code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """pegasus""" a__ = ["""past_key_values"""] a__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int]=5_0265 , UpperCamelCase__ : Optional[int]=1024 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : List[str]=4096 , UpperCamelCase__ : Tuple=16 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : List[Any]=1024 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : int=False , UpperCamelCase__ : Any=0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Tuple=1 , **UpperCamelCase__ : Union[str, Any] , ) -> str: """simple docstring""" __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) @property def _lowercase ( self : List[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Dict ) -> int: """simple docstring""" return self.d_model
88
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase__ : int = None lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[str] = '''▁''' lowercase__ : Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : str = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowercase__ : List[Any] = { '''google/pegasus-xsum''': 5_12, } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Tuple = PegasusTokenizer _lowerCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase_ : Optional[Any]=None , lowercase_ : int=None , lowercase_ : Tuple="<pad>" , lowercase_ : int="</s>" , lowercase_ : Tuple="<unk>" , lowercase_ : str="<mask_2>" , lowercase_ : Optional[Any]="<mask_1>" , lowercase_ : str=None , lowercase_ : List[str]=103 , **lowercase_ : List[Any] , ): snake_case_ : Dict = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase_ )}, but is" f" {type(lowercase_ )}" ) snake_case_ : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) snake_case_ : Union[str, Any] = additional_special_tokens_extended else: snake_case_ : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = vocab_file snake_case_ : List[Any] = False if not self.vocab_file else True def _snake_case ( self : str , lowercase_ : Union[str, Any] ): snake_case_ : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self : int , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : str=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ : Dict = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
264
0
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCamelCase = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowerCamelCase_ ( _a = "dhaka" , _a = 5 ): """simple docstring""" lowerCAmelCase__ : Optional[int] = min(_a , 50 ) # Prevent abuse! lowerCAmelCase__ : Dict = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } lowerCAmelCase__ : Any = requests.get('''https://www.google.com/search''' , params=_a , headers=_a ) lowerCAmelCase__ : List[str] = BeautifulSoup(html.text , '''html.parser''' ) lowerCAmelCase__ : Optional[int] = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) lowerCAmelCase__ : Tuple = json.dumps(_a ) lowerCAmelCase__ : List[Any] = json.loads(_a ) lowerCAmelCase__ : Any = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , _a , ) if not matched_google_image_data: return 0 lowerCAmelCase__ : str = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(_a ) , ) lowerCAmelCase__ : int = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , _a , ) for index, fixed_full_res_image in enumerate(_a ): if index >= max_images: return index lowerCAmelCase__ : List[Any] = bytes(_a , '''ascii''' ).decode( '''unicode-escape''' ) lowerCAmelCase__ : List[Any] = bytes(_a , '''ascii''' ).decode( '''unicode-escape''' ) lowerCAmelCase__ : Tuple = urllib.request.build_opener() lowerCAmelCase__ : Tuple = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_a ) lowerCAmelCase__ : int = f'query_{query.replace(" " , "_" )}' if not os.path.exists(_a ): os.makedirs(_a ) urllib.request.urlretrieve( # noqa: S310 _a , f'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: lowerCamelCase = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
211
# using dfs for finding eulerian path traversal def lowerCamelCase_ ( _a , _a , _a , _a=None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = True, True lowerCAmelCase__ : Any = dfs(_a , _a , _a , _a ) return path def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : str = -1 for i in range(_a ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase__ : Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = check_circuit_or_path(_a , _a ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowerCAmelCase__ : Optional[int] = 1 if check == 2: lowerCAmelCase__ : Any = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowerCAmelCase__ : Optional[int] = dfs(_a , _a , _a ) print(_a ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase__ : Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase__ : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase__ : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase__ : List[Any] = { 1: [], 2: [] # all degree is zero } lowerCAmelCase__ : Optional[Any] = 10 check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) check_euler(_a , _a ) if __name__ == "__main__": main()
211
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase = 16 __lowerCamelCase = 32 def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = 16 ): """simple docstring""" A__ = AutoTokenizer.from_pretrained('bert-base-cased' ) A__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCamelCase__ , padding='longest' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) A__ = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase = mocked_dataloaders # noqa: F811 def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase__ ) == "1": A__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['lr'] A__ = int(config['num_epochs'] ) A__ = int(config['seed'] ) A__ = int(config['batch_size'] ) set_seed(UpperCamelCase__ ) A__ , A__ = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) A__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A__ = os.path.split(UpperCamelCase__ )[-1].split('.' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A__ = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCamelCase__ ) A__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCamelCase__ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(UpperCamelCase__ ), 'epoch': epoch, } , step=UpperCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase ( ): """simple docstring""" A__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCamelCase__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) A__ = parser.parse_args() A__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
221
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = AlbertConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A__ = AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
221
1
'''simple docstring''' __snake_case = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __snake_case = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def a ( __a , __a , __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = True UpperCamelCase__ :Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__a , __a , __a ) order.append(__a ) return order def a ( __a , __a , __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Tuple = True UpperCamelCase__ :Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__a , __a , __a ) return component def a ( __a ) -> list[list[int]]: '''simple docstring''' UpperCamelCase__ :List[str] = len(__a ) * [False] UpperCamelCase__ :dict[int, list[int]] = {vert: [] for vert in range(len(__a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__a ) UpperCamelCase__ :Optional[int] = [] for i, was_visited in enumerate(__a ): if not was_visited: order += topology_sort(__a , __a , __a ) UpperCamelCase__ :Tuple = [] UpperCamelCase__ :str = len(__a ) * [False] for i in range(len(__a ) ): UpperCamelCase__ :List[Any] = order[len(__a ) - i - 1] if not visited[vert]: UpperCamelCase__ :Optional[Any] = find_components(__a , __a , __a ) components_list.append(__a ) return components_list
219
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig __snake_case = logging.getLogger(__name__) class lowercase ( A__ ): """simple docstring""" _a = 'masked_bert' def __init__( self , UpperCamelCase_=30522 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=0 , UpperCamelCase_="topK" , UpperCamelCase_="constant" , UpperCamelCase_=0.0 , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Tuple = vocab_size UpperCamelCase__ :Dict = hidden_size UpperCamelCase__ :Optional[int] = num_hidden_layers UpperCamelCase__ :Any = num_attention_heads UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :str = intermediate_size UpperCamelCase__ :List[Any] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :List[Any] = max_position_embeddings UpperCamelCase__ :int = type_vocab_size UpperCamelCase__ :List[Any] = initializer_range UpperCamelCase__ :Any = layer_norm_eps UpperCamelCase__ :str = pruning_method UpperCamelCase__ :int = mask_init UpperCamelCase__ :Optional[Any] = mask_scale
219
1
'''simple docstring''' def _UpperCamelCase ( __A ) -> str: '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(__A ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
80
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase__=64 , lowerCamelCase__=48_000 , lowerCamelCase__=480 , lowerCamelCase__=10 , lowerCamelCase__=1_024 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__ = 0 , lowerCamelCase__ = 14_000 , lowerCamelCase__ = None , lowerCamelCase__ = "fusion" , lowerCamelCase__ = "repeatpad" , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = top_db __lowerCamelCase = truncation __lowerCamelCase = padding __lowerCamelCase = fft_window_size __lowerCamelCase = (fft_window_size >> 1) + 1 __lowerCamelCase = hop_length __lowerCamelCase = max_length_s __lowerCamelCase = max_length_s * sampling_rate __lowerCamelCase = sampling_rate __lowerCamelCase = frequency_min __lowerCamelCase = frequency_max __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale='htk' , ) __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm='slaney' , mel_scale='slaney' , ) def lowercase_ ( self ) -> Dict[str, Any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel='dB' , ) return log_mel_spectrogram.T def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] # randomly choose index for each part __lowerCamelCase = np.random.choice(ranges[0] ) __lowerCamelCase = np.random.choice(ranges[1] ) __lowerCamelCase = np.random.choice(ranges[2] ) __lowerCamelCase = mel[idx_front : idx_front + chunk_frames, :] __lowerCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __lowerCamelCase = mel[idx_back : idx_back + chunk_frames, :] __lowerCamelCase = torch.tensor(mel[None, None, :] ) __lowerCamelCase = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = mel_shrink[0][0].numpy() __lowerCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCamelCase = len(lowerCamelCase__ ) - max_length __lowerCamelCase = np.random.randint(0 , overflow + 1 ) __lowerCamelCase = waveform[idx : idx + max_length] __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowerCamelCase = False else: __lowerCamelCase = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: __lowerCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchFeature: '''simple docstring''' __lowerCamelCase = truncation if truncation is not None else self.truncation __lowerCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowerCamelCase = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): __lowerCamelCase = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. __lowerCamelCase = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] __lowerCamelCase = [] __lowerCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCamelCase = np.random.randint(0 , len(lowerCamelCase__ ) ) __lowerCamelCase = True if isinstance(input_mel[0] , lowerCamelCase__ ): __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowerCamelCase = [[longer] for longer in is_longer] __lowerCamelCase = {'input_features': input_mel, 'is_longer': is_longer} __lowerCamelCase = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: __lowerCamelCase = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
90
0
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): def __init__( self : Dict , _A : int , _A : Tuple=13 , _A : List[str]=7 , _A : int=True , _A : Union[str, Any]=True , _A : List[Any]=True , _A : Optional[Any]=True , _A : Optional[Any]=99 , _A : Any=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Union[str, Any]=37 , _A : int="gelu" , _A : Optional[int]=0.1 , _A : Any=0.1 , _A : List[Any]=512 , _A : List[Any]=16 , _A : List[str]=2 , _A : List[Any]=0.0_2 , _A : List[str]=False , _A : Optional[int]=True , _A : Any="None" , _A : Optional[int]=3 , _A : int=4 , _A : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Dict = use_input_mask UpperCAmelCase__ : Optional[int] = use_token_type_ids UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : List[Any] = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : List[str] = num_labels UpperCAmelCase__ : Union[str, Any] = num_choices UpperCAmelCase__ : str = relative_attention UpperCAmelCase__ : Union[str, Any] = position_biased_input UpperCAmelCase__ : Optional[Any] = pos_att_type UpperCAmelCase__ : List[str] = scope def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase__ : List[str] = None if self.use_token_type_ids: UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[str] ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase_ ( self : str , _A : Union[str, Any] ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase_ ( self : str , _A : str , _A : List[Any] , _A : Optional[Any] , _A : Dict , _A : str , _A : Any , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DebertaVaModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : str = model(_A , attention_mask=_A , token_type_ids=_A )[0] UpperCAmelCase__ : Optional[int] = model(_A , token_type_ids=_A )[0] UpperCAmelCase__ : List[Any] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase_ ( self : Tuple , _A : str , _A : Optional[Any] , _A : Union[str, Any] , _A : int , _A : Optional[int] , _A : List[str] , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = DebertaVaForMaskedLM(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : str = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , _A : str , _A : int , _A : Tuple , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : List[str] = DebertaVaForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def lowercase_ ( self : Optional[int] , _A : int , _A : int , _A : Union[str, Any] , _A : Any , _A : int , _A : Union[str, Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.num_labels UpperCAmelCase__ : str = DebertaVaForTokenClassification(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Dict = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Union[str, Any] , _A : List[Any] , _A : Optional[int] , _A : Optional[Any] , _A : Any , _A : List[Any] , _A : Tuple , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = DebertaVaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Optional[Any] , _A : Dict , _A : Any , _A : Tuple , _A : Optional[Any] , _A : Tuple , _A : List[str] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = DebertaVaForMultipleChoice(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : List[str] = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = config_and_inputs UpperCAmelCase__ : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DebertaVaModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Dict = DebertaVaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass @slow def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCAmelCase__ : str = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) UpperCAmelCase__ : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. UpperCAmelCase__ : str = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
299
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
62
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "mvp" UpperCAmelCase__ : Tuple = ["past_key_values"] UpperCAmelCase__ : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A_=50267 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , A_=False , A_=100 , A_=800 , **A_ , ) -> Union[str, Any]: __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =classifier_dropout __UpperCamelCase =use_cache __UpperCamelCase =encoder_layers __UpperCamelCase =scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase =use_prompt __UpperCamelCase =prompt_length __UpperCamelCase =prompt_mid_dim super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , A_ ): __UpperCamelCase =self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
62
1
