lowercase__ : List[str] = convert_diarization(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) elif arch.endswith("ForXVector"): lowercase__ : Any = convert_xvector(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''') if hf_config.use_weighted_layer_sum: lowercase__ : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCamelCase) hf_model.save_pretrained(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=18 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , ) -> Tuple: lowerCAmelCase_ = size if size is not None else {"height": 18, "width": 18} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize def __a ( self ) -> Optional[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): _lowercase =ImageGPTImageProcessor if is_vision_available() else None def __a ( self ) -> List[str]: lowerCAmelCase_ = ImageGPTImageProcessingTester(self ) @property def __a ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "clusters" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_UpperCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _UpperCamelCase ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = os.path.join(_UpperCamelCase , "image_processor.json" ) image_processor_first.to_json_file(_UpperCamelCase ) lowerCAmelCase_ = self.image_processing_class.from_json_file(_UpperCamelCase ).to_dict() lowerCAmelCase_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _UpperCamelCase ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_UpperCamelCase ) lowerCAmelCase_ = self.image_processing_class.from_pretrained(_UpperCamelCase ).to_dict() lowerCAmelCase_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _UpperCamelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def __a ( self ) -> List[Any]: pass def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) lowerCAmelCase_ = Image.open(dataset[4]["file"] ) lowerCAmelCase_ = Image.open(dataset[5]["file"] ) lowerCAmelCase_ = [imagea, imagea] return images @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def __a ( self ) -> Dict: lowerCAmelCase_ = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) lowerCAmelCase_ = prepare_images() # test non-batched lowerCAmelCase_ = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) lowerCAmelCase_ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _UpperCamelCase ) # test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) lowerCAmelCase_ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _UpperCamelCase )
231
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __A = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCamelCase__ ( lowercase__ : Any ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase__ ) def UpperCamelCase__ ( lowercase__ : Optional[int] ): from transformers.testing_utils import pytest_terminal_summary_main snake_case : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase__ , id=lowercase__ )
148
0
def lowerCAmelCase_ ( UpperCamelCase_ = 1000000 ) -> int: UpperCamelCase_ = set(range(3 , __lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , __lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __lowerCAmelCase , __lowerCAmelCase ) ) ) UpperCamelCase_ = [float(__lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(__lowerCAmelCase , limit + 1 , __lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
353
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,**_lowerCAmelCase ) -> Dict: __lowerCamelCase : Any = [x.strip() for x in open(__lowerCAmelCase ).readlines()] __lowerCamelCase : int = [x.strip() for x in open(__lowerCAmelCase ).readlines()][: len(__lowerCAmelCase )] __lowerCamelCase : str = calculate_rouge(__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ) if save_path is not None: save_json(__lowerCAmelCase ,__lowerCAmelCase ,indent=__lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
208
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = (CMStochasticIterativeScheduler,) lowercase__ = 10 def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : str): """simple docstring""" lowercase_ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCAmelCase_) return config def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = 1_0 lowercase_ = self.get_scheduler_config() lowercase_ = self.scheduler_classes[0](**lowerCAmelCase_) scheduler.set_timesteps(lowerCAmelCase_) lowercase_ = scheduler.timesteps[0] lowercase_ = scheduler.timesteps[1] lowercase_ = self.dummy_sample lowercase_ = 0.1 * sample lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_).prev_sample lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = 1 scheduler.set_timesteps(lowerCAmelCase_) lowercase_ = scheduler.timesteps lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCAmelCase_): # 1. scale model input lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) # 2. predict noise residual lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) # 3. predict previous sample x_t-1 lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 192.7_614) < 1E-2 assert abs(result_mean.item() - 0.2_510) < 1E-3 def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [1_0_6, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_) lowercase_ = scheduler.timesteps lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) # 2. predict noise residual lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) # 3. predict previous sample x_t-1 lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 347.6_357) < 1E-2 assert abs(result_mean.item() - 0.4_527) < 1E-3 def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [3_9, 3_0, 1_2, 1, 0] lowercase_ = len(lowerCAmelCase_) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`."""): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_)
136
0
"""simple docstring""" __UpperCamelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __SCREAMING_SNAKE_CASE ( A_ ): # Make sure the supplied data is a bytes-like object if not isinstance(A_ , A_ ): lowerCAmelCase__ : Dict = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(A_ ) lowerCAmelCase__ : Any = ''''''.join(bin(A_ )[2:].zfill(8 ) for byte in data ) lowerCAmelCase__ : List[str] = len(A_ ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCAmelCase__ : List[str] = b'''=''' * ((6 - len(A_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A_ ) % 6) else: lowerCAmelCase__ : Tuple = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A_ ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( A_ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(A_ , A_ ) and not isinstance(A_ , A_ ): lowerCAmelCase__ : str = ( '''argument should be a bytes-like object or ASCII string, ''' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(A_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A_ , A_ ): try: lowerCAmelCase__ : Union[str, Any] = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) lowerCAmelCase__ : Union[str, Any] = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCAmelCase__ : List[str] = encoded_data[:-padding] lowerCAmelCase__ : Tuple = ''''''.join( bin(B64_CHARSET.index(A_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCAmelCase__ : Any = ''''''.join( bin(B64_CHARSET.index(A_ ) )[2:].zfill(6 ) for char in encoded_data ) lowerCAmelCase__ : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A_ ) , 8 ) ] return bytes(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : int = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') __UpperCamelCase : Dict = F'''https://www.google.com/search?q={query}&num=100''' __UpperCamelCase : Tuple = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: __UpperCamelCase : Tuple = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: __UpperCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
74
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } snake_case_ = { '''yjernite/retribert-base-uncased''': 512, } snake_case_ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Optional[int] = RetriBertTokenizer __lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , a) != do_lower_case or normalizer_state.get('strip_accents' , a) != strip_accents or normalizer_state.get('handle_chinese_chars' , a) != tokenize_chinese_chars ): lowercase__ : Optional[Any] = getattr(a , normalizer_state.pop('type')) lowercase__ : Union[str, Any] = do_lower_case lowercase__ : int = strip_accents lowercase__ : int = tokenize_chinese_chars lowercase__ : str = normalizer_class(**a) lowercase__ : Any = do_lower_case def snake_case_ ( self , a , a=None): lowercase__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a , a = None): lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , a , a = None): lowercase__ : List[str] = self._tokenizer.model.save(a , name=a) return tuple(a)
214
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Any = """distilbert""" __lowerCamelCase : List[Any] = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , a=3_0522 , a=512 , a=False , a=6 , a=12 , a=768 , a=4 * 768 , a=0.1 , a=0.1 , a="gelu" , a=0.02 , a=0.1 , a=0.2 , a=0 , **a , ): lowercase__ : int = vocab_size lowercase__ : int = max_position_embeddings lowercase__ : List[str] = sinusoidal_pos_embds lowercase__ : Tuple = n_layers lowercase__ : Optional[int] = n_heads lowercase__ : List[Any] = dim lowercase__ : Any = hidden_dim lowercase__ : Union[str, Any] = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : List[Any] = activation lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = qa_dropout lowercase__ : Tuple = seq_classif_dropout super().__init__(**a , pad_token_id=a) class SCREAMING_SNAKE_CASE__ (__snake_case ): @property def snake_case_ ( self): if self.task == "multiple-choice": lowercase__ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
214
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCamelCase_ = get_logger(__name__) class __lowerCamelCase ( enum.Enum ): lowerCamelCase_ : Dict = 'all_checks' lowerCamelCase_ : Any = 'basic_checks' lowerCamelCase_ : Any = 'no_checks' class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None ) -> List[str]: '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase_ ) - set(lowercase_ ) ) ) snake_case_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] snake_case_ = """ for """ + verification_name if verification_name is not None else """""" if len(lowercase_ ) > 0: raise NonMatchingChecksumError( f'''Checksums didn\'t match{for_verification_name}:\n''' f'''{bad_urls}\n''' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass class __lowerCamelCase ( __snake_case ): pass def UpperCamelCase( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) if len(set(lowercase_ ) - set(lowercase_ ) ) > 0: raise UnexpectedSplits(str(set(lowercase_ ) - set(lowercase_ ) ) ) snake_case_ = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase_ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase_ ) ) logger.info("""All the splits matched successfully.""" ) def UpperCamelCase( lowercase_ , lowercase_ = True ) -> dict: '''simple docstring''' if record_checksum: snake_case_ = shaaaa() with open(lowercase_ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(lowercase_ ) snake_case_ = m.hexdigest() else: snake_case_ = None return {"num_bytes": os.path.getsize(lowercase_ ), "checksum": checksum} def UpperCamelCase( lowercase_ ) -> List[str]: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
34
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase_ = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=8 ) -> Union[str, Any]: '''simple docstring''' snake_case_ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 snake_case_ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules( text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: if latents is None: snake_case_ = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case_ = latents.to(lowerCamelCase ) snake_case_ = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , ) -> Any: snake_case_ = len(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else 1 # get prompt text embeddings snake_case_ = self.tokenizer( lowerCamelCase , padding="""max_length""" , truncation=lowerCamelCase , max_length=77 , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="""pt""" , ) snake_case_ = text_inputs.input_ids snake_case_ = self.tokenizer(lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase , lowerCamelCase ): snake_case_ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) snake_case_ = text_input_ids.to(lowerCamelCase ) snake_case_ = text_inputs.attention_mask.to(lowerCamelCase ) snake_case_ , snake_case_ = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) snake_case_ = prompt_embeds.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = text_encoder_hidden_states.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = text_mask.repeat_interleave(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: snake_case_ = 42 if negative_prompt is None: snake_case_ = [""""""] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=''' f''' {type(lowerCamelCase )}.''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: snake_case_ = negative_prompt snake_case_ = self.tokenizer( lowerCamelCase , padding="""max_length""" , max_length=77 , truncation=lowerCamelCase , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="""pt""" , ) snake_case_ = uncond_input.input_ids.to(lowerCamelCase ) snake_case_ = uncond_input.attention_mask.to(lowerCamelCase ) snake_case_ , snake_case_ = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = negative_prompt_embeds.shape[1] snake_case_ = negative_prompt_embeds.repeat(1 , lowerCamelCase ) snake_case_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase ) snake_case_ = uncond_text_encoder_hidden_states.shape[1] snake_case_ = uncond_text_encoder_hidden_states.repeat(1 , lowerCamelCase , 1 ) snake_case_ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCamelCase , -1 ) snake_case_ = uncond_text_mask.repeat_interleave(lowerCamelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) snake_case_ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) snake_case_ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase_ ( self , lowerCamelCase=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case_ = torch.device(f'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase=0 ) -> int: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case_ = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: snake_case_ , snake_case_ = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) if self.safety_checker is not None: snake_case_ , snake_case_ = cpu_offload_with_hook(self.safety_checker , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ) -> List[Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 100 , lowerCamelCase = 4.0 , lowerCamelCase = 1 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , ) -> Union[str, Any]: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = len(lowerCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}''' ) snake_case_ = self._execution_device snake_case_ = batch_size * num_images_per_prompt snake_case_ = guidance_scale > 1.0 snake_case_ , snake_case_ , snake_case_ = self._encode_prompt( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = torch.cat(lowerCamelCase , dim=0 ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case_ = torch.cat(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) snake_case_ = self.scheduler.timesteps snake_case_ = self.unet.config.in_channels snake_case_ , snake_case_ = get_new_h_w(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent snake_case_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} snake_case_ = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ , snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , ).prev_sample # post-processing snake_case_ = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
34
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @parameterized.expand([(None,), ('foo.json',)] ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) _UpperCAmelCase = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AutoConfig.from_pretrained('gpt2' ) _UpperCAmelCase = GenerationConfig.from_model_config(UpperCAmelCase ) _UpperCAmelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = GenerationConfig() _UpperCAmelCase = { 'max_new_tokens': 1024, 'foo': 'bar', } _UpperCAmelCase = copy.deepcopy(UpperCAmelCase ) _UpperCAmelCase = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'foo': 'bar'} ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = GenerationConfig() _UpperCAmelCase = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) _UpperCAmelCase = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) _UpperCAmelCase = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , 'foo' ) # no new kwargs should be initialized if from config def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) _UpperCAmelCase = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) _UpperCAmelCase = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase ( cls ): """simple docstring""" _UpperCAmelCase = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCamelCase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) _UpperCAmelCase = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='test-generation-config' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) _UpperCAmelCase = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) _UpperCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='valid_org/test-generation-config-org' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) _UpperCAmelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
39
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) _snake_case = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _snake_case = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _snake_case = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) _snake_case = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) _snake_case = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) _snake_case = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) _snake_case = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) _snake_case = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) _snake_case = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) _snake_case = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) _snake_case = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) _snake_case = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) _snake_case = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_MAPPING _snake_case = auto_class_update(FlaxAutoModel) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_PRETRAINING_MAPPING _snake_case = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _snake_case = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_MASKED_LM_MAPPING _snake_case = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _snake_case = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _snake_case = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _snake_case = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _snake_case = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _snake_case = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A ='\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' A ='\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' A ='\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def A ( self : List[Any] , lowercase : List[List[List[str]]] , lowercase : List[List[str]] , lowercase : int = 1 , lowercase : int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase , hypotheses=lowercase , min_len=lowercase , max_len=lowercase ) }
34
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''data2vec-text''' def __init__( self , A=3_0522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
58
0
from __future__ import annotations from statistics import mean def lowerCamelCase__ ( a , a , a ) -> list[int]: _A: List[str] = [0] * no_of_processes _A: Dict = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(a ): _A: Any = burst_time[i] _A: list[int] = [] _A: Tuple = 0 _A: Optional[int] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _A: List[Any] = [] _A: Union[str, Any] = -1 for i in range(a ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(a ) if len(a ) > 0: _A: List[str] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _A: List[str] = i total_time += burst_time[target_process] completed += 1 _A: Any = 0 _A: Dict = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCamelCase__ ( a , a , a ) -> list[int]: _A: Dict = [0] * no_of_processes for i in range(a ): _A: int = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') UpperCAmelCase__ : int = 4 UpperCAmelCase__ : int = [2, 5, 3, 7] UpperCAmelCase__ : Optional[Any] = [0, 0, 0, 0] UpperCAmelCase__ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase__ : Tuple = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
301
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" ,safety_checker=__snake_case ,cache_dir=__snake_case ) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(__snake_case ,os.listdir(__snake_case )[0] ,"""snapshots""" ) )] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" ,safety_checker=__snake_case ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(__snake_case ) SCREAMING_SNAKE_CASE = jax.random.split(__snake_case ,__snake_case ) SCREAMING_SNAKE_CASE = shard(__snake_case ) SCREAMING_SNAKE_CASE = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(__snake_case ,dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""flax""" ,safety_checker=__snake_case ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(__snake_case ) SCREAMING_SNAKE_CASE = jax.random.split(__snake_case ,__snake_case ) SCREAMING_SNAKE_CASE = shard(__snake_case ) SCREAMING_SNAKE_CASE = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""bf16""" ,dtype=jnp.bfloataa ,safety_checker=__snake_case ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(__snake_case ) SCREAMING_SNAKE_CASE = jax.random.split(__snake_case ,__snake_case ) SCREAMING_SNAKE_CASE = shard(__snake_case ) SCREAMING_SNAKE_CASE = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""bf16""" ,dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(__snake_case ) SCREAMING_SNAKE_CASE = jax.random.split(__snake_case ,__snake_case ) SCREAMING_SNAKE_CASE = shard(__snake_case ) SCREAMING_SNAKE_CASE = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,set_alpha_to_one=__snake_case ,steps_offset=1 ,) SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""bf16""" ,dtype=jnp.bfloataa ,scheduler=__snake_case ,safety_checker=__snake_case ,) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(__snake_case ) SCREAMING_SNAKE_CASE = jax.random.split(__snake_case ,__snake_case ) SCREAMING_SNAKE_CASE = shard(__snake_case ) SCREAMING_SNAKE_CASE = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0 ) ,__snake_case ) SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""bf16""" ,dtype=jnp.bfloataa ,safety_checker=__snake_case ,) SCREAMING_SNAKE_CASE = replicate(__snake_case ) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__snake_case ) SCREAMING_SNAKE_CASE = shard(__snake_case ) SCREAMING_SNAKE_CASE = pipeline(__snake_case ,__snake_case ,__snake_case ,jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""bf16""" ,dtype=jnp.bfloataa ,safety_checker=__snake_case ,use_memory_efficient_attention=__snake_case ,) SCREAMING_SNAKE_CASE = replicate(__snake_case ) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__snake_case ) SCREAMING_SNAKE_CASE = shard(__snake_case ) SCREAMING_SNAKE_CASE = pipeline(__snake_case ,__snake_case ,__snake_case ,jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
296
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__( nn.Module ): def __init__( self : Any , __snake_case : int = 16 , __snake_case : int = 88 , __snake_case : Optional[int] = None , __snake_case : int = 1 , __snake_case : float = 0.0 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , ): super().__init__() a : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__snake_case , attention_head_dim=__snake_case , in_channels=__snake_case , num_layers=__snake_case , dropout=__snake_case , norm_num_groups=__snake_case , cross_attention_dim=__snake_case , attention_bias=__snake_case , sample_size=__snake_case , num_vector_embeds=__snake_case , activation_fn=__snake_case , num_embeds_ada_norm=__snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference a : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` a : Tuple = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` a : Any = [1, 0] def lowercase_ ( self : str , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Dict=None , __snake_case : bool = True , ): a : Dict = hidden_states a : Tuple = [] a : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens a : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] a : Tuple = self.transformer_index_for_condition[i] a : Union[str, Any] = self.transformers[transformer_index]( __snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case , cross_attention_kwargs=__snake_case , return_dict=__snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] a : Optional[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) a : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__snake_case )
297
0
'''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> List[str]: lowercase__ : Dict = {} def _lowerCAmelCase( self ) -> None: print(self.vertex ) for i in self.vertex: print(__lowerCAmelCase , ''' -> ''' , ''' -> '''.join([str(__lowerCAmelCase ) for j in self.vertex[i]] ) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCAmelCase ) else: # else make a new vertex lowercase__ : Union[str, Any] = [to_vertex] def _lowerCAmelCase( self ) -> None: # visited array for storing already visited nodes lowercase__ : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # mark start vertex as visited lowercase__ : List[str] = True print(__lowerCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __a: Optional[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
214