"""simple docstring""" import requests from bsa import BeautifulSoup def A__ ( lowerCamelCase = "https://www.worldometers.info/coronavirus" ) -> dict: UpperCamelCase_: str = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) UpperCamelCase_: Any = soup.findAll("""h1""" ) UpperCamelCase_: Optional[int] = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
353
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : List[Any] = """AutoImageProcessor""" __UpperCamelCase : Tuple = """AutoTokenizer""" def __init__( self : Any , snake_case_ : Optional[Any] , snake_case_ : Any ): super().__init__(snake_case_ , snake_case_ ) UpperCamelCase_: int = self.image_processor def __call__( self : str , snake_case_ : Optional[int]=None , snake_case_ : int=None , snake_case_ : Dict=None , **snake_case_ : Optional[int] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase_: List[Any] = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: UpperCamelCase_: Any = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and images is not None: UpperCamelCase_: Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def lowerCAmelCase__ ( self : List[str] , *snake_case_ : int , **snake_case_ : Optional[Any] ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : int , *snake_case_ : Optional[Any] , **snake_case_ : str ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): return ["input_ids", "attention_mask", "pixel_values"]
223
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case = None, __snake_case = None, __snake_case = False, ) -> tuple[int, float, str]: """simple docstring""" _UpperCamelCase = cipher_alphabet or [chr(__lowerCAmelCase ) for i in range(97, 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _UpperCamelCase = { '''a''': 0.08497, '''b''': 0.01492, '''c''': 0.02202, '''d''': 0.04253, '''e''': 0.11162, '''f''': 0.02228, '''g''': 0.02015, '''h''': 0.06094, '''i''': 0.07546, '''j''': 0.00153, '''k''': 0.01292, '''l''': 0.04025, '''m''': 0.02406, '''n''': 0.06749, '''o''': 0.07507, '''p''': 0.01929, '''q''': 0.00095, '''r''': 0.07587, '''s''': 0.06327, '''t''': 0.09356, '''u''': 0.02758, '''v''': 0.00978, '''w''': 0.02560, '''x''': 0.00150, '''y''': 0.01994, '''z''': 0.00077, } else: # Custom frequencies dictionary _UpperCamelCase = frequencies_dict if not case_sensitive: _UpperCamelCase = ciphertext.lower() # Chi squared statistic values _UpperCamelCase = {} # cycle through all of the shifts for shift in range(len(__lowerCAmelCase ) ): _UpperCamelCase = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( __lowerCAmelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _UpperCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _UpperCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _UpperCamelCase = decrypted_with_shift.lower().count(__lowerCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _UpperCamelCase = decrypted_with_shift.count(__lowerCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _UpperCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__snake_case ) -> tuple[float, str]: return chi_squared_statistic_values[key] _UpperCamelCase = min( __lowerCAmelCase, key=__lowerCAmelCase, ) # Get all the data from the most likely cipher (key, decoded message) ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
194
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( )-> tuple[list[int], int]: """simple docstring""" _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _a = make_dataset() def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, ...]: """simple docstring""" for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int, int]: """simple docstring""" arr.sort() _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( )-> tuple[float, float]: """simple docstring""" _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
39
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> Dict: '''simple docstring''' a__ : List[str] =size if size is not None else {"height": 1_8, "width": 1_8} a__ : Dict =parent a__ : int =batch_size a__ : Dict =num_channels a__ : Any =image_size a__ : Union[str, Any] =min_resolution a__ : Union[str, Any] =max_resolution a__ : Dict =do_resize a__ : Tuple =size a__ : str =do_normalize def _lowercase ( self ) -> int: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[str] =ImageGPTImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "clusters" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : str =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) a__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Dict =self.image_processing_class(**self.image_processor_dict ) a__ : int =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[str] =os.path.join(lowerCAmelCase__ , "image_processor.json" ) image_processor_first.to_json_file(lowerCAmelCase__ ) a__ : List[Any] =self.image_processing_class.from_json_file(lowerCAmelCase__ ).to_dict() a__ : List[str] =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase__ ) a__ : List[str] =self.image_processing_class.from_pretrained(lowerCAmelCase__ ).to_dict() a__ : Any =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' pass def _A ( ): """simple docstring""" a__ : Any =load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) a__ : Tuple =Image.open(dataset[4]["file"] ) a__ : Union[str, Any] =Image.open(dataset[5]["file"] ) a__ : List[str] =[imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase): @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[str] =ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) a__ : str =prepare_images() # test non-batched a__ : List[str] =image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) a__ : Tuple =[3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase__ ) # test batched a__ : int =image_processing(lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) a__ : Any =[3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase__ )
148
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Tuple =path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} a__ : List[str] =Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' if self.streaming: a__ : str =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a__ : Dict =None a__ : Optional[Any] =None a__ : Union[str, Any] =None a__ : Tuple =None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) a__ : Tuple =self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
148
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorPipeline SCREAMING_SNAKE_CASE__ = ['prompt'] SCREAMING_SNAKE_CASE__ = ['prompt', 'negative_prompt'] SCREAMING_SNAKE_CASE__ = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE__ = False @property def SCREAMING_SNAKE_CASE__ ( self ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self ): return 100 @property def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :int = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } a :str = PriorTransformer(**_lowerCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a :str = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Tuple = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a :Tuple = CLIPVisionModelWithProjection(_lowerCamelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): a :Any = CLIPImageProcessor( crop_size=224 , do_center_crop=_lowerCamelCase , do_normalize=_lowerCamelCase , do_resize=_lowerCamelCase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = self.dummy_prior a :int = self.dummy_image_encoder a :Any = self.dummy_text_encoder a :List[str] = self.dummy_tokenizer a :Union[str, Any] = self.dummy_image_processor a :List[Any] = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_lowerCamelCase , clip_sample_range=10.0 , ) a :Optional[Any] = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): a :str = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): a :int = '''cpu''' a :Tuple = self.get_dummy_components() a :Optional[int] = self.pipeline_class(**_lowerCamelCase ) a :Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) a :Optional[Any] = output.image_embeds a :Union[str, Any] = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] a :Tuple = image[0, -10:] a :int = image_from_tuple[0, -10:] assert image.shape == (1, 32) a :Optional[int] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = torch_device == '''cpu''' a :Union[str, Any] = True a :int = False self._test_inference_batch_single_identical( test_max_difference=_lowerCamelCase , relax_max_difference=_lowerCamelCase , test_mean_pixel_difference=_lowerCamelCase , ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = torch_device == '''cpu''' a :Union[str, Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_lowerCamelCase , test_mean_pixel_difference=_lowerCamelCase , )
94
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = "ResNetConfig" # Base docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = [1, 20_48, 7, 7] # Image classification docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = "tiger cat" __lowerCamelCase = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> Any: super().__init__() A__ = nn.Convad( __UpperCAmelCase ,__UpperCAmelCase ,kernel_size=__UpperCAmelCase ,stride=__UpperCAmelCase ,padding=kernel_size // 2 ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) A__ = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Any: super().__init__() A__ = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) A__ = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) A__ = config.num_channels def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.pooler(__UpperCAmelCase ) return embedding class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ) -> Optional[Any]: super().__init__() A__ = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,stride=__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ,__UpperCAmelCase = 4 ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = out_channels // reduction A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,) -> Any: super().__init__() A__ = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer A__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ,activation=config.hidden_act ) ,*[layer(__UpperCAmelCase ,__UpperCAmelCase ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = input for layer in self.layers: A__ = layer(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__() A__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) A__ = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase ,config.depths[1:] ): self.stages.append(ResNetStage(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,depth=__UpperCAmelCase ) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = True ) -> BaseModelOutputWithNoAttention: A__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A__ = hidden_states + (hidden_state,) A__ = stage_module(__UpperCAmelCase ) if output_hidden_states: A__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase ,hidden_states=__UpperCAmelCase ,) class UpperCamelCase__( __A ): lowerCAmelCase__ : str = ResNetConfig lowerCAmelCase__ : str = 'resnet' lowerCAmelCase__ : int = 'pixel_values' lowerCAmelCase__ : Any = True def snake_case__ ( self ,__UpperCAmelCase ) -> List[Any]: if isinstance(__UpperCAmelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' ) elif isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = value __lowerCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Union[str, Any]: super().__init__(__UpperCAmelCase ) A__ = config A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention: A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder( __UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = encoder_outputs[0] A__ = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase ,pooler_output=__UpperCAmelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Tuple: super().__init__(__UpperCAmelCase ) A__ = config.num_labels A__ = ResNetModel(__UpperCAmelCase ) # classification head A__ = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case__ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> ImageClassifierOutputWithNoAttention: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.resnet(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(__UpperCAmelCase ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = 'single_label_classification' else: A__ = 'multi_label_classification' if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) if not return_dict: A__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase ,logits=__UpperCAmelCase ,hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __A , ) class UpperCamelCase__( __A , __A ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__(__UpperCAmelCase ) super()._init_backbone(__UpperCAmelCase ) A__ = [config.embedding_size] + config.hidden_sizes A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @replace_return_docstrings(output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BackboneOutput: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.hidden_states A__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=__UpperCAmelCase ,)
221
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A : str = get_tests_dir('''fixtures''') class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[Any]): # A mock response for an HTTP head request to emulate server down _A : int = mock.Mock() _A : List[str] = 500 _A : List[Any] = {} _A : List[Any] = HTTPError _A : str = {} # Download this model to make sure it's in the cache. _A : Any = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=SCREAMING_SNAKE_CASE) as mock_head: _A : List[str] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit') # This check we did call the fake head request mock_head.assert_called() def A ( self : Union[str, Any]): # This test is for deprecated behavior and can be removed in v5 _A : List[Any] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json') def A ( self : Optional[Any]): with self.assertRaises(SCREAMING_SNAKE_CASE): # config is in subfolder, the following should not work without specifying the subfolder _A : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants') _A : str = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor') self.assertIsNotNone(SCREAMING_SNAKE_CASE) @is_staging_test class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : int): _A : Union[str, Any] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE) @classmethod def A ( cls : str): try: delete_repo(token=cls._token , repo_id='test-image-processor') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor') except HTTPError: pass def A ( self : List[str]): _A : Any = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token) _A : Optional[int] = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor') for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE , repo_id='test-image-processor' , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token) _A : str = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor') for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) def A ( self : List[str]): _A : List[Any] = ViTImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token) _A : Optional[int] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor') for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( SCREAMING_SNAKE_CASE , repo_id='valid_org/test-image-processor-org' , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token) _A : List[str] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org') for k, v in image_processor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) def A ( self : int): CustomImageProcessor.register_for_auto_class() _A : List[Any] = CustomImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) _A : Tuple = AutoImageProcessor.from_pretrained( F'{USER}/test-dynamic-image-processor' , trust_remote_code=SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor')
227