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ): lowercase__ : Dict = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] lowercase__ : Dict = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] lowercase__ : int = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] lowercase__ : Any = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ): if split_mlp_wi: lowercase__ : Tuple = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] lowercase__ : Tuple = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] lowercase__ : Dict = (wi_a, wi_a) else: lowercase__ : List[Any] = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] lowercase__ : int = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def __UpperCamelCase ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = traverse_util.flatten_dict(variables['''target'''] ) lowercase__ : Any = {'''/'''.join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase__ : List[str] = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCAmelCase ) lowercase__ : Union[str, Any] = collections.OrderedDict() # Shared embeddings. lowercase__ : str = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowercase__ : List[Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_attention_layer_norm''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''attention''' ) lowercase__ : Dict = layer_norm lowercase__ : Any = k.T lowercase__ : Optional[int] = o.T lowercase__ : Optional[int] = q.T lowercase__ : Any = v.T # Block i, layer 1 (MLP). lowercase__ : List[str] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_mlp_layer_norm''' ) lowercase__ , lowercase__ : List[Any] = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , UpperCAmelCase ) lowercase__ : int = layer_norm if split_mlp_wi: lowercase__ : Union[str, Any] = wi[0].T lowercase__ : List[str] = wi[1].T else: lowercase__ : int = wi.T lowercase__ : List[str] = wo.T lowercase__ : Dict = old[ '''encoder/relpos_bias/rel_embedding''' ].T lowercase__ : str = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowercase__ : Optional[Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''self_attention''' ) lowercase__ : List[str] = layer_norm lowercase__ : List[Any] = k.T lowercase__ : List[Any] = o.T lowercase__ : List[str] = q.T lowercase__ : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). lowercase__ : List[Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''encoder_decoder_attention''' ) lowercase__ : Any = layer_norm lowercase__ : Optional[int] = k.T lowercase__ : Optional[Any] = o.T lowercase__ : Tuple = q.T lowercase__ : List[Any] = v.T # Block i, layer 2 (MLP). lowercase__ : List[str] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_mlp_layer_norm''' ) lowercase__ , lowercase__ : List[Any] = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , UpperCAmelCase ) lowercase__ : Optional[int] = layer_norm if split_mlp_wi: lowercase__ : List[str] = wi[0].T lowercase__ : str = wi[1].T else: lowercase__ : str = wi.T lowercase__ : Optional[Any] = wo.T lowercase__ : Any = old['''decoder/decoder_norm/scale'''] lowercase__ : Optional[Any] = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase__ : Dict = old['''decoder/logits_dense/kernel'''].T return new def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : int = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase__ : Optional[int] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase__ : List[Any] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowercase__ : Union[str, Any] = state_dict['''shared.weight'''] return state_dict def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[str] = checkpoints.load_tax_checkpoint(UpperCAmelCase ) lowercase__ : str = convert_tax_to_pytorch(UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase ) lowercase__ : List[Any] = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ): lowercase__ : Dict = TaConfig.from_json_file(UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase__ : List[str] = TaEncoderModel(UpperCAmelCase ) else: lowercase__ : Tuple = TaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print('''Done''' ) if __name__ == "__main__": __a: Optional[Any] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) __a: Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
214
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : float): return 0.0 def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) SCREAMING_SNAKE_CASE_: str = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = 5_12 SCREAMING_SNAKE_CASE_: Optional[Any] = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_: str = [filter_type.process(_UpperCAmelCase ) for item in inputs] SCREAMING_SNAKE_CASE_: str = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_: Optional[int] = np.abs(np.fft.fft(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: int = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds SCREAMING_SNAKE_CASE_: Union[str, Any] = get_bounds(_UpperCAmelCase , _UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_UpperCAmelCase ) plt.show() def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE_: Tuple = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_: str = [filter_type.process(_UpperCAmelCase ) for item in inputs] SCREAMING_SNAKE_CASE_: Any = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_: Tuple = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_UpperCAmelCase , -2 * pi ) ) plt.show()
13
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: __A : List[str] = k_size // 2 __A ,__A : List[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __A : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__snake_case ) + square(__snake_case )) / (2 * square(__snake_case )) ) return g def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : int ) -> Union[str, Any]: __A ,__A : Tuple = image.shape[0], image.shape[1] # dst image height and width __A : Tuple = height - k_size + 1 __A : Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __A : str = zeros((dst_height * dst_width, k_size * k_size) ) __A : Optional[Any] = 0 for i, j in product(range(__snake_case ) , range(__snake_case ) ): __A : int = ravel(image[i : i + k_size, j : j + k_size] ) __A : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) __A : List[Any] = gen_gaussian_kernel(__snake_case , __snake_case ) __A : Any = ravel(__snake_case ) # reshape and get the dst image __A : Dict = dot(__snake_case , __snake_case ).reshape(__snake_case , __snake_case ).astype(__snake_case ) return dst if __name__ == "__main__": # read original image lowercase__ : List[Any] = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value lowercase__ : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase__ : Any = gaussian_filter(gray, 3, sigma=1) lowercase__ : str = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
190
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = "ssube/stable-diffusion-x4-upscaler-onnx" def UpperCamelCase_ ( self: str, a_: Optional[int]=0 ): '''simple docstring''' _snake_case : str = floats_tensor((1, 3, 128, 128), rng=random.Random(a_ ) ) _snake_case : int = torch.manual_seed(a_ ) _snake_case : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : int = self.get_dummy_inputs() _snake_case : List[str] = pipe(**a_ ).images _snake_case : str = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _snake_case : Tuple = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="""CPUExecutionProvider""" ) _snake_case : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=a_ ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Optional[int] = self.get_dummy_inputs() _snake_case : List[str] = pipe(**a_ ).images _snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case : int = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="""CPUExecutionProvider""" ) _snake_case : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : List[Any] = self.get_dummy_inputs() _snake_case : Dict = pipe(**a_ ).images _snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case : int = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="""CPUExecutionProvider""" ) _snake_case : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Union[str, Any] = self.get_dummy_inputs() _snake_case : Union[str, Any] = pipe(**a_ ).images _snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case : str = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="""CPUExecutionProvider""" ) _snake_case : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Any = self.get_dummy_inputs() _snake_case : Union[str, Any] = pipe(**a_ ).images _snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case : List[str] = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[Any] = ort.SessionOptions() _snake_case : int = False return options def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _snake_case : List[str] = init_image.resize((128, 128) ) # using the PNDM scheduler by default _snake_case : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Tuple = """A fantasy landscape, trending on artstation""" _snake_case : str = torch.manual_seed(0 ) _snake_case : Optional[int] = pipe( prompt=a_, image=a_, guidance_scale=7.5, num_inference_steps=10, generator=a_, output_type="""np""", ) _snake_case : Dict = output.images _snake_case : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _snake_case : List[Any] = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _snake_case : List[Any] = init_image.resize((128, 128) ) _snake_case : List[Any] = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""", subfolder="""scheduler""" ) _snake_case : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""", scheduler=a_, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=a_ ) _snake_case : Union[str, Any] = """A fantasy landscape, trending on artstation""" _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : str = pipe( prompt=a_, image=a_, guidance_scale=7.5, num_inference_steps=20, generator=a_, output_type="""np""", ) _snake_case : Union[str, Any] = output.images _snake_case : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _snake_case : Dict = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
371
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = (16, 32, 96, 2_56) lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) _snake_case : int = [] for i in range(len(self.block_out_channels ) - 1 ): _snake_case : int = self.block_out_channels[i] _snake_case : Tuple = self.block_out_channels[i + 1] _snake_case : Dict = nn.Conv( a_, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(a_ ) _snake_case : List[Any] = nn.Conv( a_, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(a_ ) _snake_case : Any = blocks _snake_case : Optional[Any] = nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self: Optional[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : int = self.conv_in(a_ ) _snake_case : Optional[int] = nn.silu(a_ ) for block in self.blocks: _snake_case : Tuple = block(a_ ) _snake_case : int = nn.silu(a_ ) _snake_case : Optional[int] = self.conv_out(a_ ) return embedding @flax_register_to_config class lowercase( nn.Module , __a , __a ): '''simple docstring''' lowercase__ = 32 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = "rgb" lowercase__ = (16, 32, 96, 2_56) def UpperCamelCase_ ( self: int, a_: jax.random.KeyArray ): '''simple docstring''' _snake_case : str = (1, self.in_channels, self.sample_size, self.sample_size) _snake_case : Optional[Any] = jnp.zeros(a_, dtype=jnp.floataa ) _snake_case : List[str] = jnp.ones((1,), dtype=jnp.intaa ) _snake_case : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) _snake_case : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) _snake_case : Optional[int] = jnp.zeros(a_, dtype=jnp.floataa ) _snake_case , _snake_case : Tuple = jax.random.split(a_ ) _snake_case : str = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(a_, a_, a_, a_, a_ )["params"] def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = self.block_out_channels _snake_case : Optional[int] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _snake_case : int = self.num_attention_heads or self.attention_head_dim # input _snake_case : Union[str, Any] = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time _snake_case : int = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) _snake_case : Any = FlaxTimestepEmbedding(a_, dtype=self.dtype ) _snake_case : Optional[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) _snake_case : List[str] = self.only_cross_attention if isinstance(a_, a_ ): _snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(a_, a_ ): _snake_case : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down _snake_case : List[str] = [] _snake_case : Tuple = [] _snake_case : int = block_out_channels[0] _snake_case : Optional[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) for i, down_block_type in enumerate(self.down_block_types ): _snake_case : List[Any] = output_channel _snake_case : Any = block_out_channels[i] _snake_case : List[str] = i == len(a_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _snake_case : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: _snake_case : List[Any] = FlaxDownBlockaD( in_channels=a_, out_channels=a_, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(a_ ) for _ in range(self.layers_per_block ): _snake_case : List[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) if not is_final_block: _snake_case : List[Any] = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(a_ ) _snake_case : str = down_blocks _snake_case : Union[str, Any] = controlnet_down_blocks # mid _snake_case : Tuple = block_out_channels[-1] _snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=a_, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) _snake_case : Tuple = nn.Conv( a_, kernel_size=(1, 1), padding="""VALID""", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self: str, a_: Any, a_: Tuple, a_: Any, a_: int, a_: float = 1.0, a_: bool = True, a_: bool = False, ): '''simple docstring''' _snake_case : Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": _snake_case : List[Any] = jnp.flip(a_, axis=1 ) # 1. time if not isinstance(a_, jnp.ndarray ): _snake_case : Any = jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(a_, jnp.ndarray ) and len(timesteps.shape ) == 0: _snake_case : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) _snake_case : List[str] = jnp.expand_dims(a_, 0 ) _snake_case : List[str] = self.time_proj(a_ ) _snake_case : str = self.time_embedding(a_ ) # 2. pre-process _snake_case : List[str] = jnp.transpose(a_, (0, 2, 3, 1) ) _snake_case : List[Any] = self.conv_in(a_ ) _snake_case : Union[str, Any] = jnp.transpose(a_, (0, 2, 3, 1) ) _snake_case : Any = self.controlnet_cond_embedding(a_ ) sample += controlnet_cond # 3. down _snake_case : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(a_, a_ ): _snake_case , _snake_case : Optional[Any] = down_block(a_, a_, a_, deterministic=not train ) else: _snake_case , _snake_case : Dict = down_block(a_, a_, deterministic=not train ) down_block_res_samples += res_samples # 4. mid _snake_case : Dict = self.mid_block(a_, a_, a_, deterministic=not train ) # 5. contronet blocks _snake_case : Tuple = () for down_block_res_sample, controlnet_block in zip(a_, self.controlnet_down_blocks ): _snake_case : Any = controlnet_block(a_ ) controlnet_down_block_res_samples += (down_block_res_sample,) _snake_case : List[Any] = controlnet_down_block_res_samples _snake_case : int = self.controlnet_mid_block(a_ ) # 6. scaling _snake_case : int = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=a_, mid_block_res_sample=a_ )