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ,lowerCamelCase : List[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : List[str] ): _A : Dict = multiprocessing.Manager() _A : List[Any] = manager.list() _A : Dict = multiprocessing.Process(target=lowerCamelCase ,args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Optional[Any] ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _A : Any = shutil.rmtree _A : Optional[int] = os.rmdir _A : str = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _A : str = {} with swallow_io(): with time_limit(lowerCamelCase ): exec(lowerCamelCase ,lowerCamelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. _A : Optional[int] = rmtree _A : Optional[Any] = rmdir _A : Dict = chdir @contextlib.contextmanager def lowerCAmelCase__ ( lowerCamelCase : int ): def signal_handler(lowerCamelCase : str ,lowerCamelCase : Any ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL ,lowerCamelCase ) signal.signal(signal.SIGALRM ,lowerCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL ,0 ) @contextlib.contextmanager def lowerCAmelCase__ ( ): _A : Any = WriteOnlyStringIO() with contextlib.redirect_stdout(lowerCamelCase ): with contextlib.redirect_stderr(lowerCamelCase ): with redirect_stdin(lowerCamelCase ): yield @contextlib.contextmanager def lowerCAmelCase__ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowerCamelCase ): yield dirname class __lowerCamelCase ( a_ ): """simple docstring""" pass class __lowerCamelCase ( io.StringIO ): """simple docstring""" def A ( self : Tuple , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict): raise OSError def A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[Any]): raise OSError def A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int]): raise OSError def A ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Tuple): return False class __lowerCamelCase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" a = "stdin" @contextlib.contextmanager def lowerCAmelCase__ ( lowerCamelCase : Tuple ): if root == ".": yield return _A : Any = os.getcwd() os.chdir(lowerCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : List[Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS ,(maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA ,(maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK ,(maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _A : List[Any] = None _A : Dict = None import os _A : Union[str, Any] = '1' _A : int = None _A : Optional[int] = None _A : int = None _A : Any = None _A : Optional[int] = None _A : Union[str, Any] = None _A : List[Any] = None _A : int = None _A : List[Any] = None _A : Tuple = None _A : Any = None _A : Tuple = None _A : Optional[int] = None _A : Optional[Any] = None _A : str = None _A : Dict = None _A : List[str] = None _A : Union[str, Any] = None _A : Union[str, Any] = None _A : str = None _A : str = None _A : str = None _A : Any = None _A : Union[str, Any] = None _A : str = None _A : List[str] = None _A : Union[str, Any] = None import shutil _A : int = None _A : Any = None _A : List[Any] = None import subprocess _A : Optional[Any] = None # type: ignore _A : List[Any] = None import sys _A : Any = None _A : Tuple = None _A : str = None _A : Tuple = None _A : List[str] = None
227
1
import operator as op _lowercase: List[str] = "scaler.pt" _lowercase: int = "pytorch_model" _lowercase: Optional[Any] = "random_states" _lowercase: Optional[Any] = "optimizer" _lowercase: Dict = "scheduler" _lowercase: Union[str, Any] = "pytorch_model.bin" _lowercase: List[str] = "pytorch_model.bin.index.json" _lowercase: Optional[int] = "model.safetensors" _lowercase: List[str] = "model.safetensors.index.json" _lowercase: str = "1.10.2" _lowercase: str = "py38" _lowercase: Dict = "4.17.0" _lowercase: Tuple = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] _lowercase: List[str] = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] _lowercase: List[Any] = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] _lowercase: List[Any] = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] _lowercase: Tuple = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] _lowercase: int = "2.0.1" _lowercase: Optional[Any] = ["pdsh", "standard", "openmpi", "mvapich"] _lowercase: str = ["default", "reduce-overhead", "max-autotune"] _lowercase: Optional[int] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _lowercase: List[str] = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] _lowercase: Tuple = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] _lowercase: Union[str, Any] = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
227
_lowercase: Dict = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def a( A : str ) -> int: """simple docstring""" a = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} a = 0 a = 0 while place < len(A ): if (place + 1 < len(A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a( A : int ) -> str: """simple docstring""" a = [] for arabic, roman in ROMAN: ((a) , (a)) = divmod(A , A ) result.append(roman * factor ) if number == 0: break return "".join(A ) if __name__ == "__main__": import doctest doctest.testmod()
227
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCAmelCase ( lowercase__ ): '''simple docstring''' _A : Dict = '''wavlm''' def __init__( self : List[Any] , __a : Any=32 , __a : str=768 , __a : List[str]=12 , __a : Optional[Any]=12 , __a : Union[str, Any]=3072 , __a : Dict="gelu" , __a : Union[str, Any]=0.1 , __a : str=0.1 , __a : List[Any]=0.1 , __a : Optional[Any]=0.0 , __a : Dict=0.1 , __a : Optional[int]=0.1 , __a : List[str]=0.02 , __a : Any=1E-5 , __a : str="group" , __a : int="gelu" , __a : str=(512, 512, 512, 512, 512, 512, 512) , __a : Any=(5, 2, 2, 2, 2, 2, 2) , __a : List[str]=(10, 3, 3, 3, 3, 2, 2) , __a : List[str]=False , __a : int=128 , __a : Optional[Any]=16 , __a : Tuple=320 , __a : Optional[int]=800 , __a : Tuple=False , __a : Any=True , __a : str=0.05 , __a : Optional[Any]=10 , __a : Any=2 , __a : int=0.0 , __a : int=10 , __a : Optional[int]=320 , __a : List[Any]=2 , __a : Any=0.1 , __a : Tuple=100 , __a : Tuple=256 , __a : int=256 , __a : Tuple=0.1 , __a : Optional[int]="mean" , __a : List[str]=False , __a : Union[str, Any]=False , __a : Optional[int]=256 , __a : Any=(512, 512, 512, 512, 1500) , __a : Union[str, Any]=(5, 3, 3, 1, 1) , __a : Union[str, Any]=(1, 2, 3, 1, 1) , __a : Tuple=512 , __a : Union[str, Any]=80 , __a : int=0 , __a : Dict=1 , __a : Tuple=2 , __a : str=False , __a : Any=3 , __a : Any=2 , __a : Union[str, Any]=3 , __a : List[str]=None , **__a : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) __lowercase : Any = hidden_size __lowercase : Union[str, Any] = feat_extract_norm __lowercase : List[str] = feat_extract_activation __lowercase : Optional[int] = list(_a ) __lowercase : str = list(_a ) __lowercase : Dict = list(_a ) __lowercase : int = conv_bias __lowercase : Dict = num_buckets __lowercase : Optional[Any] = max_bucket_distance __lowercase : List[str] = num_conv_pos_embeddings __lowercase : int = num_conv_pos_embedding_groups __lowercase : Union[str, Any] = len(self.conv_dim ) __lowercase : Optional[int] = num_hidden_layers __lowercase : Any = intermediate_size __lowercase : Any = hidden_act __lowercase : Optional[int] = num_attention_heads __lowercase : str = hidden_dropout __lowercase : Tuple = attention_dropout __lowercase : Union[str, Any] = activation_dropout __lowercase : str = feat_proj_dropout __lowercase : str = final_dropout __lowercase : List[str] = layerdrop __lowercase : List[str] = layer_norm_eps __lowercase : str = initializer_range __lowercase : str = num_ctc_classes __lowercase : Union[str, Any] = vocab_size __lowercase : Dict = do_stable_layer_norm __lowercase : Optional[int] = use_weighted_layer_sum __lowercase : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : List[str] = apply_spec_augment __lowercase : Tuple = mask_time_prob __lowercase : Optional[Any] = mask_time_length __lowercase : List[str] = mask_time_min_masks __lowercase : Tuple = mask_feature_prob __lowercase : List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase : List[Any] = num_codevectors_per_group __lowercase : Any = num_codevector_groups __lowercase : Any = contrastive_logits_temperature __lowercase : Union[str, Any] = num_negatives __lowercase : Tuple = codevector_dim __lowercase : Tuple = proj_codevector_dim __lowercase : List[Any] = diversity_loss_weight # ctc loss __lowercase : int = ctc_loss_reduction __lowercase : List[Any] = ctc_zero_infinity # adapter __lowercase : Optional[Any] = add_adapter __lowercase : int = adapter_kernel_size __lowercase : List[Any] = adapter_stride __lowercase : Tuple = num_adapter_layers __lowercase : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase : Optional[int] = list(_a ) __lowercase : Dict = list(_a ) __lowercase : str = list(_a ) __lowercase : List[str] = xvector_output_dim @property def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
from datetime import datetime import requests def A_ ( snake_case : str ) -> bytes: '''simple docstring''' __UpperCamelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __UpperCamelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(snake_case ).content if __name__ == "__main__": lowercase__ : List[Any] = input("Enter Video/IGTV url: ").strip() lowercase__ : List[Any] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
328
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class a__ ( snake_case__ ): _a : Dict = """mgp-str""" def __init__( self , _A=[3_2, 1_2_8] , _A=4 , _A=3 , _A=2_7 , _A=3_8 , _A=5_0_2_5_7 , _A=3_0_5_2_2 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=4.0 , _A=True , _A=False , _A=1E-5 , _A=0.0 , _A=0.0 , _A=0.0 , _A=False , _A=0.02 , **_A , ): """simple docstring""" super().__init__(**_A ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = max_token_length __lowerCAmelCase = num_character_labels __lowerCAmelCase = num_bpe_labels __lowerCAmelCase = num_wordpiece_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = mlp_ratio __lowerCAmelCase = distilled __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = drop_rate __lowerCAmelCase = qkv_bias __lowerCAmelCase = attn_drop_rate __lowerCAmelCase = drop_path_rate __lowerCAmelCase = output_aa_attentions __lowerCAmelCase = initializer_range
102
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : _a : str = field( default=snake_case__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(snake_case__ )} ) _a : str = field( default=snake_case__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _a : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a : int = field( default=1_2_8 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _a : int = field( default=6_4 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _a : int = field( default=3_0 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _a : bool = field( default=snake_case__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _a : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=2_0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _a : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _a : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class a__ ( snake_case__ ): _a : Any = """train""" _a : Union[str, Any] = """dev""" class a__ ( snake_case__ ): _a : SquadDataTrainingArguments _a : List[SquadFeatures] _a : Split _a : bool def __init__( self , _A , _A , _A = None , _A = Split.train , _A = False , _A = None , _A = "pt" , ): """simple docstring""" __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_A , _A ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = "v2" if args.version_2_with_negative else "v1" __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(_A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features["features"] __lowerCAmelCase = self.old_features.get("dataset" , _A ) __lowerCAmelCase = self.old_features.get("examples" , _A ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_A , ) __lowerCAmelCase = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
102
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class snake_case__: '''simple docstring''' def lowercase_ ( self , __lowercase , __lowercase ) -> str: pass def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> Dict: lowerCAmelCase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(__lowercase , __lowercase , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> int: lowerCAmelCase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(__lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(__lowercase ) lowerCAmelCase_ : List[Any] = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.get_vision_text_model(__lowercase , __lowercase ) lowerCAmelCase_ : List[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} lowerCAmelCase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowercase ) lowerCAmelCase_ : Tuple = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.get_vision_text_model(__lowercase , __lowercase ) lowerCAmelCase_ : str = {'''vision_model''': vision_model, '''text_model''': text_model} lowerCAmelCase_ : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowercase ) lowerCAmelCase_ : Union[str, Any] = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) lowerCAmelCase_ : Optional[Any] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) lowerCAmelCase_ : int = FlaxVisionTextDualEncoderModel.from_pretrained(__lowercase ) lowerCAmelCase_ : Any = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) lowerCAmelCase_ : List[str] = after_output[0] lowerCAmelCase_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase , 1e-3 ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.get_vision_text_model(__lowercase , __lowercase ) lowerCAmelCase_ : List[str] = {'''vision_model''': vision_model, '''text_model''': text_model} lowerCAmelCase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowercase ) lowerCAmelCase_ : Union[str, Any] = model( input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , output_attentions=__lowercase ) lowerCAmelCase_ : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(__lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ : Union[str, Any] = to_atuple(vision_model.config.image_size ) lowerCAmelCase_ : int = to_atuple(vision_model.config.patch_size ) lowerCAmelCase_ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase_ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase_ : int = output.text_model_output.attentions self.assertEqual(len(__lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> List[str]: pt_model.to(__lowercase ) pt_model.eval() # prepare inputs lowerCAmelCase_ : Dict = inputs_dict lowerCAmelCase_ : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model(**__lowercase ).to_tuple() lowerCAmelCase_ : str = fx_model(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__lowercase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__lowercase ) lowerCAmelCase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__lowercase , from_pt=__lowercase ) lowerCAmelCase_ : Optional[Any] = fx_model_loaded(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__lowercase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__lowercase ) lowerCAmelCase_ : Optional[int] = VisionTextDualEncoderModel.from_pretrained(__lowercase , from_flax=__lowercase ) pt_model_loaded.to(__lowercase ) pt_model_loaded.eval() with torch.no_grad(): lowerCAmelCase_ : List[Any] = pt_model_loaded(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__lowercase , pt_output_loaded.numpy() , 4e-2 ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> Dict: lowerCAmelCase_ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__lowercase , __lowercase ) lowerCAmelCase_ : Tuple = VisionTextDualEncoderModel(__lowercase ) lowerCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(__lowercase ) lowerCAmelCase_ : Optional[int] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __lowercase ) lowerCAmelCase_ : Dict = fx_state self.check_pt_flax_equivalence(__lowercase , __lowercase , __lowercase ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> List[str]: lowerCAmelCase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(__lowercase , __lowercase ) lowerCAmelCase_ : int = VisionTextDualEncoderModel(__lowercase ) lowerCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel(__lowercase ) lowerCAmelCase_ : Dict = load_flax_weights_in_pytorch_model(__lowercase , fx_model.params ) self.check_pt_flax_equivalence(__lowercase , __lowercase , __lowercase ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowercase ) def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowercase ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : int = self.prepare_config_and_inputs() self.check_save_load(**__lowercase ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowercase ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ : Tuple = config_inputs_dict.pop('''vision_config''' ) lowerCAmelCase_ : Optional[Any] = config_inputs_dict.pop('''text_config''' ) lowerCAmelCase_ : List[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(__lowercase , __lowercase , __lowercase ) self.check_equivalence_flax_to_pt(__lowercase , __lowercase , __lowercase ) @slow def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.get_pretrained_model_and_inputs() lowerCAmelCase_ : Tuple = model_a(**__lowercase ) lowerCAmelCase_ : int = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowercase ) lowerCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__lowercase ) lowerCAmelCase_ : str = model_a(**__lowercase ) lowerCAmelCase_ : int = after_outputs[0] lowerCAmelCase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase , 1e-5 ) @require_flax class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__lowercase , text_from_pt=__lowercase , ) lowerCAmelCase_ : int = 1_3 lowerCAmelCase_ : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase_ : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCAmelCase_ : List[str] = random_attention_mask([batch_size, 4] ) lowerCAmelCase_ : List[str] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase_ ( self , __lowercase , __lowercase ) -> Dict: lowerCAmelCase_ : Any = FlaxViTModel(__lowercase ) lowerCAmelCase_ : List[Any] = FlaxBertModel(__lowercase ) return vision_model, text_model def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : List[str] = FlaxViTModelTester(self ) lowerCAmelCase_ : List[str] = FlaxBertModelTester(self ) lowerCAmelCase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase_ : int = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Tuple = vision_config_and_inputs lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__lowercase , text_from_pt=__lowercase , ) lowerCAmelCase_ : Optional[int] = 1_3 lowerCAmelCase_ : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase_ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowerCAmelCase_ : List[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase_ : List[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase_ ( self , __lowercase , __lowercase ) -> Optional[int]: lowerCAmelCase_ : Optional[int] = FlaxCLIPVisionModel(__lowercase ) lowerCAmelCase_ : Tuple = FlaxBertModel(__lowercase ) return vision_model, text_model def lowercase_ ( self ) -> str: lowerCAmelCase_ : Any = FlaxCLIPVisionModelTester(self ) lowerCAmelCase_ : List[Any] = FlaxBertModelTester(self ) lowerCAmelCase_ : Optional[int] = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Optional[int] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = vision_config_and_inputs lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class snake_case__( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ ( self ) -> str: lowerCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) lowerCAmelCase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowerCAmelCase_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase_ : Optional[Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__lowercase , padding=__lowercase , return_tensors='''np''' ) lowerCAmelCase_ : List[str] = model(**__lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __lowercase , atol=1e-3 ) )
262
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : Tuple =None _UpperCAmelCase : int =logging.get_logger(__name__) _UpperCAmelCase : Dict ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Any ={ """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int ={ """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off _UpperCAmelCase : Any =["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE__ : int = NllbTokenizer SCREAMING_SNAKE_CASE__ : List[int] = [] SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self , __lowercase=None , __lowercase=None , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=False , **__lowercase , ) -> int: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token lowerCAmelCase_ : List[Any] = legacy_behaviour super().__init__( vocab_file=__lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , additional_special_tokens=__lowercase , legacy_behaviour=__lowercase , **__lowercase , ) lowerCAmelCase_ : Any = vocab_file lowerCAmelCase_ : List[Any] = False if not self.vocab_file else True lowerCAmelCase_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowerCAmelCase_ : Optional[Any] = { lang_code: self.convert_tokens_to_ids(__lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase_ : Any = src_lang if src_lang is not None else '''eng_Latn''' lowerCAmelCase_ : str = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase_ ( self ) -> str: return self._src_lang @src_lang.setter def lowercase_ ( self , __lowercase ) -> None: lowerCAmelCase_ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase ) -> str: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCAmelCase_ : List[str] = src_lang lowerCAmelCase_ : int = self(__lowercase , add_special_tokens=__lowercase , return_tensors=__lowercase , **__lowercase ) lowerCAmelCase_ : Dict = self.convert_tokens_to_ids(__lowercase ) lowerCAmelCase_ : List[Any] = tgt_lang_id return inputs def lowercase_ ( self , __lowercase , __lowercase = "eng_Latn" , __lowercase = None , __lowercase = "fra_Latn" , **__lowercase , ) -> BatchEncoding: lowerCAmelCase_ : List[str] = src_lang lowerCAmelCase_ : List[str] = tgt_lang return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def lowercase_ ( self ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self , __lowercase ) -> None: lowerCAmelCase_ : List[str] = self.convert_tokens_to_ids(__lowercase ) if self.legacy_behaviour: lowerCAmelCase_ : Any = [] lowerCAmelCase_ : List[str] = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase_ : Optional[int] = [self.cur_lang_code] lowerCAmelCase_ : List[Any] = [self.eos_token_id] lowerCAmelCase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , __lowercase ) -> None: lowerCAmelCase_ : Dict = self.convert_tokens_to_ids(__lowercase ) if self.legacy_behaviour: lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : Any = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase_ : Any = [self.cur_lang_code] lowerCAmelCase_ : Any = [self.eos_token_id] lowerCAmelCase_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , __lowercase , __lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCAmelCase_ : Any = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
262
1
"""simple docstring""" from manim import * class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""CPU""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) _lowerCAmelCase =[mem.copy() for i in range(4 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""GPU""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""Model""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) _lowerCAmelCase =[] for i, rect in enumerate(__UpperCAmelCase ): rect.set_stroke(__UpperCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase =Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCAmelCase , buff=0.0 ) self.add(__UpperCAmelCase ) cpu_targs.append(__UpperCAmelCase ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _lowerCAmelCase =Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase =Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , aligned_edge=__UpperCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase =MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase =MarkupText( f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ) , Write(__UpperCAmelCase ) ) self.play(Write(__UpperCAmelCase , run_time=1 ) , Create(__UpperCAmelCase , run_time=1 ) ) _lowerCAmelCase =[] _lowerCAmelCase =[] for i, rect in enumerate(__UpperCAmelCase ): _lowerCAmelCase =fill.copy().set_fill(__UpperCAmelCase , opacity=0.7 ) target.move_to(__UpperCAmelCase ) first_animations.append(GrowFromCenter(__UpperCAmelCase , run_time=1 ) ) _lowerCAmelCase =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCAmelCase , run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(*__UpperCAmelCase ) self.wait()
341
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __A ( unittest.TestCase ): def _lowercase (self : Dict ): UpperCAmelCase_ = "laion/clap-htsat-unfused" UpperCAmelCase_ = tempfile.mkdtemp() def _lowercase (self : Dict , **__a : List[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **__a ) def _lowercase (self : str , **__a : Union[str, Any] ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__a ) def _lowercase (self : str ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_feature_extractor() UpperCAmelCase_ = ClapProcessor(tokenizer=__a , feature_extractor=__a ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ = self.get_feature_extractor(do_normalize=__a , padding_value=1.0 ) UpperCAmelCase_ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_feature_extractor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ClapProcessor(tokenizer=__a , feature_extractor=__a ) UpperCAmelCase_ = floats_list((3, 1000) ) UpperCAmelCase_ = feature_extractor(__a , return_tensors="np" ) UpperCAmelCase_ = processor(audios=__a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_feature_extractor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ClapProcessor(tokenizer=__a , feature_extractor=__a ) UpperCAmelCase_ = "This is a test string" UpperCAmelCase_ = processor(text=__a ) UpperCAmelCase_ = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase (self : int ): UpperCAmelCase_ = self.get_feature_extractor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ClapProcessor(tokenizer=__a , feature_extractor=__a ) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(__a ) UpperCAmelCase_ = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.get_feature_extractor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ClapProcessor(tokenizer=__a , feature_extractor=__a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
1
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase_ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCamelCase_ : List[Any] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) __a = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase__ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Any: __a = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __a = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __a = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ ) __a = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowerCamelCase__ , 'w' , newline='\n' ) as f: f.write(lowerCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase__ ) with open(lowerCamelCase__ , 'r' ) as f: self.assertTrue(f.read() , lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCamelCase__ ) , ) # Copy consistency with a really long name __a = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowerCamelCase__ , lowerCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCamelCase__ , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCamelCase__ ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) __a = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme['format_model_list'] ) self.assertFalse(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) __a = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase__ ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __a = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
357
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class a__ ( __snake_case ): A__ : torch.FloatTensor A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None class a__ ( __snake_case , __snake_case ): A__ : Optional[Any] = 2 @register_to_config def __init__( self , UpperCAmelCase = 0.02 , UpperCAmelCase = 1_0_0 , UpperCAmelCase = 1.007 , UpperCAmelCase = 8_0 , UpperCAmelCase = 0.05 , UpperCAmelCase = 5_0 , ) -> Optional[Any]: # standard deviation of the initial noise distribution __a = sigma_max # setable values __a = None __a = None __a = None # sigma(t_i) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> torch.FloatTensor: return sample def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> int: __a = num_inference_steps __a = np.arange(0 , self.num_inference_steps )[::-1].copy() __a = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) __a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __a = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: __a = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __a = 0 # sample eps ~ N(0, S_noise^2 * I) __a = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) __a = sigma + gamma * sigma __a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[KarrasVeOutput, Tuple]: __a = sample_hat + sigma_hat * model_output __a = (sample_hat - pred_original_sample) / sigma_hat __a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[KarrasVeOutput, Tuple]: __a = sample_prev + sigma_prev * model_output __a = (sample_prev - pred_original_sample) / sigma_prev __a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: raise NotImplementedError()
197
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' lowerCAmelCase__ = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' lowerCAmelCase__ = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' lowerCAmelCase__ = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCAmelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').") _A : Tuple = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: _A : Tuple = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _A : str = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer _A : str = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) _A : Dict = score.BleurtScorer(os.path.join(__lowerCamelCase , __lowerCamelCase)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = self.scorer.score(references=__lowerCamelCase , candidates=__lowerCamelCase) return {"scores": scores}
11
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE = "OwlViTImageProcessor" __SCREAMING_SNAKE_CASE = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase) -> Union[str, Any]: _A : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) _A : List[Any] = kwargs.pop("feature_extractor") _A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__lowerCamelCase , __lowerCamelCase) def __call__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="max_length" , __lowerCamelCase="np" , **__lowerCamelCase) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none.") if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase) or (isinstance(__lowerCamelCase , __lowerCamelCase) and not isinstance(text[0] , __lowerCamelCase)): _A : Union[str, Any] = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase)] elif isinstance(__lowerCamelCase , __lowerCamelCase) and isinstance(text[0] , __lowerCamelCase): _A : Optional[Any] = [] # Maximum number of queries across batch _A : str = max([len(__lowerCamelCase) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase) != max_num_queries: _A : Optional[int] = t + [" "] * (max_num_queries - len(__lowerCamelCase)) _A : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) encodings.append(__lowerCamelCase) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": _A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _A : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch _A : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0) _A : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _A : Any = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0) _A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0) else: raise ValueError("Target return tensor type could not be returned") _A : Optional[Any] = BatchEncoding() _A : Tuple = input_ids _A : Dict = attention_mask if query_images is not None: _A : Optional[Any] = BatchEncoding() _A : List[str] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase).pixel_values _A : Union[str, Any] = query_pixel_values if images is not None: _A : int = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: _A : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase) , tensor_type=__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> str: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> List[str]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> int: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @property def _lowerCamelCase ( self) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
11
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowerCAmelCase : Any ={ """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class _A ( lowerCAmelCase ): snake_case__ : str = 'facebook/nllb-200-distilled-600M' snake_case__ : str = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ : Optional[int] = 'translator' snake_case__ : int = AutoTokenizer snake_case__ : str = AutoModelForSeqaSeqLM snake_case__ : List[Any] = LANGUAGE_CODES snake_case__ : Optional[Any] = ['text', 'text', 'text'] snake_case__ : List[str] = ['text'] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) lowercase = self.lang_to_code[src_lang] lowercase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowerCAmelCase , return_tensors="""pt""" , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.model.generate(**__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowerCAmelCase )
32
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
1