132
0
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: def get_masked_lm_array(__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCAmelCase__ : int = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: lowerCAmelCase__ : Optional[Any] = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_array(__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCAmelCase__ : Optional[Any] = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: lowerCAmelCase__ : List[Any] = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_layer_array(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Tuple = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCAmelCase__ : int = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: lowerCAmelCase__ : int = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_attention_layer_array(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCAmelCase__ : Optional[Any] = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = array.reshape(__UpperCAmelCase ) if "kernel" in name: lowerCAmelCase__ : List[str] = array.transpose() return torch.from_numpy(__UpperCAmelCase ) print(f"""Loading model based on config from {config_path}...""" ) lowerCAmelCase__ : Dict = BertConfig.from_json_file(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = BertForMaskedLM(__UpperCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowerCAmelCase__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowerCAmelCase__ : BertSelfAttention = layer.attention.self lowerCAmelCase__ : Tuple = get_encoder_attention_layer_array( __UpperCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) lowerCAmelCase__ : Optional[int] = get_encoder_attention_layer_array( __UpperCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) lowerCAmelCase__ : Dict = get_encoder_attention_layer_array( __UpperCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) lowerCAmelCase__ : List[str] = get_encoder_attention_layer_array( __UpperCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) lowerCAmelCase__ : Union[str, Any] = get_encoder_attention_layer_array( __UpperCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) lowerCAmelCase__ : str = get_encoder_attention_layer_array( __UpperCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output lowerCAmelCase__ : BertSelfOutput = layer.attention.output lowerCAmelCase__ : List[str] = get_encoder_attention_layer_array( __UpperCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) lowerCAmelCase__ : str = get_encoder_attention_layer_array( __UpperCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) lowerCAmelCase__ : Optional[Any] = get_encoder_layer_array(__UpperCAmelCase , """_attention_layer_norm/gamma""" ) lowerCAmelCase__ : Any = get_encoder_layer_array(__UpperCAmelCase , """_attention_layer_norm/beta""" ) # Intermediate lowerCAmelCase__ : BertIntermediate = layer.intermediate lowerCAmelCase__ : Optional[int] = get_encoder_layer_array(__UpperCAmelCase , """_intermediate_dense/kernel""" ) lowerCAmelCase__ : Tuple = get_encoder_layer_array(__UpperCAmelCase , """_intermediate_dense/bias""" ) # Output lowerCAmelCase__ : BertOutput = layer.output lowerCAmelCase__ : Tuple = get_encoder_layer_array(__UpperCAmelCase , """_output_dense/kernel""" ) lowerCAmelCase__ : List[str] = get_encoder_layer_array(__UpperCAmelCase , """_output_dense/bias""" ) lowerCAmelCase__ : str = get_encoder_layer_array(__UpperCAmelCase , """_output_layer_norm/gamma""" ) lowerCAmelCase__ : Optional[Any] = get_encoder_layer_array(__UpperCAmelCase , """_output_layer_norm/beta""" ) # Embeddings lowerCAmelCase__ : Any = get_encoder_array("""_position_embedding_layer/embeddings""" ) lowerCAmelCase__ : List[str] = get_encoder_array("""_type_embedding_layer/embeddings""" ) lowerCAmelCase__ : Union[str, Any] = get_encoder_array("""_embedding_norm_layer/gamma""" ) lowerCAmelCase__ : Union[str, Any] = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head lowerCAmelCase__ : int = model.cls.predictions.transform lowerCAmelCase__ : Union[str, Any] = get_masked_lm_array("""dense/kernel""" ) lowerCAmelCase__ : Optional[Any] = get_masked_lm_array("""dense/bias""" ) lowerCAmelCase__ : Any = get_masked_lm_array("""layer_norm/gamma""" ) lowerCAmelCase__ : int = get_masked_lm_array("""layer_norm/beta""" ) lowerCAmelCase__ : str = get_masked_lm_array("""embedding_table""" ) # Pooling lowerCAmelCase__ : Optional[int] = BertPooler(config=__UpperCAmelCase ) lowerCAmelCase__ : BertPooler = get_encoder_array("""_pooler_layer/kernel""" ) lowerCAmelCase__ : BertPooler = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(__UpperCAmelCase ) # Integration test - should load without any errors ;) lowerCAmelCase__ : Dict = BertForMaskedLM.from_pretrained(__UpperCAmelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) _A = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
242
"""simple docstring""" from __future__ import annotations def lowercase_ ( __UpperCAmelCase ) -> int: if not nums: return 0 lowerCAmelCase__ : List[Any] = nums[0] lowerCAmelCase__ : List[str] = 0 for num in nums[1:]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = ( max_excluding + num, max(__UpperCAmelCase , __UpperCAmelCase ), ) return max(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
242
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowercase__ =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase__ =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ): """simple docstring""" __a : Tuple = state_dict.pop(lowerCAmelCase__ ) __a : Optional[Any] = val def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): """simple docstring""" __a : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __a : List[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __a : str = value else: __a : Dict = value return new_state_dict def __UpperCamelCase ( lowerCAmelCase__ : Any ): """simple docstring""" __a : Dict = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __a : Any = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __a : Optional[Any] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __a : Tuple = in_proj_weight[:2_5_6, :] __a : Optional[int] = in_proj_bias[:2_5_6] __a : List[str] = in_proj_weight[2_5_6:5_1_2, :] __a : Tuple = in_proj_bias[2_5_6:5_1_2] __a : List[Any] = in_proj_weight[-2_5_6:, :] __a : List[str] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __a : Optional[Any] = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __a : Tuple = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __a : Optional[int] = in_proj_weight[:2_5_6, :] __a : Dict = in_proj_bias[:2_5_6] __a : Any = in_proj_weight[2_5_6:5_1_2, :] __a : int = in_proj_bias[2_5_6:5_1_2] __a : Tuple = in_proj_weight[-2_5_6:, :] __a : Dict = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention __a : Union[str, Any] = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __a : Dict = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __a : Optional[Any] = in_proj_weight_cross_attn[:2_5_6, :] __a : Any = in_proj_bias_cross_attn[:2_5_6] __a : Optional[int] = in_proj_weight_cross_attn[2_5_6:5_1_2, :] __a : Optional[Any] = in_proj_bias_cross_attn[2_5_6:5_1_2] __a : Any = in_proj_weight_cross_attn[-2_5_6:, :] __a : str = in_proj_bias_cross_attn[-2_5_6:] def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __a , __a : Dict = image.size __a : List[Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) __a : List[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 __a : List[Any] = target_max_size / current_max_size __a : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __a : Any = F.to_tensor(lowerCAmelCase__ ) __a : str = F.normalize(lowerCAmelCase__ , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] ): """simple docstring""" logger.info('''Converting model...''' ) # load original state dict __a : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a : Any = rename_backbone_keys(lowerCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __a : Optional[int] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __a : List[str] = state_dict.pop(lowerCAmelCase__ ) __a : int = val # create HuggingFace model and load state dict __a : int = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __a : List[Any] = 1_5 __a : Union[str, Any] = 2 __a : int = {0: '''table''', 1: '''table rotated'''} __a : Tuple = idalabel __a : Dict = {v: k for k, v in idalabel.items()} else: __a : str = 1_2_5 __a : Any = 6 __a : List[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } __a : Tuple = idalabel __a : List[str] = {v: k for k, v in idalabel.items()} __a : Tuple = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) __a : Optional[Any] = TableTransformerForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify our conversion __a : Any = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' __a : Dict = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCAmelCase__ ) __a : List[Any] = Image.open(lowerCAmelCase__ ).convert('''RGB''' ) __a : int = normalize(resize(lowerCAmelCase__ , lowerCAmelCase__ ) ).unsqueeze(0 ) __a : Optional[Any] = model(lowerCAmelCase__ ) if "detection" in checkpoint_url: __a : Optional[Any] = (1, 1_5, 3) __a : Optional[int] = torch.tensor( [[-6.78_97, -1_6.9_9_8_5, 6.79_37], [-8.01_86, -2_2.2_1_9_2, 6.96_77], [-7.31_17, -2_1.0_7_0_8, 7.40_55]] ) __a : List[Any] = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: __a : Union[str, Any] = (1, 1_2_5, 7) __a : Tuple = torch.tensor( [[-1_8.1_4_3_0, -8.32_14, 4.82_74], [-1_8.4_6_8_5, -7.13_61, -4.26_67], [-2_6.3_6_9_3, -9.34_29, -4.99_62]] ) __a : int = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) __a : Tuple = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCAmelCase__ ) image_processor.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase__ =parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
364
from math import pi, sqrt def __UpperCamelCase ( lowerCAmelCase__ : float ): if num <= 0: raise ValueError('''math domain error''' ) if num > 1_71.5: raise OverflowError('''math range error''' ) elif num - int(lowerCAmelCase__ ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(lowerCAmelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCamelCase ( ): assert gamma(0.5 ) == sqrt(lowerCAmelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase__ =1.0 while num: lowercase__ =float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
90
0
def a_ ( __lowercase : float , __lowercase : float ) -> float: if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(__lowercase ) * abs(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
282
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : int ): '''simple docstring''' _snake_case = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _snake_case = 'The dog is cute and lives in the garden house' _snake_case = jnp.array([tokenizer.encode(lowercase )] ) _snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _snake_case = model(lowercase )['last_hidden_state'] self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowercase , atol=1E-3 ) )
282
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case_(_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" _snake_case = filter(lambda _UpperCamelCase : p.requires_grad , model.parameters() ) _snake_case = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A = logging.getLogger(__name__) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" if metric == "rouge2": _snake_case = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _snake_case = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _snake_case = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": _snake_case = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _snake_case = ModelCheckpoint( dirpath=_UpperCamelCase , filename=_UpperCamelCase , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=_UpperCamelCase , verbose=_UpperCamelCase , ) class lowercase_ ( pl.Callback ): def UpperCamelCase_ ( self : Optional[Any] , A__ : Optional[Any] , A__ : Optional[int] ) -> List[str]: _snake_case = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A__ ) @rank_zero_only def UpperCamelCase_ ( self : Optional[int] , A__ : pl.Trainer , A__ : pl.LightningModule , A__ : str , A__ : List[str]=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _snake_case = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _snake_case = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case = od / '''test_results.txt''' _snake_case = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _snake_case = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=A__ ) generations_file.parent.mkdir(exist_ok=A__ ) with open(A__ , '''a+''' ) as writer: for key in sorted(A__ ): if key in ["log", "progress_bar", "preds"]: continue _snake_case = metrics[key] if isinstance(A__ , torch.Tensor ): _snake_case = val.item() _snake_case = f"""{key}: {val:.6f}\n""" writer.write(A__ ) if not save_generations: return if "preds" in metrics: _snake_case = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(A__ ) @rank_zero_only def UpperCamelCase_ ( self : Tuple , A__ : Any , A__ : List[str] ) -> Any: try: _snake_case = pl_module.model.model.num_parameters() except AttributeError: _snake_case = pl_module.model.num_parameters() _snake_case = count_trainable_parameters(A__ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase_ ( self : List[str] , A__ : pl.Trainer , A__ : pl.LightningModule ) -> Union[str, Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(A__ , A__ , '''test''' ) @rank_zero_only def UpperCamelCase_ ( self : Union[str, Any] , A__ : pl.Trainer , A__ : Optional[Any] ) -> Union[str, Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
278