__lowerCamelCase : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def A_ ( ) -> None: UpperCamelCase : List[Any] = input("Enter message: " ) UpperCamelCase : str = input("Enter key [alphanumeric]: " ) UpperCamelCase : Any = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): UpperCamelCase : Optional[Any] = "encrypt" UpperCamelCase : Any = encrypt_message(_lowerCAmelCase , _lowerCAmelCase ) elif mode.lower().startswith("d" ): UpperCamelCase : Any = "decrypt" UpperCamelCase : Dict = decrypt_message(_lowerCAmelCase , _lowerCAmelCase ) print(F"""\n{mode.title()}ed message:""" ) print(_lowerCAmelCase ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: return translate_message(_lowerCAmelCase , _lowerCAmelCase , "encrypt" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: return translate_message(_lowerCAmelCase , _lowerCAmelCase , "decrypt" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : List[str] = [] UpperCamelCase : int = 0 UpperCamelCase : List[str] = key.upper() for symbol in message: UpperCamelCase : Union[str, Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCAmelCase ): UpperCamelCase : Optional[int] = 0 else: translated.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) if __name__ == "__main__": main()
52
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :List[str] = KandinskyInpaintPipeline _UpperCAmelCase :List[str] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCAmelCase :Dict = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCAmelCase :Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase :int = False @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase( self ): '''simple docstring''' return 100 @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCamelCase : Optional[int] = MultilingualCLIP(A_ ) UpperCamelCase : Union[str, Any] = text_encoder.eval() return text_encoder @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[int] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase : List[Any] = UNetaDConditionModel(**A_ ) return model @property def __UpperCamelCase( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.dummy_text_encoder UpperCamelCase : str = self.dummy_tokenizer UpperCamelCase : List[Any] = self.dummy_unet UpperCamelCase : Optional[Any] = self.dummy_movq UpperCamelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) UpperCamelCase : Optional[Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' UpperCamelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase : List[Any] = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((256, 256) ) # create mask UpperCamelCase : str = np.ones((64, 64) , dtype=np.floataa ) UpperCamelCase : str = 0 if str(A_ ).startswith("mps" ): UpperCamelCase : int = torch.manual_seed(A_ ) else: UpperCamelCase : Tuple = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Union[str, Any] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = "cpu" UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**A_ ) UpperCamelCase : Tuple = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Any = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase : List[Any] = output.images UpperCamelCase : List[Any] = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCamelCase : Union[str, Any] = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __UpperCamelCase( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCamelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) UpperCamelCase : str = 0 UpperCamelCase : List[Any] = "a hat" UpperCamelCase : Tuple = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCamelCase : Optional[Any] = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : Optional[Any] = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase : Dict = pipeline( A_ , image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) UpperCamelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ )
52
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( _snake_case , _snake_case ): @register_to_config def __init__( self , _lowerCamelCase = 128 , _lowerCamelCase = 256 , _lowerCamelCase = 2000.0 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 64 , _lowerCamelCase = 2048 , _lowerCamelCase = 0.1 , ): super().__init__() a :Union[str, Any] = nn.Sequential( nn.Linear(_lowerCamelCase , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , ) a :Union[str, Any] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) a :Tuple = False a :Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) a :Any = nn.Dropout(p=_lowerCamelCase ) a :List[Any] = nn.ModuleList() for lyr_num in range(_lowerCamelCase ): # FiLM conditional T5 decoder a :Tuple = DecoderLayer(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) self.decoders.append(_lowerCamelCase ) a :Union[str, Any] = TaLayerNorm(_lowerCamelCase ) a :Optional[int] = nn.Dropout(p=_lowerCamelCase ) a :str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :Tuple = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. a :str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) a :Any = self.conditioning_emb(_lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) a :str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. a :Any = torch.broadcast_to( torch.arange(_lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) a :Tuple = self.position_encoding(_lowerCamelCase ) a :Any = self.continuous_inputs_projection(_lowerCamelCase ) inputs += position_encodings a :int = self.dropout(_lowerCamelCase ) # decoder: No padding present. a :str = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. a :List[Any] = [(x, self.encoder_decoder_mask(_lowerCamelCase , _lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings a :str = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) a :str = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: a :List[str] = lyr( _lowerCamelCase , conditioning_emb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , )[0] a :Tuple = self.decoder_norm(_lowerCamelCase ) a :str = self.post_dropout(_lowerCamelCase ) a :Tuple = self.spec_out(_lowerCamelCase ) return spec_out class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-6 ): super().__init__() a :List[str] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): a :str = self.layer[0]( _lowerCamelCase , conditioning_emb=_lowerCamelCase , attention_mask=_lowerCamelCase , ) if encoder_hidden_states is not None: a :Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) a :Any = self.layer[1]( _lowerCamelCase , key_value_states=_lowerCamelCase , attention_mask=_lowerCamelCase , ) # Apply Film Conditional Feed Forward layer a :int = self.layer[-1](_lowerCamelCase , _lowerCamelCase ) return (hidden_states,) class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): super().__init__() a :Any = TaLayerNorm(_lowerCamelCase ) a :Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) a :str = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) a :Optional[Any] = nn.Dropout(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): # pre_self_attention_layer_norm a :int = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: a :Dict = self.FiLMLayer(_lowerCamelCase , _lowerCamelCase ) # Self-attention block a :int = self.attention(_lowerCamelCase ) a :str = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): super().__init__() a :Optional[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) a :List[Any] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) a :str = nn.Dropout(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): a :Optional[int] = self.layer_norm(_lowerCamelCase ) a :int = self.attention( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) a :Optional[int] = hidden_states + self.dropout(_lowerCamelCase ) return layer_output class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): super().__init__() a :int = TaDenseGatedActDense(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) a :int = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) a :List[str] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) a :Any = nn.Dropout(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None ): a :str = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: a :Union[str, Any] = self.film(_lowerCamelCase , _lowerCamelCase ) a :Any = self.DenseReluDense(_lowerCamelCase ) a :Any = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): super().__init__() a :int = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) a :Optional[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) a :Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) a :Dict = nn.Dropout(_lowerCamelCase ) a :Optional[Any] = NewGELUActivation() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :List[Any] = self.act(self.wi_a(_lowerCamelCase ) ) a :Any = self.wi_a(_lowerCamelCase ) a :Union[str, Any] = hidden_gelu * hidden_linear a :str = self.dropout(_lowerCamelCase ) a :Dict = self.wo(_lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase=1e-6 ): super().__init__() a :str = nn.Parameter(torch.ones(_lowerCamelCase ) ) a :Dict = eps def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 a :Any = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowerCamelCase ) a :List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: a :Dict = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _snake_case ( nn.Module ): def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(_lowerCamelCase , 3.0 )) )) class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__() a :List[Any] = nn.Linear(_lowerCamelCase , out_features * 2 , bias=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :str = self.scale_bias(_lowerCamelCase ) a :Any = torch.chunk(_lowerCamelCase , 2 , -1 ) a :Optional[int] = x * (1 + scale) + shift return x
371
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : List[str] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'efficientnet' def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 600 , _lowerCamelCase = 2.0 , _lowerCamelCase = 3.1 , _lowerCamelCase = 8 , _lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , _lowerCamelCase = [32, 16, 24, 40, 80, 112, 192] , _lowerCamelCase = [16, 24, 40, 80, 112, 192, 320] , _lowerCamelCase = [] , _lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , _lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , _lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , _lowerCamelCase = 0.25 , _lowerCamelCase = "swish" , _lowerCamelCase = 2560 , _lowerCamelCase = "mean" , _lowerCamelCase = 0.02 , _lowerCamelCase = 0.001 , _lowerCamelCase = 0.99 , _lowerCamelCase = 0.5 , _lowerCamelCase = 0.2 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :Optional[int] = num_channels a :List[str] = image_size a :int = width_coefficient a :Optional[Any] = depth_coefficient a :Any = depth_divisor a :Any = kernel_sizes a :Tuple = in_channels a :Union[str, Any] = out_channels a :Any = depthwise_padding a :Any = strides a :Optional[Any] = num_block_repeats a :Tuple = expand_ratios a :Dict = squeeze_expansion_ratio a :int = hidden_act a :Dict = hidden_dim a :Tuple = pooling_type a :Any = initializer_range a :Tuple = batch_norm_eps a :Optional[int] = batch_norm_momentum a :List[Any] = dropout_rate a :Optional[int] = drop_connect_rate a :Tuple = sum(_lowerCamelCase ) * 4 class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1e-5
281
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a__: Any = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right a__: str = 256_047 a__: Union[str, Any] = 256_145 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = NllbTokenizer __SCREAMING_SNAKE_CASE = NllbTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = {} def UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing A__ = NllbTokenizer(__lowerCamelCase,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ): A__ = NllbTokenizer(__lowerCamelCase,keep_accents=__lowerCamelCase ) A__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ),[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],) A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ],) A__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ],) A__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ],) def UpperCamelCase ( self ): A__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = self.tokenizer_class.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(__lowerCamelCase ) A__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) A__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowerCamelCase,__lowerCamelCase ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(__lowerCamelCase ) A__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase,__lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(__lowerCamelCase,legacy_format=__lowerCamelCase ) A__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase,__lowerCamelCase ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(__lowerCamelCase ) A__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase,__lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(__lowerCamelCase,legacy_format=__lowerCamelCase ) A__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(__lowerCamelCase ) A__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase,__lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @require_torch def UpperCamelCase ( self ): if not self.test_seqaseq: return A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. A__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] A__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: A__ = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase,tgt_texts=__lowerCamelCase,max_length=3,max_target_length=10,return_tensors='''pt''',src_lang='''eng_Latn''',tgt_lang='''ron_Latn''',) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.labels.shape[1],10 ) # max_target_length will default to max_length if not specified A__ = tokenizer.prepare_seqaseq_batch( __lowerCamelCase,tgt_texts=__lowerCamelCase,max_length=3,return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.labels.shape[1],3 ) A__ = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCamelCase,max_length=3,max_target_length=10,return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1],3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1],3 ) self.assertNotIn('''decoder_input_ids''',__lowerCamelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = [AddedToken('''<special>''',lstrip=__lowerCamelCase )] A__ = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase,additional_special_tokens=__lowerCamelCase,**__lowerCamelCase ) A__ = tokenizer_r.encode('''Hey this is a <special> token''' ) A__ = tokenizer_r.encode('''<special>''',add_special_tokens=__lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A__ = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase,additional_special_tokens=__lowerCamelCase,**__lowerCamelCase,) A__ = self.tokenizer_class.from_pretrained( __lowerCamelCase,additional_special_tokens=__lowerCamelCase,**__lowerCamelCase ) A__ = tokenizer_p.encode('''Hey this is a <special> token''' ) A__ = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(__lowerCamelCase,__lowerCamelCase ) self.assertEqual(__lowerCamelCase,__lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = '''facebook/nllb-200-distilled-600M''' __SCREAMING_SNAKE_CASE = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __SCREAMING_SNAKE_CASE = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __SCREAMING_SNAKE_CASE = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def UpperCamelCase ( cls ): A__ = NllbTokenizer.from_pretrained( cls.checkpoint_name,src_lang='''eng_Latn''',tgt_lang='''ron_Latn''' ) A__ = 1 return cls def UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''],25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''],25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''],25_6057 ) def UpperCamelCase ( self ): A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens,__lowerCamelCase ) def UpperCamelCase ( self ): self.assertIn(__lowerCamelCase,self.tokenizer.all_special_ids ) # fmt: off A__ = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on A__ = self.tokenizer.decode(__lowerCamelCase,skip_special_tokens=__lowerCamelCase ) A__ = self.tokenizer.decode(generated_ids[1:],skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase,__lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token,__lowerCamelCase ) def UpperCamelCase ( self ): A__ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0],__lowerCamelCase ) A__ = 10 A__ = self.tokenizer(__lowerCamelCase,max_length=__lowerCamelCase,truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1],2 ) self.assertEqual(ids[0],__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ),__lowerCamelCase ) def UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ),[25_6203, 3] ) def UpperCamelCase ( self ): A__ = tempfile.mkdtemp() A__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) A__ = NllbTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids,__lowerCamelCase ) @require_torch def UpperCamelCase ( self ): A__ = self.tokenizer( self.src_text,text_target=self.tgt_text,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=len(self.expected_src_tokens ),return_tensors='''pt''',) A__ = shift_tokens_right( batch['''labels'''],self.tokenizer.pad_token_id,self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(__lowerCamelCase,__lowerCamelCase ) self.assertEqual((2, 15),batch.input_ids.shape ) self.assertEqual((2, 15),batch.attention_mask.shape ) A__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens,__lowerCamelCase ) self.assertEqual(__lowerCamelCase,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] ) def UpperCamelCase ( self ): A__ = self.tokenizer(self.src_text,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=3,return_tensors='''pt''' ) A__ = self.tokenizer( text_target=self.tgt_text,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=10,return_tensors='''pt''' ) A__ = targets['''input_ids'''] A__ = shift_tokens_right( __lowerCamelCase,self.tokenizer.pad_token_id,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang],) self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.decoder_input_ids.shape[1],10 ) @require_torch def UpperCamelCase ( self ): A__ = self.tokenizer._build_translation_inputs( '''A test''',return_tensors='''pt''',src_lang='''eng_Latn''',tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(__lowerCamelCase ),{ # A, test, EOS, en_XX '''input_ids''': [[25_6047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_6057, },) @require_torch def UpperCamelCase ( self ): A__ = True A__ = self.tokenizer( '''UN Chief says there is no military solution in Syria''',src_lang='''eng_Latn''',tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids,[1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) A__ = False A__ = self.tokenizer( '''UN Chief says there is no military solution in Syria''',src_lang='''eng_Latn''',tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids,[25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
193
class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = set_counts A__ = max(__lowerCamelCase ) A__ = len(__lowerCamelCase ) A__ = [1] * num_sets A__ = list(range(__lowerCamelCase ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.get_parent(__lowerCamelCase ) A__ = self.get_parent(__lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A__ = 0 A__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A__ = 0 A__ = src_parent A__ = self.set_counts[src_parent] A__ = max(self.max_set,__lowerCamelCase ) return True def UpperCamelCase ( self,__lowerCamelCase ): if self.parents[disj_set] == disj_set: return disj_set A__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
193
1
class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None ) -> int: a_ : Tuple = data a_ : List[str] = previous a_ : Optional[Any] = next_node def __str__( self : Tuple ) -> str: return F"""{self.data}""" def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return self.data def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return self.next def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: return self.previous class SCREAMING_SNAKE_CASE__ : def __init__( self : int , SCREAMING_SNAKE_CASE__ : str ) -> int: a_ : Union[str, Any] = head def __iter__( self : List[str] ) -> Union[str, Any]: return self def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: if not self.current: raise StopIteration else: a_ : Optional[Any] = self.current.get_data() a_ : int = self.current.get_next() return value class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] ) -> Tuple: a_ : Union[str, Any] = None # First node in list a_ : Tuple = None # Last node in list def __str__( self : Dict ) -> Tuple: a_ : Optional[int] = self.head a_ : Union[str, Any] = [] while current is not None: nodes.append(current.get_data() ) a_ : Optional[int] = current.get_next() return " ".join(str(SCREAMING_SNAKE_CASE__ ) for node in nodes ) def __contains__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: a_ : List[Any] = self.head while current: if current.get_data() == value: return True a_ : List[str] = current.get_next() return False def __iter__( self : List[Any] ) -> Optional[int]: return LinkedListIterator(self.head ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: if self.head: return self.head.get_data() return None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: if self.tail: return self.tail.get_data() return None def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Node ) -> None: if self.head is None: a_ : int = node a_ : int = node else: self.insert_before_node(self.head , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Node ) -> None: if self.head is None: self.set_head(SCREAMING_SNAKE_CASE__ ) else: self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> None: a_ : List[Any] = Node(SCREAMING_SNAKE_CASE__ ) if self.head is None: self.set_head(SCREAMING_SNAKE_CASE__ ) else: self.set_tail(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Node , SCREAMING_SNAKE_CASE__ : Node ) -> None: a_ : List[str] = node a_ : Union[str, Any] = node.previous if node.get_previous() is None: a_ : List[str] = node_to_insert else: a_ : List[str] = node_to_insert a_ : str = node_to_insert def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Node , SCREAMING_SNAKE_CASE__ : Node ) -> None: a_ : int = node a_ : Tuple = node.next if node.get_next() is None: a_ : Any = node_to_insert else: a_ : Tuple = node_to_insert a_ : Optional[int] = node_to_insert def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: a_ : Optional[int] = 1 a_ : List[Any] = Node(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.head while node: if current_position == position: self.insert_before_node(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_position += 1 a_ : Any = node.next self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Node: a_ : List[Any] = self.head while node: if node.get_data() == item: return node a_ : Dict = node.get_next() raise Exception('Node not found' ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: if (node := self.get_node(SCREAMING_SNAKE_CASE__ )) is not None: if node == self.head: a_ : List[Any] = self.head.get_next() if node == self.tail: a_ : Tuple = self.tail.get_previous() self.remove_node_pointers(SCREAMING_SNAKE_CASE__ ) @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : Node ) -> None: if node.get_next(): a_ : Tuple = node.previous if node.get_previous(): a_ : List[str] = node.next a_ : int = None a_ : Union[str, Any] = None def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return self.head is None def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
120
def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: """simple docstring""" a_ : int = len(__A ) for _ in range(__A ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: a_ , a_ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ : int = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
120
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case : Optional[int] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } __snake_case : Any = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } __snake_case : Optional[int] = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class A__(a_ ): """simple docstring""" _A : List[str] = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Any = PRETRAINED_INIT_CONFIGURATION _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = RealmTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase="[UNK]" , _lowercase="[SEP]" , _lowercase="[PAD]" , _lowercase="[CLS]" , _lowercase="[MASK]" , _lowercase=True , _lowercase=None , **_lowercase , ) -> Tuple: super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) a_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowercase ) != tokenize_chinese_chars ): a_ : int = getattr(_lowercase , normalizer_state.pop("""type""" ) ) a_ : Union[str, Any] = do_lower_case a_ : Any = strip_accents a_ : str = tokenize_chinese_chars a_ : str = normalizer_class(**_lowercase ) a_ : List[str] = do_lower_case def UpperCamelCase__ ( self , _lowercase , **_lowercase ) -> int: a_ : Optional[int] = PaddingStrategy.MAX_LENGTH a_ : List[Any] = text a_ : Optional[int] = kwargs.pop("""text_pair""" , _lowercase ) a_ : Union[str, Any] = kwargs.pop("""return_tensors""" , _lowercase ) a_ : Dict = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_lowercase ): if batch_text_pair is not None: a_ : Dict = batch_text_pair[idx] else: a_ : Union[str, Any] = None a_ : int = super().__call__(_lowercase , _lowercase , return_tensors=_lowercase , **_lowercase ) a_ : int = encoded_candidates.get("""input_ids""" ) a_ : Any = encoded_candidates.get("""attention_mask""" ) a_ : Optional[int] = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowercase ) a_ : Optional[Any] = {key: item for key, item in output_data.items() if len(_lowercase ) != 0} return BatchEncoding(_lowercase , tensor_type=_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase=None ) -> int: a_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: a_ : Optional[Any] = [self.sep_token_id] a_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: a_ : List[str] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
248
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __snake_case : Dict = """<<<<<<< This should probably be modified because it mentions: """ __snake_case : Any = """======= >>>>>>> """ __snake_case : Any = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __snake_case : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def _UpperCAmelCase ( a__): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory) class A__(a_ ): """simple docstring""" @staticmethod def UpperCamelCase__ ( _lowercase ) -> Dict: a_ : Optional[Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=_lowercase , required=_lowercase , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=_lowercase , required=_lowercase , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , _lowercase , *_lowercase ) -> str: a_ : List[Any] = get_logger("""datasets-cli/converting""" ) a_ : Optional[Any] = tfds_path a_ : List[Any] = datasets_directory def UpperCamelCase__ ( self ) -> Dict: if os.path.isdir(self._tfds_path ): a_ : List[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a_ : Dict = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) a_ : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a_ : Dict = [] a_ : Tuple = [] a_ : str = {} if os.path.isdir(self._tfds_path ): a_ : str = os.listdir(_lowercase ) else: a_ : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) a_ : List[str] = os.path.join(_lowercase , _lowercase ) a_ : Dict = os.path.join(_lowercase , _lowercase ) if not os.path.isfile(_lowercase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(_lowercase , encoding="""utf-8""" ) as f: a_ : Any = f.readlines() a_ : Any = [] a_ : str = False a_ : List[str] = False a_ : List[Any] = [] for line in lines: a_ : Union[str, Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a_ : List[Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here a_ : Optional[int] = """""" continue elif "from absl import logging" in out_line: a_ : List[str] = """from datasets import logging\n""" elif "getLogger" in out_line: a_ : List[str] = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a_ : Dict = True a_ : Optional[Any] = list(filter(lambda _lowercase : e in out_line , _lowercase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowercase ) + """\n""" ) out_lines.append(_lowercase ) out_lines.append(_lowercase ) continue else: for pattern, replacement in TO_CONVERT: a_ : List[str] = re.sub(_lowercase , _lowercase , _lowercase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a_ : Tuple = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , _lowercase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) a_ : Optional[int] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a_ : Optional[Any] = True out_lines.append(_lowercase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a_ : List[str] = f_name.replace(""".py""" , """""" ) a_ : Optional[int] = os.path.join(_lowercase , _lowercase ) a_ : Dict = os.path.join(_lowercase , _lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowercase ) if needs_manual_update: with_manual_update.append(_lowercase ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.writelines(_lowercase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: a_ : Optional[int] = os.path.basename(_lowercase ) a_ : List[Any] = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(_lowercase , _lowercase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
248
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase_ : """simple docstring""" lowercase = MBartConfig lowercase = {} lowercase = "gelu" def __init__( self : Dict , snake_case_ : str , snake_case_ : Tuple=13 , snake_case_ : Optional[Any]=7 , snake_case_ : List[Any]=True , snake_case_ : List[str]=False , snake_case_ : Any=99 , snake_case_ : str=32 , snake_case_ : int=2 , snake_case_ : Optional[Any]=4 , snake_case_ : Tuple=37 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.1 , snake_case_ : Dict=20 , snake_case_ : Optional[int]=2 , snake_case_ : List[Any]=1 , snake_case_ : Dict=0 , ): snake_case__ : int = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : Union[str, Any] = is_training snake_case__ : Optional[int] = use_labels snake_case__ : str = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : List[Any] = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : Tuple = bos_token_id def lowerCamelCase ( self : Dict ): snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ : List[Any] = prepare_mbart_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def lowerCamelCase ( self : int , snake_case_ : Dict , snake_case_ : str ): snake_case__ : Union[str, Any] = TFMBartModel(config=snake_case_ ).get_decoder() snake_case__ : Any = inputs_dict["""input_ids"""] snake_case__ : Union[str, Any] = input_ids[:1, :] snake_case__ : Any = inputs_dict["""attention_mask"""][:1, :] snake_case__ : Optional[Any] = inputs_dict["""head_mask"""] snake_case__ : Optional[int] = 1 # first forward pass snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) snake_case__ , snake_case__ : List[Any] = outputs.to_tuple() snake_case__ : Tuple = past_key_values[1] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , ) -> str: if attention_mask is None: snake_case__ : Union[str, Any] = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def lowerCamelCase ( self : str , snake_case_ : List[str] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[str] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCamelCase ( self : str ): snake_case__ : int = TFMBartModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=snake_case_ ) def lowerCamelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : List[str] ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" lowercase = [ " UN Chief Says There Is No Military Solution in Syria", ] lowercase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowercase = "facebook/mbart-large-en-ro" @cached_property def lowerCamelCase ( self : Optional[Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase ( self : List[Any] ): snake_case__ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase ( self : Union[str, Any] , **snake_case_ : int ): snake_case__ : Tuple = self.translate_src_text(**snake_case_ ) self.assertListEqual(self.expected_text , snake_case_ ) def lowerCamelCase ( self : List[str] , **snake_case_ : Any ): snake_case__ : Tuple = self.tokenizer(self.src_text , **snake_case_ , return_tensors="""tf""" ) snake_case__ : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case__ : str = self.tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) return generated_words @slow def lowerCamelCase ( self : int ): self._assert_generated_batch_equal_expected()
35