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A = random.Random() def snake_case_(_UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase_ ( unittest.TestCase ): def __init__( self : List[Any] , A__ : List[Any] , A__ : int=7 , A__ : Tuple=400 , A__ : int=2000 , A__ : Any=2048 , A__ : List[Any]=128 , A__ : Optional[int]=1 , A__ : Optional[Any]=512 , A__ : Any=30 , A__ : Any=44100 , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = spectrogram_length _snake_case = feature_size _snake_case = num_audio_channels _snake_case = hop_length _snake_case = chunk_length _snake_case = sampling_rate def UpperCamelCase_ ( self : str ) -> Optional[int]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase_ ( self : Any , A__ : Any=False , A__ : List[str]=False ) -> Tuple: def _flatten(A__ : List[str] ): return list(itertools.chain(*A__ ) ) if equal_length: _snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = TvltFeatureExtractor def UpperCamelCase_ ( self : Dict ) -> List[str]: _snake_case = TvltFeatureExtractionTester(self ) def UpperCamelCase_ ( self : int ) -> Optional[int]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(A__ , '''feature_size''' ) ) self.assertTrue(hasattr(A__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(A__ , '''hop_length''' ) ) self.assertTrue(hasattr(A__ , '''chunk_length''' ) ) self.assertTrue(hasattr(A__ , '''sampling_rate''' ) ) def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = feat_extract_first.save_pretrained(A__ )[0] check_json_file_has_correct_format(A__ ) _snake_case = self.feature_extraction_class.from_pretrained(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : int ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(A__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A__ ) _snake_case = self.feature_extraction_class.from_json_file(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Any: # Initialize feature_extractor _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _snake_case = feature_extractor( A__ , return_tensors='''np''' , sampling_rate=44100 , mask_audio=A__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case = np.asarray(A__ ) _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase_ ( self : Optional[Any] , A__ : Any ) -> Optional[int]: _snake_case = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _snake_case = ds.sort('''id''' ).select(range(A__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : List[str] ) -> Optional[Any]: _snake_case = self._load_datasamples(1 ) _snake_case = TvltFeatureExtractor() _snake_case = feature_extractor(A__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _snake_case = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A__ , atol=1e-4 ) )
278
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''big_bird''' def __init__( self , lowercase=5_0_3_5_8 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=4_0_9_6 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=True , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=6_6 , lowercase="block_sparse" , lowercase=True , lowercase=False , lowercase=6_4 , lowercase=3 , lowercase=None , **lowercase , ): """simple docstring""" super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , sep_token_id=lowercase , **lowercase , ) A_ : List[str] = vocab_size A_ : Optional[int] = max_position_embeddings A_ : Any = hidden_size A_ : Any = num_hidden_layers A_ : Tuple = num_attention_heads A_ : Dict = intermediate_size A_ : List[str] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = type_vocab_size A_ : List[Any] = layer_norm_eps A_ : Tuple = use_cache A_ : List[str] = rescale_embeddings A_ : List[Any] = attention_type A_ : Optional[Any] = use_bias A_ : List[str] = block_size A_ : List[Any] = num_random_blocks A_ : Optional[int] = classifier_dropout class UpperCAmelCase ( __A ): '''simple docstring''' @property def lowerCAmelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": A_ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A_ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
140
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''time_series_transformer''' lowerCamelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowercase = None , lowercase = None , lowercase = "student_t" , lowercase = "nll" , lowercase = 1 , lowercase = [1, 2, 3, 4, 5, 6, 7] , lowercase = "mean" , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 3_2 , lowercase = 3_2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = True , lowercase = "gelu" , lowercase = 6_4 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 1_0_0 , lowercase = 0.02 , lowercase=True , **lowercase , ): """simple docstring""" A_ : Tuple = prediction_length A_ : Any = context_length or prediction_length A_ : Any = distribution_output A_ : Dict = loss A_ : int = input_size A_ : Any = num_time_features A_ : List[str] = lags_sequence A_ : List[Any] = scaling A_ : str = num_dynamic_real_features A_ : List[Any] = num_static_real_features A_ : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A_ : Any = cardinality else: A_ : Any = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A_ : int = embedding_dimension else: A_ : Tuple = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : Optional[int] = num_parallel_samples # Transformer architecture configuration A_ : Any = input_size * len(lowercase ) + self._number_of_features A_ : List[str] = d_model A_ : Union[str, Any] = encoder_attention_heads A_ : int = decoder_attention_heads A_ : int = encoder_ffn_dim A_ : str = decoder_ffn_dim A_ : Tuple = encoder_layers A_ : Tuple = decoder_layers A_ : List[str] = dropout A_ : str = attention_dropout A_ : List[Any] = activation_dropout A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Optional[int] = activation_function A_ : str = init_std A_ : int = use_cache super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
140
1
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase__ = logging.get_logger(__name__) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: a__: Optional[Any] = to_pil_image(_SCREAMING_SNAKE_CASE ) a__: List[Any] = pil_image.size a__: List[Any] = pytesseract.image_to_data(_SCREAMING_SNAKE_CASE , lang=_SCREAMING_SNAKE_CASE , output_type='dict' , config=_SCREAMING_SNAKE_CASE ) a__: List[Any] = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates a__: str = [idx for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if not word.strip()] a__: Tuple = [word for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] a__: Optional[Any] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] a__: List[str] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] a__: Tuple = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] a__: Dict = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format a__: int = [] for x, y, w, h in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Tuple = [x, y, x + w, y + h] actual_boxes.append(_SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes a__: Tuple = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __snake_case ( __lowerCAmelCase ): a__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = 1 / 2_55 , lowercase = True , lowercase = None , lowercase = None , lowercase = True , lowercase = None , lowercase = "" , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase) a__: int = size if size is not None else {'height': 2_24, 'width': 2_24} a__: Optional[Any] = get_size_dict(lowercase) a__: Tuple = do_resize a__: Dict = size a__: Any = resample a__: List[str] = do_rescale a__: List[str] = rescale_value a__: Tuple = do_normalize a__: Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__: Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD a__: List[Any] = apply_ocr a__: int = ocr_lang a__: List[str] = tesseract_config def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__: List[str] = get_size_dict(lowercase) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}') a__: List[Any] = (size['height'], size['width']) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' a__: Union[str, Any] = do_resize if do_resize is not None else self.do_resize a__: List[Any] = size if size is not None else self.size a__: Optional[int] = get_size_dict(lowercase) a__: Optional[int] = resample if resample is not None else self.resample a__: Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale a__: List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor a__: Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize a__: List[Any] = image_mean if image_mean is not None else self.image_mean a__: int = image_std if image_std is not None else self.image_std a__: Dict = apply_ocr if apply_ocr is not None else self.apply_ocr a__: Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang a__: Optional[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config a__: int = make_list_of_images(lowercase) if not valid_images(lowercase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.') # All transformations expect numpy arrays. a__: Optional[int] = [to_numpy_array(lowercase) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract') a__: str = [] a__: Union[str, Any] = [] for image in images: a__: Tuple = apply_tesseract(lowercase , lowercase , lowercase) words_batch.append(lowercase) boxes_batch.append(lowercase) if do_resize: a__: Union[str, Any] = [self.resize(image=lowercase , size=lowercase , resample=lowercase) for image in images] if do_rescale: a__: int = [self.rescale(image=lowercase , scale=lowercase) for image in images] if do_normalize: a__: List[Any] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase) for image in images] a__: Optional[Any] = [to_channel_dimension_format(lowercase , lowercase) for image in images] a__: Optional[Any] = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase) if apply_ocr: a__: int = words_batch a__: Optional[int] = boxes_batch return data
354
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if n == 0: return 0 a__: List[Any] = float('-inf' ) for i in range(1 , n + 1 ): a__: Optional[Any] = max( _SCREAMING_SNAKE_CASE , prices[i - 1] + naive_cut_rod_recursive(n - i , _SCREAMING_SNAKE_CASE ) ) return max_revue def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: str = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: a__: Dict = float('-inf' ) for i in range(1 , n + 1 ): a__: Optional[Any] = max( _SCREAMING_SNAKE_CASE , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) a__: Optional[int] = max_revenue return max_rev[n] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: _enforce_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. a__: str = [float('-inf' ) for _ in range(n + 1 )] a__: Tuple = 0 for i in range(1 , n + 1 ): a__: List[str] = max_rev[i] for j in range(1 , i + 1 ): a__: Tuple = max(_SCREAMING_SNAKE_CASE , prices[j - 1] + max_rev[i - j] ) a__: Union[str, Any] = max_revenue_i return max_rev[n] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: if n < 0: a__: Optional[int] = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(_SCREAMING_SNAKE_CASE ) if n > len(_SCREAMING_SNAKE_CASE ): a__: List[str] = ( 'Each integral piece of rod must have a corresponding price. ' F'Got n = {n} but length of prices = {len(_SCREAMING_SNAKE_CASE )}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) def __a ( ) ->str: a__: int = [6, 10, 12, 15, 20, 23] a__: Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. a__: Any = 36 a__: Optional[int] = top_down_cut_rod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: List[Any] = bottom_up_cut_rod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: int = naive_cut_rod_recursive(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
203
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : List[str] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowerCAmelCase__ : List[str] = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase__ : Any = in_proj_weight[ : encoder_config.hidden_size, : ] lowerCAmelCase__ : int = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCAmelCase__ : int = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Any = dct.pop(__UpperCAmelCase ) lowerCAmelCase__ : Any = val def lowercase_ ( __UpperCAmelCase ) -> int: if "handwritten" in checkpoint_url: lowerCAmelCase__ : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase__ : Optional[int] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowerCAmelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = ViTConfig(image_size=384 , qkv_bias=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCAmelCase__ : List[str] = 768 elif "large" in checkpoint_url: # use ViT-large encoder lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Tuple = 4096 lowerCAmelCase__ : Optional[Any] = 24 lowerCAmelCase__ : Tuple = 16 lowerCAmelCase__ : List[str] = 1024 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[str] = """relu""" lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : int = False lowerCAmelCase__ : List[Any] = False # load HuggingFace model lowerCAmelCase__ : Tuple = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ) lowerCAmelCase__ : int = TrOCRForCausalLM(__UpperCAmelCase ) lowerCAmelCase__ : Any = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys lowerCAmelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location="""cpu""" , check_hash=__UpperCAmelCase )["""model"""] lowerCAmelCase__ : List[Any] = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCAmelCase__ : int = state_dict.pop(__UpperCAmelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowerCAmelCase__ : Optional[Any] = val else: lowerCAmelCase__ : int = val # load state dict model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image lowerCAmelCase__ : Any = ViTImageProcessor(size=encoder_config.image_size ) lowerCAmelCase__ : Optional[Any] = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowerCAmelCase__ : List[str] = TrOCRProcessor(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Dict = processor(images=prepare_img(__UpperCAmelCase ) , return_tensors="""pt""" ).pixel_values # verify logits lowerCAmelCase__ : str = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowerCAmelCase__ : List[str] = model(pixel_values=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) lowerCAmelCase__ : str = outputs.logits lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: lowerCAmelCase__ : Optional[int] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __UpperCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _A = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