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : List[str] = value elif weight_type == "bias": snake_case__ : Optional[Any] = value else: snake_case__ : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ : Optional[int] = None for name, value in fairseq_dict.items(): snake_case__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Union[str, Any] = True elif name.split(""".""" )[0] == "proj": snake_case__ : Tuple = fairseq_model.proj snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case__ : Tuple = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case__ : str = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name: snake_case__ : Dict = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" else: snake_case__ : Union[str, Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : Dict = name.split(""".""" ) snake_case__ : Any = int(items[0] ) snake_case__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : List[str] = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : int = f.readlines() snake_case__ : List[Any] = [line.split(""" """ )[0] for line in lines] snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) snake_case__ : Any = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() # set weights for wav2vec2 encoder snake_case__ : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) snake_case__ : Dict = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaForCausalLM(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case__ : List[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) snake_case__ : Tuple = False # add projection layer snake_case__ : Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case__ : int = nn.Parameter(projection_layer.bias ) snake_case__ : Tuple = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Tuple = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Optional[Any] = tokenizer.bos_token_id snake_case__ : int = tokenizer.eos_token_id snake_case__ : str = """speech_to_text_2""" snake_case__ : List[Any] = """wav2vec2""" snake_case__ : List[str] = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
35
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _A = logging.get_logger(__name__) class A ( enum.Enum ): __snake_case = 0 __snake_case = 1 @add_end_docstrings(__UpperCAmelCase ) class A ( __UpperCAmelCase ): __snake_case = 'generated' def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" super().__init__(*UpperCamelCase__, **UpperCamelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = {} if truncation is not None: lowerCAmelCase_ = truncation lowerCAmelCase_ = generate_kwargs lowerCAmelCase_ = {} if return_tensors is not None and return_type is None: lowerCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase_ = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase_ = self.tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowerCAmelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return True def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0], UpperCamelCase__ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowerCAmelCase_ = ([prefix + arg for arg in args[0]],) lowerCAmelCase_ = True elif isinstance(args[0], UpperCamelCase__ ): lowerCAmelCase_ = (prefix + args[0],) lowerCAmelCase_ = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) lowerCAmelCase_ = self.tokenizer(*UpperCamelCase__, padding=UpperCamelCase__, truncation=UpperCamelCase__, return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = super().__call__(*UpperCamelCase__, **UpperCamelCase__ ) if ( isinstance(args[0], UpperCamelCase__ ) and all(isinstance(UpperCamelCase__, UpperCamelCase__ ) for el in args[0] ) and all(len(UpperCamelCase__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=TruncationStrategy.DO_NOT_TRUNCATE, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self._parse_and_tokenize(UpperCamelCase__, truncation=UpperCamelCase__, **UpperCamelCase__ ) return inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" if self.framework == "pt": lowerCAmelCase_ , lowerCAmelCase_ = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowerCAmelCase_ , lowerCAmelCase_ = tf.shape(model_inputs['''input_ids'''] ).numpy() lowerCAmelCase_ = generate_kwargs.get('''min_length''', self.model.config.min_length ) lowerCAmelCase_ = generate_kwargs.get('''max_length''', self.model.config.max_length ) self.check_inputs(UpperCamelCase__, generate_kwargs['''min_length'''], generate_kwargs['''max_length'''] ) lowerCAmelCase_ = self.model.generate(**UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase_ = output_ids.reshape(UpperCamelCase__, out_b // in_b, *output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase_ = tf.reshape(UpperCamelCase__, (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=ReturnType.TEXT, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase_ = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase_ = { f"{self.return_name}_text": self.tokenizer.decode( UpperCamelCase__, skip_special_tokens=UpperCamelCase__, clean_up_tokenization_spaces=UpperCamelCase__, ) } records.append(UpperCamelCase__ ) return records @add_end_docstrings(__UpperCAmelCase ) class A ( __UpperCAmelCase ): __snake_case = 'summary' def __call__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return super().__call__(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(__UpperCAmelCase ) class A ( __UpperCAmelCase ): __snake_case = 'translation' def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, UpperCamelCase__=TruncationStrategy.DO_NOT_TRUNCATE, UpperCamelCase__=None, UpperCamelCase__=None ): """simple docstring""" if getattr(self.tokenizer, '''_build_translation_inputs''', UpperCamelCase__ ): return self.tokenizer._build_translation_inputs( *UpperCamelCase__, return_tensors=self.framework, truncation=UpperCamelCase__, src_lang=UpperCamelCase__, tgt_lang=UpperCamelCase__ ) else: return super()._parse_and_tokenize(*UpperCamelCase__, truncation=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = super()._sanitize_parameters(**UpperCamelCase__ ) if src_lang is not None: lowerCAmelCase_ = src_lang if tgt_lang is not None: lowerCAmelCase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase_ = kwargs.get('''task''', self.task ) lowerCAmelCase_ = task.split('''_''' ) if task and len(UpperCamelCase__ ) == 4: # translation, XX, to YY lowerCAmelCase_ = items[1] lowerCAmelCase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return super().__call__(*UpperCamelCase__, **UpperCamelCase__ )
167
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _A = logging.get_logger(__name__) _A = TypeVar('''DatasetType''', Dataset, IterableDataset) def __UpperCamelCase ( _A , _A = None , _A = None , _A = None , _A = None , _A = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(_A )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) else: return _interleave_iterable_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) def __UpperCamelCase ( _A , _A = None , _A = None , _A = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(_A )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_A ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}." ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_A , info=_A , split=_A , axis=_A ) else: return _concatenate_iterable_datasets(_A , info=_A , split=_A , axis=_A )
167
1
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase (_a ): _lowercase = """M-CLIP""" def __init__( self: int,A_: Any=1024,A_: Union[str, Any]=768,**A_: str ): '''simple docstring''' __UpperCamelCase = transformerDimSize __UpperCamelCase = imageDimSize super().__init__(**A_ ) class __lowerCamelCase (_a ): _lowercase = MCLIPConfig def __init__( self: int,A_: Optional[Any],*A_: List[str],**A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_,*A_,**A_ ) __UpperCamelCase = XLMRobertaModel(A_ ) __UpperCamelCase = torch.nn.Linear( in_features=config.transformerDimensions,out_features=config.numDims ) def snake_case_ ( self: Dict,A_: int,A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.transformer(input_ids=A_,attention_mask=A_ )[0] __UpperCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A_ ), embs
310
1
'''simple docstring''' from math import isqrt, loga def a ( __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __a , __a ): UpperCamelCase__ :List[Any] = False return [i for i in range(2 , __a ) if is_prime[i]] def a ( __a = 800800 , __a = 800800 ) -> int: '''simple docstring''' UpperCamelCase__ :int = degree * loga(__a ) UpperCamelCase__ :Union[str, Any] = int(__a ) UpperCamelCase__ :List[str] = calculate_prime_numbers(__a ) UpperCamelCase__ :int = 0 UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :List[str] = len(__a ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
219
'''simple docstring''' from __future__ import annotations __snake_case = list[list[int]] # assigning initial values to the grid __snake_case = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __snake_case = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a ( __a , __a , __a , __a ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a ( __a ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a ( __a ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(__a ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): UpperCamelCase__ :Tuple = digit if sudoku(__a ) is not None: return grid UpperCamelCase__ :Union[str, Any] = 0 return None def a ( __a ) -> None: '''simple docstring''' for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __snake_case = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
219
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowercase : a = BlenderbotConfig a = {} a = """gelu""" def __init__( self: str , UpperCamelCase__: Dict , UpperCamelCase__: Any=13 , UpperCamelCase__: List[Any]=7 , UpperCamelCase__: str=True , UpperCamelCase__: Dict=False , UpperCamelCase__: Optional[Any]=99 , UpperCamelCase__: Dict=32 , UpperCamelCase__: int=2 , UpperCamelCase__: str=4 , UpperCamelCase__: Any=37 , UpperCamelCase__: str=0.1 , UpperCamelCase__: int=0.1 , UpperCamelCase__: Dict=20 , UpperCamelCase__: Union[str, Any]=2 , UpperCamelCase__: Optional[int]=1 , UpperCamelCase__: Optional[int]=0 , ): lowerCamelCase__ : str = parent lowerCamelCase__ : Tuple = batch_size lowerCamelCase__ : Dict = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[Any] = pad_token_id lowerCamelCase__ : int = bos_token_id def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : int = prepare_blenderbot_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Dict ): lowerCamelCase__ : Optional[int] = TFBlenderbotModel(config=UpperCamelCase__ ).get_decoder() lowerCamelCase__ : Optional[int] = inputs_dict["""input_ids"""] lowerCamelCase__ : Any = input_ids[:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase__ : str = inputs_dict["""head_mask"""] lowerCamelCase__ : List[str] = 1 # first forward pass lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase__ : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase__ : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowerCamelCase__ : Tuple = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase__ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ) -> Any: if attention_mask is None: lowerCamelCase__ : Dict = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): a = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () a = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () a = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) a = True a = False a = False def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = TFBlenderbotModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_tokenizers @require_tf class _lowercase ( unittest.TestCase ): a = ["""My friends are cool but they eat too many carbs."""] a = """facebook/blenderbot-400M-distill""" @cached_property def lowerCamelCase_ ( self: List[str] ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text , return_tensors="""tf""" ) lowerCamelCase__ : Tuple = self.model.generate( model_inputs.input_ids , ) lowerCamelCase__ : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _SCREAMING_SNAKE_CASE (A ) -> Optional[Any]: """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A , A ) def _SCREAMING_SNAKE_CASE (A ) -> List[str]: """simple docstring""" lowercase__ ,lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A , A , bias=A ) lowercase__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (A , A="facebook/mbart-large-en-ro" , A=False , A=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A ) lowercase__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase__ = MBartConfig.from_pretrained(A , vocab_size=A ) if mbart_aa and finetuned: lowercase__ = '''relu''' lowercase__ = state_dict['''decoder.embed_tokens.weight'''] lowercase__ = MBartForConditionalGeneration(A ) model.model.load_state_dict(A ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase : Any = parser.parse_args() lowerCamelCase : List[str] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
2
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __UpperCAmelCase = input('''Enter image url: ''').strip() print(f"""Downloading image from {url} ...""") __UpperCAmelCase = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image __UpperCAmelCase = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] __UpperCAmelCase = requests.get(image_url).content __UpperCAmelCase = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, '''wb''') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
353
from math import factorial def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : float ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(__magic_name__ , __magic_name__ ) or not isinstance(__magic_name__ , __magic_name__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) a__: Optional[Any] =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a__: str =float(factorial(__magic_name__ ) ) coefficient /= factorial(__magic_name__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
42
0
'''simple docstring''' def snake_case ( UpperCAmelCase )-> List[str]: """simple docstring""" stooge(UpperCAmelCase , 0 , len(UpperCAmelCase ) - 1 ) return arr def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> Dict: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __A , __A = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __A = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase , UpperCAmelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(UpperCAmelCase , i + t , (UpperCAmelCase) ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase , UpperCAmelCase , (h - t) ) if __name__ == "__main__": a__ : Any = input("Enter numbers separated by a comma:\n").strip() a__ : Union[str, Any] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
161
'''simple docstring''' def snake_case ( UpperCAmelCase )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
161
1
from __future__ import annotations def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
356
from __future__ import annotations def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: SCREAMING_SNAKE_CASE = i + 1 else: SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
193
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowercase : List[Any] = datasets.logging.get_logger(__name__) lowercase : List[str] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowercase : Union[str, Any] = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowercase : Tuple = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=False , __A=False , __A=True , __A=False , __A="dummy_doc" ) -> str: _snake_case = {doc: key_lines} _snake_case = {doc: sys_lines} _snake_case = {} _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case = 0 _snake_case , _snake_case = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A ) key_singletons_num += singletons_num if NP_only or min_span: _snake_case = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) _snake_case , _snake_case = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A ) sys_singletons_num += singletons_num if NP_only or min_span: _snake_case = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) if remove_nested: _snake_case , _snake_case = reader.remove_nested_coref_mentions(__A , __A ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _snake_case , _snake_case = reader.remove_nested_coref_mentions(__A , __A ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _snake_case = reader.get_mention_assignments(__A , __A ) _snake_case = reader.get_mention_assignments(__A , __A ) _snake_case = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( 'Number of resulting singleton clusters in the key ' F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively' ) return doc_coref_infos def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A , __A , __A ) -> Any: _snake_case = get_coref_infos(__A , __A , __A , __A , __A , __A ) _snake_case = {} _snake_case = 0 _snake_case = 0 for name, metric in metrics: _snake_case , _snake_case , _snake_case = evaluator.evaluate_documents(__A , __A , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _snake_case = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({'conll_score': conll} ) return output_scores def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: _snake_case = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _snake_case = line.split()[5] if not parse_col == "-": _snake_case = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" _snake_case = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _snake_case = util.check_gold_parse_annotation(lowerCAmelCase_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _snake_case = evaluate( key_lines=lowerCAmelCase_ , sys_lines=lowerCAmelCase_ , metrics=lowerCAmelCase_ , NP_only=lowerCAmelCase_ , remove_nested=lowerCAmelCase_ , keep_singletons=lowerCAmelCase_ , min_span=lowerCAmelCase_ , ) return score