242
"""simple docstring""" from typing import Any import numpy as np def lowercase_ ( __UpperCAmelCase ) -> bool: return np.array_equal(__UpperCAmelCase , matrix.conjugate().T ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowerCAmelCase__ : Optional[int] = v.conjugate().T lowerCAmelCase__ : Optional[int] = v_star.dot(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , np.ndarray ) return (v_star_dot.dot(__UpperCAmelCase )) / (v_star.dot(__UpperCAmelCase )) def lowercase_ ( ) -> None: lowerCAmelCase__ : Union[str, Any] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) lowerCAmelCase__ : List[str] = np.array([[1], [2], [3]] ) assert is_hermitian(__UpperCAmelCase ), f"""{a} is not hermitian.""" print(rayleigh_quotient(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__UpperCAmelCase ), f"""{a} is not hermitian.""" assert rayleigh_quotient(__UpperCAmelCase , __UpperCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
242
1
from __future__ import annotations lowerCAmelCase = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCAmelCase = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def _lowerCamelCase( lowercase__ ) -> list[float]: '''simple docstring''' __lowercase= [] __lowercase= len(lowercase__ ) for i in range(lowercase__ ): __lowercase= -1 for j in range(i + 1 , lowercase__ ): if arr[i] < arr[j]: __lowercase= arr[j] break result.append(lowercase__ ) return result def _lowerCamelCase( lowercase__ ) -> list[float]: '''simple docstring''' __lowercase= [] for i, outer in enumerate(lowercase__ ): __lowercase= -1 for inner in arr[i + 1 :]: if outer < inner: __lowercase= inner break result.append(lowercase__ ) return result def _lowerCamelCase( lowercase__ ) -> list[float]: '''simple docstring''' __lowercase= len(lowercase__ ) __lowercase= [] __lowercase= [-1] * arr_size for index in reversed(range(lowercase__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __lowercase= stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
304
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowerCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __lowerCamelCase = value else: __lowerCamelCase = value return new_state_dict def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Dict=False ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = '' if is_panoptic: __lowerCamelCase = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:256, :] __lowerCamelCase = in_proj_bias[:256] __lowerCamelCase = in_proj_weight[256:512, :] __lowerCamelCase = in_proj_bias[256:512] __lowerCamelCase = in_proj_weight[-256:, :] __lowerCamelCase = in_proj_bias[-256:] def lowerCamelCase_ ( ) -> Dict: """simple docstring""" __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __lowerCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowerCamelCase = 'resnet101' if "dc5" in model_name: __lowerCamelCase = True __lowerCamelCase = 'panoptic' in model_name if is_panoptic: __lowerCamelCase = 250 else: __lowerCamelCase = 91 __lowerCamelCase = 'huggingface/label-files' __lowerCamelCase = 'coco-detection-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} # load image processor __lowerCamelCase = 'coco_panoptic' if is_panoptic else 'coco_detection' __lowerCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase__ ) # prepare image __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub __lowerCamelCase = torch.hub.load('DeppMeng/ConditionalDETR' , UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() __lowerCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowerCamelCase = 'conditional_detr.' + src rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = rename_backbone_keys(UpperCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase__ , is_panoptic=UpperCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCamelCase = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val # finally, create HuggingFace model and load state dict __lowerCamelCase = ConditionalDetrForSegmentation(UpperCamelCase__ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion __lowerCamelCase = conditional_detr(UpperCamelCase__ ) __lowerCamelCase = model(UpperCamelCase__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
90
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) UpperCamelCase = 'A painting of a squirrel eating a burger' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=A_ , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
0
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
352
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
0
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=True )-> Union[str, Any]: if model_type not in MODEL_CLASSES: raise ValueError(F"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}." ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: UpperCamelCase = cached_file(__UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) UpperCamelCase = config_class.from_json_file(__UpperCamelCase ) UpperCamelCase = True UpperCamelCase = True print(F"Building TensorFlow model from configuration: {config}" ) UpperCamelCase = model_class(__UpperCamelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): UpperCamelCase = cached_file( __UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: UpperCamelCase = load_pytorch_checkpoint_in_tfa_model(__UpperCamelCase , __UpperCamelCase ) if compare_with_pt_model: UpperCamelCase = tf_model(tf_model.dummy_inputs , training=__UpperCamelCase ) # build the network UpperCamelCase = torch.load(__UpperCamelCase , map_location="""cpu""" ) UpperCamelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase , config=__UpperCamelCase , state_dict=__UpperCamelCase ) with torch.no_grad(): UpperCamelCase = pt_model(**pt_model.dummy_inputs ) UpperCamelCase = pto[0].numpy() UpperCamelCase = tfo[0].numpy() UpperCamelCase = np.amax(np.abs(np_pt - np_tf ) ) print(F"Max absolute difference between models outputs {diff}" ) assert diff <= 2E-2, F"Error, model absolute difference is >2e-2: {diff}" # Save pytorch-model print(F"Save TensorFlow model to {tf_dump_path}" ) tf_model.save_weights(__UpperCamelCase , save_format="""h5""" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , )-> Dict: if args_model_type is None: UpperCamelCase = list(MODEL_CLASSES.keys() ) else: UpperCamelCase = [args_model_type] for j, model_type in enumerate(__UpperCamelCase , start=1 ): print("""=""" * 100 ) print(F" Converting model type {j}/{len(__UpperCamelCase )}: {model_type}" ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}." ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: UpperCamelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: UpperCamelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__UpperCamelCase , __UpperCamelCase ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F" Skipping finetuned checkpoint {model_shortcut_name}" ) continue UpperCamelCase = model_shortcut_name elif only_convert_finetuned_models: print(F" Skipping not finetuned checkpoint {model_shortcut_name}" ) continue print( F" Converting checkpoint {i}/{len(__UpperCamelCase )}: {model_shortcut_name} - model_type {model_type}" ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: UpperCamelCase = cached_file(__UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) else: UpperCamelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: UpperCamelCase = cached_file(__UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) else: UpperCamelCase = model_shortcut_name if os.path.isfile(__UpperCamelCase ): UpperCamelCase = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__UpperCamelCase , pytorch_checkpoint_path=__UpperCamelCase , config_file=__UpperCamelCase , tf_dump_path=os.path.join(__UpperCamelCase , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__UpperCamelCase , ) if remove_cached_files: os.remove(__UpperCamelCase ) os.remove(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') SCREAMING_SNAKE_CASE__ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
321
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = 2_5_6 class a_ ( lowerCamelCase ): lowercase = ["""melgan"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__() # From MELGAN UpperCamelCase = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase = 4.0 # Largest value for most examples UpperCamelCase = 128 self.register_modules( notes_encoder=_SCREAMING_SNAKE_CASE , continuous_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , melgan=_SCREAMING_SNAKE_CASE , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=(-1.0, 1.0) , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = output_range if clip: UpperCamelCase = torch.clip(_SCREAMING_SNAKE_CASE , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=(-1.0, 1.0) , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = input_range UpperCamelCase = torch.clip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if clip else outputs # Scale to [0, 1]. UpperCamelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = input_tokens > 0 UpperCamelCase ,UpperCamelCase = self.notes_encoder( encoder_input_tokens=_SCREAMING_SNAKE_CASE , encoder_inputs_mask=_SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase = self.continuous_encoder( encoder_inputs=_SCREAMING_SNAKE_CASE , encoder_inputs_mask=_SCREAMING_SNAKE_CASE ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = noise_time if not torch.is_tensor(_SCREAMING_SNAKE_CASE ): UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: UpperCamelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase = self.decoder( encodings_and_masks=_SCREAMING_SNAKE_CASE , decoder_input_tokens=_SCREAMING_SNAKE_CASE , decoder_noise_time=_SCREAMING_SNAKE_CASE ) return logits @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "numpy" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_SCREAMING_SNAKE_CASE )}." ) UpperCamelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_SCREAMING_SNAKE_CASE , device=self.device ) for i, encoder_input_tokens in enumerate(_SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_SCREAMING_SNAKE_CASE , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase = ones UpperCamelCase = self.scale_features( _SCREAMING_SNAKE_CASE , output_range=[-1.0, 1.0] , clip=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_SCREAMING_SNAKE_CASE , continuous_mask=_SCREAMING_SNAKE_CASE , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase = self.decode( encodings_and_masks=_SCREAMING_SNAKE_CASE , input_tokens=_SCREAMING_SNAKE_CASE , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = self.scale_to_features(_SCREAMING_SNAKE_CASE , input_range=[-1.0, 1.0] ) UpperCamelCase = mel[:1] UpperCamelCase = mel.cpu().float().numpy() UpperCamelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info("""Generated segment""" , _SCREAMING_SNAKE_CASE ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": UpperCamelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_SCREAMING_SNAKE_CASE )
321
1
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCAmelCase : List[Any] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tokenizer SCREAMING_SNAKE_CASE_ : List[str] = dataset SCREAMING_SNAKE_CASE_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start_length SCREAMING_SNAKE_CASE_ : Any = eof_strings SCREAMING_SNAKE_CASE_ : Tuple = tokenizer def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = re.split('(%s)' % '|'.join(a ) , a ) # last string should be "" return "".join(string_list[:-2] ) def A_ ( a , a , a , a , a , a=2_0 , **a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = defaultdict(a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = batch['ids'].shape[-1] SCREAMING_SNAKE_CASE_ : str = accelerator.unwrap_model(a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=a , **a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch['task_id'].repeat(a ) SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.pad_across_processes( a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : List[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a , a ): gen_token_dict[task].append(a ) SCREAMING_SNAKE_CASE_ : str = [[] for _ in range(a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) code_gens[task].append(remove_last_block(a ) ) return code_gens def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = HfArgumentParser(a ) SCREAMING_SNAKE_CASE_ : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : List[str] = 'false' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Dict = Accelerator() set_seed(args.seed , device_specific=a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : Any = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , a , a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : List[str] = load_dataset('openai_humaneval' ) SCREAMING_SNAKE_CASE_ : str = load_metric('code_eval' ) SCREAMING_SNAKE_CASE_ : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) SCREAMING_SNAKE_CASE_ : Any = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : int = TokenizedDataset(a , human_eval['test'] , n_copies=a , n_tasks=a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Tuple = DataLoader(a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare(a , a ) SCREAMING_SNAKE_CASE_ : List[str] = complete_code( a , a , a , a , n_tasks=a , batch_size=args.batch_size , **a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : str = [] for task in tqdm(range(a ) ): SCREAMING_SNAKE_CASE_ : str = human_eval['test'][task]['test'] SCREAMING_SNAKE_CASE_ : int = f"check({human_eval['test'][task]['entry_point']})" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute( references=a , predictions=a , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(a , a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
253
lowerCAmelCase : str = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
253
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : int = """openai-gpt""" __lowerCamelCase : str = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case__=4_0478 , snake_case__=512 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__="cls_index" , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=0.1 , **snake_case__ , ) -> Any: '''simple docstring''' UpperCAmelCase : Any =vocab_size UpperCAmelCase : Optional[int] =n_positions UpperCAmelCase : Any =n_embd UpperCAmelCase : Tuple =n_layer UpperCAmelCase : List[Any] =n_head UpperCAmelCase : Dict =afn UpperCAmelCase : Dict =resid_pdrop UpperCAmelCase : str =embd_pdrop UpperCAmelCase : str =attn_pdrop UpperCAmelCase : int =layer_norm_epsilon UpperCAmelCase : Optional[Any] =initializer_range UpperCAmelCase : Optional[int] =summary_type UpperCAmelCase : List[str] =summary_use_proj UpperCAmelCase : Optional[Any] =summary_activation UpperCAmelCase : Any =summary_first_dropout UpperCAmelCase : Optional[int] =summary_proj_to_labels super().__init__(**snake_case__ )
366
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
78
0
a__ = """Tobias Carryer""" from time import time class snake_case : '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int=int(time())) -> Union[str, Any]: # noqa: B008 """simple docstring""" _snake_case : Union[str, Any] = multiplier _snake_case : Any = increment _snake_case : Tuple = modulo _snake_case : str = seed def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Any = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a__ = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( __snake_case , unittest.TestCase ): """simple docstring""" __magic_name__ = LongformerTokenizer __magic_name__ = True __magic_name__ = LongformerTokenizerFast __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowerCAmelCase : List[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _lowerCAmelCase : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : List[str] = {"""unk_token""": """<unk>"""} _lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Optional[Any] = """lower newer""" return input_text, output_text def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : List[str] = tokenizer.tokenize(lowerCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCamelCase_ ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCamelCase_ ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) _lowerCAmelCase : Dict = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : List[str] = """Encode this sequence.""" _lowerCAmelCase : Optional[int] = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments _lowerCAmelCase : Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowerCAmelCase : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing spaces after special tokens _lowerCAmelCase : List[str] = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ )} ) # mask token has a left space _lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) _lowerCAmelCase : int = """Encode <mask> sequence""" _lowerCAmelCase : Optional[int] = """Encode <mask>sequence""" _lowerCAmelCase : Dict = tokenizer.encode(lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = encoded.index(lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = encoded.index(lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _lowerCAmelCase : str = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _lowerCAmelCase : List[str] = """A, <mask> AllenNLP sentence.""" _lowerCAmelCase : List[str] = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) _lowerCAmelCase : List[Any] = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def a ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCAmelCase : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCamelCase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCamelCase_ ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCamelCase_ ) def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCAmelCase : List[str] = F'{text_of_1_token} {text_of_1_token}' _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : List[str] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : List[Any] = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , )
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if not isinstance(__snake_case, __snake_case ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
162
"""simple docstring""" import argparse import os import re import packaging.version __A : List[str] = '''examples/''' __A : int = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __A : Dict = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __A : Optional[int] = '''README.md''' def lowercase ( __snake_case : int , __snake_case : Any , __snake_case : int ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase_ : int = f.read() lowercase_ , lowercase_ : List[str] = REPLACE_PATTERNS[pattern] lowercase_ : Union[str, Any] = replace.replace('''VERSION''' , __snake_case ) lowercase_ : Optional[Any] = re_pattern.sub(__snake_case , __snake_case ) with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__snake_case ) def lowercase ( __snake_case : int ): for folder, directories, fnames in os.walk(__snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__snake_case , __snake_case ) , __snake_case , pattern='''examples''' ) def lowercase ( __snake_case : Optional[Any] , __snake_case : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__snake_case , __snake_case , __snake_case ) if not patch: update_version_in_examples(__snake_case ) def lowercase ( ): lowercase_ : Union[str, Any] = '''🤗 Transformers currently provides the following architectures''' lowercase_ : Union[str, Any] = '''1. Want to contribute a new model?''' with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase_ : List[str] = f.readlines() # Find the start of the list. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase_ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowercase_ : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__snake_case ) def lowercase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowercase_ : List[Any] = f.read() lowercase_ : List[str] = REPLACE_PATTERNS['''init'''][0].search(__snake_case ).groups()[0] return packaging.version.parse(__snake_case ) def lowercase ( __snake_case : Optional[Any]=False ): lowercase_ : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowercase_ : Optional[Any] = default_version.base_version elif patch: lowercase_ : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowercase_ : Optional[int] = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowercase_ : int = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__snake_case ) == 0: lowercase_ : Dict = default_version print(F'''Updating version to {version}.''' ) global_version_update(__snake_case , patch=__snake_case ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowercase ( ): lowercase_ : List[Any] = get_version() lowercase_ : List[str] = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowercase_ : Any = current_version.base_version # Check with the user we got that right. lowercase_ : Tuple = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__snake_case ) == 0: lowercase_ : str = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__snake_case ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __A : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
33
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = "▁" __magic_name__ = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__ = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } __magic_name__ = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off __magic_name__ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : str = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] __lowercase : List[int] = [] __lowercase : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get("""additional_special_tokens""" , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __SCREAMING_SNAKE_CASE = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = len(self.sp_model) __SCREAMING_SNAKE_CASE = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__) } __SCREAMING_SNAKE_CASE = {v: k for k, v in self.lang_code_to_id.items()} __SCREAMING_SNAKE_CASE = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """en_XX""" __SCREAMING_SNAKE_CASE = self.lang_code_to_id[self._src_lang] __SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def snake_case_ ( self): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case_ ( self): return self._src_lang @src_lang.setter def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self): __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def snake_case_ ( self , lowerCAmelCase__): return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(lowerCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self , lowerCAmelCase__): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(lowerCAmelCase__) return out_string.strip() def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if not os.path.isdir(lowerCAmelCase__): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__ , """wb""") as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens) __SCREAMING_SNAKE_CASE = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__)) + ([0] * len(lowerCAmelCase__)) + suffix_ones def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""") __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "en_XX" , lowerCAmelCase__ = None , lowerCAmelCase__ = "ro_RO" , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self): return self.set_src_lang_special_tokens(self.src_lang) def snake_case_ ( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.lang_code_to_id[src_lang] __SCREAMING_SNAKE_CASE = [self.cur_lang_code_id] __SCREAMING_SNAKE_CASE = [self.eos_token_id] def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.lang_code_to_id[tgt_lang] __SCREAMING_SNAKE_CASE = [self.cur_lang_code_id] __SCREAMING_SNAKE_CASE = [self.eos_token_id]
255
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
255
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( __a , __a , unittest.TestCase ): __a : str = StableDiffusionSAGPipeline __a : List[Any] = TEXT_TO_IMAGE_PARAMS __a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __a : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __a : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __a : int = False def A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase = CLIPTextModel(lowercase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : List[str] , lowercase : Dict , lowercase : Optional[int]=0 ): '''simple docstring''' if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def A ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): def A ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) UpperCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) UpperCAmelCase = output.images assert image.shape == (1, 512, 768, 3)
34
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = mask_feature_size def lowercase (self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase (self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase (self ) -> Optional[Any]: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs() _snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): _snake_case = MaskFormerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() def comm_check_on_output(UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) _snake_case = model( pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) comm_check_on_output(UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> int: _snake_case = MaskFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def lowercase (self ) -> int: self.config_tester.run_common_tests() def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase (self ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase (self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> Optional[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> Tuple: pass def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @slow def lowercase (self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: _snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase (self ) -> Tuple: _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { """pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(), } _snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase (self ) -> Dict: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase ) _snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase (self ) -> Tuple: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss loss.backward() def lowercase (self ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _snake_case = self.all_model_classes[1] _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1E-4 def __SCREAMING_SNAKE_CASE ( ): _snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase (self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase (self ) -> str: _snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) _snake_case = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[str]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> List[Any]: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) _snake_case = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowercase (self ) -> Tuple: _snake_case = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(UpperCAmelCase ) .eval() ) _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) _snake_case = inputs["""pixel_values"""].to(UpperCAmelCase ) _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]] _snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
341
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __A: snake_case_ = 42 # setable values snake_case_ = 42 snake_case_ = 42 snake_case_ = None @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' return cls(common=_snake_case , init_noise_sigma=_snake_case , timesteps=_snake_case ) @dataclass class __A( a ): snake_case_ = 42 class __A( a , a ): snake_case_ = [e.name for e in FlaxKarrasDiffusionSchedulers] snake_case_ = 42 @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return True @register_to_config def __init__( self , _snake_case = 1_000 , _snake_case = 0.0001 , _snake_case = 0.02 , _snake_case = "linear" , _snake_case = None , _snake_case = "fixed_small" , _snake_case = True , _snake_case = "epsilon" , _snake_case = jnp.floataa , ) -> str: '''simple docstring''' __a = dtype def SCREAMING_SNAKE_CASE_ ( self , _snake_case = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: __a = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __a = jnp.array(1.0 , dtype=self.dtype ) __a = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_snake_case , init_noise_sigma=_snake_case , timesteps=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = None ) -> jnp.ndarray: '''simple docstring''' return sample def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = () ) -> DDPMSchedulerState: '''simple docstring''' __a = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __a = (jnp.arange(0 , _snake_case ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_snake_case , timesteps=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=None ) -> str: '''simple docstring''' __a = state.common.alphas_cumprod[t] __a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __a = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __a = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __a = jnp.clip(_snake_case , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __a = jnp.log(jnp.clip(_snake_case , a_min=1E-20 ) ) elif variance_type == "fixed_large": __a = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __a = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __a = variance __a = state.common.betas[t] __a = (predicted_variance + 1) / 2 __a = frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = None , _snake_case = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' __a = timestep if key is None: __a = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __a , __a = jnp.split(_snake_case , sample.shape[1] , axis=1 ) else: __a = None # 1. compute alphas, betas __a = state.common.alphas_cumprod[t] __a = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __a = 1 - alpha_prod_t __a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __a = model_output elif self.config.prediction_type == "v_prediction": __a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __a = jnp.clip(_snake_case , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __a = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __a = jax.random.split(_snake_case , num=1 ) __a = jax.random.normal(_snake_case , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_snake_case , _snake_case , predicted_variance=_snake_case ) ** 0.5) * noise __a = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_snake_case , state=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , _snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , _snake_case , _snake_case , _snake_case ) def __len__( self ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
_UpperCAmelCase : Dict = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
50
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
class A__ : """simple docstring""" def __init__( self) -> Optional[Any]: '''simple docstring''' a__ : Any = {} def __lowercase ( self) -> None: '''simple docstring''' print(self.vertex) for i in self.vertex: print(lowercase , ' -> ' , ' -> '.join([str(lowercase) for j in self.vertex[i]])) def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowercase) else: # else make a new vertex a__ : str = [to_vertex] def __lowercase ( self) -> None: '''simple docstring''' a__ : Tuple = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(lowercase , lowercase) def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' a__ : Optional[int] = True print(lowercase , end=' ') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowercase , lowercase) if __name__ == "__main__": lowercase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
225
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""CLIPFeatureExtractor"""] lowercase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Any = BloomTokenizerFast __SCREAMING_SNAKE_CASE : int = BloomTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = '''tokenizer_file''' __SCREAMING_SNAKE_CASE : Optional[int] = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def a ( self ): super().setUp() snake_case_ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def a ( self ): snake_case_ = self.get_rust_tokenizer() snake_case_ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] snake_case_ = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] snake_case_ = tokenizer.batch_encode_plus(snake_case )['input_ids'] self.assertListEqual(snake_case , snake_case ) snake_case_ = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def a ( self , snake_case=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input snake_case_ = 'This is a simple input' snake_case_ = ['This is a simple input 1', 'This is a simple input 2'] snake_case_ = ('This is a simple input', 'This is a pair') snake_case_ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(snake_case , max_length=snake_case ) tokenizer_r.encode_plus(snake_case , max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case , max_length=snake_case ) tokenizer_r.encode(snake_case , max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case , max_length=snake_case ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) snake_case_ = None # Hotfixing padding = None self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) def a ( self ): snake_case_ = self.get_rust_tokenizer() snake_case_ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=snake_case ) snake_case_ = next(iter(snake_case ) )['premise'] # pick up one data snake_case_ = list(sample_data.values() ) snake_case_ = list(map(tokenizer.encode , snake_case ) ) snake_case_ = [tokenizer.decode(snake_case , clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case , snake_case ) def a ( self ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
285
from PIL import Image def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = (259 * (level + 255)) / (255 * (259 - level)) def contrast(UpperCamelCase__ ) -> int: return int(128 + factor * (c - 128) ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 _UpperCAmelCase : Tuple = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
285
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __lowerCAmelCase ( lowerCAmelCase): _a = CustomTokenizer pass
158
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase): _a = 42 _a = None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=0.999, lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase :Optional[int] = [] for i in range(lowerCamelCase ): lowercase :Any = i / num_diffusion_timesteps lowercase :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ), lowerCamelCase ) ) return torch.tensor(lowerCamelCase, dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Any , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: float = 0.00_01 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = 0 , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: float = 1.0 , **_lowerCAmelCase: Union[str, Any] , ): if kwargs.get("set_alpha_to_one" , _lowerCAmelCase ) is not None: lowercase :Optional[int] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase :str = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase :int = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :List[Any] = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Any = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase :Dict = 1.0 - self.betas lowercase :Dict = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Union[str, Any] = 1.0 # setable values lowercase :str = None lowercase :List[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowercase :List[Any] = num_inference_steps lowercase :Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase :str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: bool = True , ): # 1. get previous step value (=t+1) lowercase :int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :Optional[Any] = model_output elif self.config.prediction_type == "sample": lowercase :Union[str, Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self: List[str] ): return self.config.num_train_timesteps
158
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : int =BarthezTokenizer UpperCamelCase__ : Union[str, Any] =BarthezTokenizerFast UpperCamelCase__ : List[str] =True UpperCamelCase__ : int =True def __lowercase ( self ): """simple docstring""" super().setUp() __UpperCamelCase : Any =BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase__ ) __UpperCamelCase : str =tokenizer def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] ='<pad>' __UpperCamelCase : Dict =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCamelCase__ ) , 101122 ) def __lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase : int =[0, 57, 3018, 70307, 91, 2] __UpperCamelCase : Union[str, Any] =self.tokenizer( lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __UpperCamelCase : List[str] =batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return __UpperCamelCase : Union[str, Any] =self.get_tokenizer() __UpperCamelCase : int =self.get_rust_tokenizer() __UpperCamelCase : str ='I was born in 92000, and this is falsé.' __UpperCamelCase : Tuple =tokenizer.tokenize(lowerCamelCase__ ) __UpperCamelCase : List[str] =rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =self.get_rust_tokenizer() __UpperCamelCase : Tuple =tokenizer.encode(lowerCamelCase__ ) __UpperCamelCase : List[str] =rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict ={'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __UpperCamelCase : str =[ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowerCamelCase__ , )
71
import re def A ( a_ ) -> bool: __UpperCamelCase : Any =re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(a_ ,a_ ) ) if __name__ == "__main__": A_ :List[str] = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
71
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _UpperCamelCase = get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=0 ): """simple docstring""" os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with FSDP.state_dict_type( lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __UpperCAmelCase : Any = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __UpperCAmelCase : Optional[int] = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __UpperCAmelCase : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __UpperCAmelCase : Union[str, Any] = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __UpperCAmelCase : int = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) logger.info(f'Saving model to {ckpt_dir}' ) __UpperCAmelCase : str = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=lowerCAmelCase__ , storage_writer=dist_cp.FileSystemWriter(lowerCAmelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCAmelCase__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __UpperCAmelCase : Dict = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Loading model from {input_model_file}' ) __UpperCAmelCase : Any = torch.load(lowerCAmelCase__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __UpperCAmelCase : Optional[Any] = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __UpperCAmelCase : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Loading model from {input_model_file}' ) __UpperCAmelCase : Tuple = torch.load(lowerCAmelCase__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __UpperCAmelCase : str = ( os.path.join(lowerCAmelCase__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __UpperCAmelCase : Tuple = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCAmelCase__ , storage_reader=dist_cp.FileSystemReader(lowerCAmelCase__ ) , planner=DefaultLoadPlanner() , ) __UpperCAmelCase : Optional[Any] = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple=0 ): """simple docstring""" os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with FSDP.state_dict_type( lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __UpperCAmelCase : List[Any] = FSDP.optim_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __UpperCAmelCase : List[str] = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __UpperCAmelCase : Dict = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCAmelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __UpperCAmelCase : List[str] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __UpperCAmelCase : str = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __UpperCAmelCase : Union[str, Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __UpperCAmelCase : Dict = torch.load(lowerCAmelCase__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __UpperCAmelCase : Tuple = ( os.path.join(lowerCAmelCase__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __UpperCAmelCase : int = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(lowerCAmelCase__ ) , ) __UpperCAmelCase : Tuple = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __UpperCAmelCase : str = FSDP.optim_state_dict_to_load(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) optimizer.load_state_dict(lowerCAmelCase__ )
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
1