42
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : Union[str, Any] =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = TextaTextGenerationPipeline(model=__a , tokenizer=__a ) return generator, ["Something to write", "Something else"] def snake_case ( self , __a , __a ): __lowerCAmelCase = generator("Something there" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) __lowerCAmelCase = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) __lowerCAmelCase = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) with self.assertRaises(__a ): generator(4 ) @require_torch def snake_case ( self ): __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=__a ) self.assertEqual(__a , [{"generated_text": ""}] ) __lowerCAmelCase = 3 __lowerCAmelCase = generator( "Something there" , num_return_sequences=__a , num_beams=__a , ) __lowerCAmelCase = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(__a , __a ) __lowerCAmelCase = generator("This is a test" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) __lowerCAmelCase = generator.model.config.eos_token_id __lowerCAmelCase = "<pad>" __lowerCAmelCase = generator( ["This is a test", "This is a second test"] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case ( self ): __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=__a ) self.assertEqual(__a , [{"generated_text": ""}] )
57
0
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict[Optional[str], Type[Formatter]] = {} _lowerCAmelCase : Dict[Optional[str], str] = {} _lowerCAmelCase : Dict[Optional[str], Exception] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , ) -> Any: '''simple docstring''' _lowerCamelCase : str = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) _lowerCamelCase : Optional[int] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) _lowerCamelCase : int = format_type def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _lowerCamelCase : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: _lowerCAmelCase : str = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: _lowerCAmelCase : Optional[int] = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: _lowerCAmelCase : Any = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def lowerCamelCase_( _lowerCamelCase ) -> Optional[str]: '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase_( _lowerCamelCase , **_lowerCamelCase ) -> Formatter: '''simple docstring''' _lowerCamelCase : str = get_format_type_from_alias(_lowerCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_lowerCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
340
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class snake_case_: def __init__( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : str=7 , UpperCamelCase_ : str=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : str=9_9 , UpperCamelCase_ : int=3_2 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Optional[Any]=5_1_2 , UpperCamelCase_ : List[str]=1_6 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : int=3 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Dict = parent lowerCAmelCase : Dict = 1_3 lowerCAmelCase : Tuple = 7 lowerCAmelCase : int = True lowerCAmelCase : List[Any] = True lowerCAmelCase : Tuple = True lowerCAmelCase : List[str] = True lowerCAmelCase : int = 9_9 lowerCAmelCase : Dict = 3_2 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 4 lowerCAmelCase : Union[str, Any] = 3_7 lowerCAmelCase : Optional[Any] = '''gelu''' lowerCAmelCase : Any = 0.1 lowerCAmelCase : str = 0.1 lowerCAmelCase : List[str] = 5_1_2 lowerCAmelCase : Any = 1_6 lowerCAmelCase : Dict = 2 lowerCAmelCase : int = 0.02 lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = 4 lowerCAmelCase : List[Any] = None def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_input_mask: lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : int = None if self.use_token_type_ids: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Any = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerModel(config=_a ) lowerCAmelCase : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase : List[Any] = [input_ids, input_mask] lowerCAmelCase : List[str] = model(_a ) lowerCAmelCase : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Any = True lowerCAmelCase : Tuple = TFRoFormerForCausalLM(config=_a ) lowerCAmelCase : Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCAmelCase : str = model(_a )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM(config=_a ) lowerCAmelCase : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCAmelCase : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Tuple = self.num_labels lowerCAmelCase : Optional[int] = TFRoFormerForSequenceClassification(config=_a ) lowerCAmelCase : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCAmelCase : Tuple = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : Union[str, Any] = TFRoFormerForMultipleChoice(config=_a ) lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCAmelCase : List[str] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForTokenClassification(config=_a ) lowerCAmelCase : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCAmelCase : Any = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : str = TFRoFormerForQuestionAnswering(config=_a ) lowerCAmelCase : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCAmelCase : Optional[int] = model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : List[Any] = config_and_inputs lowerCAmelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case_( A__ , A__ , unittest.TestCase ): __UpperCamelCase = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = TFRoFormerModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def lowerCamelCase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_a ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(_a ) @require_tf class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowerCAmelCase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : int = model(_a )[0] # TODO Replace vocab size lowerCAmelCase : Optional[int] = 5_0_0_0_0 lowerCAmelCase : Dict = [1, 6, vocab_size] self.assertEqual(output.shape , _a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : str = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-4 ) @require_tf class snake_case_( unittest.TestCase ): __UpperCamelCase = 1e-4 def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = tf.constant([[4, 1_0]] ) lowerCAmelCase : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : Union[str, Any] = emba(input_ids.shape ) lowerCAmelCase : Optional[Any] = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(_a , _a , atol=self.tolerance ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) lowerCAmelCase : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) lowerCAmelCase : Optional[Any] = emba.weight[:3, :5] tf.debugging.assert_near(_a , _a , atol=self.tolerance ) @require_tf class snake_case_( unittest.TestCase ): __UpperCamelCase = 1e-4 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowerCAmelCase : List[Any] = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowerCAmelCase : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) lowerCAmelCase : Union[str, Any] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] lowerCAmelCase, lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _a , _a , _a ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) lowerCAmelCase : Tuple = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _a , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _a , atol=self.tolerance )
60
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCamelCase : Union[str, Any] = TypeVar("KT") lowerCamelCase : Dict = TypeVar("VT") class A__ ( Generic[KT, VT] ): def __init__( self : str , _a : KT | str = "root" , _a : VT | None = None ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =key _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =[] def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' return f"Node({self.key}: {self.value})" @property def A ( self : int ) -> int: '''simple docstring''' return len(self.forward ) class A__ ( Generic[KT, VT] ): def __init__( self : Optional[Any] , _a : float = 0.5 , _a : int = 16 ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =Node[KT, VT]() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =p _SCREAMING_SNAKE_CASE =max_level def __str__( self : Tuple ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =list(self ) if len(_a ) == 0: return f"SkipList(level={self.level})" _SCREAMING_SNAKE_CASE =max((len(str(_a ) ) for item in items) , default=4 ) _SCREAMING_SNAKE_CASE =max(_a , 4 ) + 4 _SCREAMING_SNAKE_CASE =self.head _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =node.forward.copy() lines.append(f"[{node.key}]".ljust(_a , '-' ) + '* ' * len(_a ) ) lines.append(' ' * label_size + '| ' * len(_a ) ) while len(node.forward ) != 0: _SCREAMING_SNAKE_CASE =node.forward[0] lines.append( f"[{node.key}]".ljust(_a , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(_a ) ) _SCREAMING_SNAKE_CASE =node.forward lines.append('None'.ljust(_a ) + '* ' * len(_a ) ) return f"SkipList(level={self.level})\n" + "\n".join(_a ) def __iter__( self : Dict ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.head while len(node.forward ) != 0: yield node.forward[0].key _SCREAMING_SNAKE_CASE =node.forward[0] def A ( self : List[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =1 while random() < self.p and level < self.max_level: level += 1 return level def A ( self : Any , _a : Any ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _SCREAMING_SNAKE_CASE =node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_a ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def A ( self : Union[str, Any] , _a : KT ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._locate_node(_a ) if node is not None: for i, update_node in enumerate(_a ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _SCREAMING_SNAKE_CASE =node.forward[i] else: _SCREAMING_SNAKE_CASE =update_node.forward[:i] def A ( self : Optional[Any] , _a : KT , _a : VT ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._locate_node(_a ) if node is not None: _SCREAMING_SNAKE_CASE =value else: _SCREAMING_SNAKE_CASE =self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _a ): update_vector.append(self.head ) _SCREAMING_SNAKE_CASE =level _SCREAMING_SNAKE_CASE =Node(_a , _a ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_a ) else: _SCREAMING_SNAKE_CASE =new_node def A ( self : List[str] , _a : VT ) -> VT | None: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._locate_node(_a ) if node is not None: return node.value return None def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) _SCREAMING_SNAKE_CASE =skip_list.head _SCREAMING_SNAKE_CASE ={} while node.level != 0: _SCREAMING_SNAKE_CASE =node.forward[0] _SCREAMING_SNAKE_CASE =node.value assert len(_UpperCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) _SCREAMING_SNAKE_CASE =skip_list.head _SCREAMING_SNAKE_CASE ={} while node.level != 0: _SCREAMING_SNAKE_CASE =node.forward[0] _SCREAMING_SNAKE_CASE =node.value if len(_UpperCamelCase ) != 4: print() assert len(_UpperCamelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() assert skip_list.find('Some key' ) is None def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_UpperCamelCase : Dict ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" def is_sorted(_UpperCamelCase : str ): return all(next_item >= item for item, next_item in zip(_UpperCamelCase , lst[1:] ) ) _SCREAMING_SNAKE_CASE =SkipList() for i in range(10 ): skip_list.insert(_UpperCamelCase , _UpperCamelCase ) assert is_sorted(list(_UpperCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCamelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCamelCase ) ) def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
47
0
from __future__ import annotations from collections import Counter from random import random class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self ): A : Union[str, Any] = {} def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Union[str, Any] = {} def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if nodea not in self.connections: self.add_node(lowerCamelCase__ ) if nodea not in self.connections: self.add_node(lowerCamelCase__ ) A : Union[str, Any] = probability def _lowerCAmelCase ( self ): return list(self.connections ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[Any] = 0 A : int = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> dict[str, int]: """simple docstring""" A : Optional[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : Optional[Any] = Counter(graph.get_nodes() ) A : Optional[Any] = start for _ in range(_lowerCAmelCase ): A : Optional[Any] = graph.transition(_lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
115
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : str = tempfile.mkdtemp() # fmt: off A : List[Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A : Optional[int] = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) ) A : Optional[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A : Union[str, Any] = {"""unk_token""": """<unk>"""} A : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) A : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) A : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } A : List[Any] = os.path.join(self.tmpdirname, lowerCamelCase__ ) with open(self.image_processor_file, """w""", encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token="""!""", **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token="""!""", **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): A : str = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] A : Optional[int] = [Image.fromarray(np.moveaxis(lowerCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): A : Optional[Any] = self.get_tokenizer() A : Optional[Any] = self.get_rust_tokenizer() A : Optional[int] = self.get_image_processor() A : List[str] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) A : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase__ ) A : Tuple = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) A : str = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""", eos_token="""(EOS)""" ) A : Tuple = self.get_image_processor(do_normalize=lowerCamelCase__ ) A : Optional[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname, bos_token="""(BOS)""", eos_token="""(EOS)""", do_normalize=lowerCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[Any] = self.get_image_processor() A : str = self.get_tokenizer() A : List[str] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Optional[Any] = self.prepare_image_inputs() A : Optional[Any] = image_processor(lowerCamelCase__, return_tensors="""np""" ) A : Any = processor(images=lowerCamelCase__, return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def _lowerCAmelCase ( self ): A : int = self.get_image_processor() A : Optional[Any] = self.get_tokenizer() A : Optional[int] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = """lower newer""" A : Union[str, Any] = processor(text=lowerCamelCase__, return_tensors="""np""" ) A : str = tokenizer(lowerCamelCase__, return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist() ) def _lowerCAmelCase ( self ): A : Tuple = self.get_image_processor() A : int = self.get_tokenizer() A : str = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : List[str] = """lower newer""" A : Any = self.prepare_image_inputs() A : Tuple = processor(text=lowerCamelCase__, images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : str = """google/owlvit-base-patch32""" A : Dict = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) A : str = ["""cat""", """nasa badge"""] A : Optional[int] = processor(text=lowerCamelCase__ ) A : Any = 16 self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape, (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Tuple = """google/owlvit-base-patch32""" A : Any = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) A : int = [["""cat""", """nasa badge"""], ["""person"""]] A : List[Any] = processor(text=lowerCamelCase__ ) A : Dict = 16 A : List[str] = len(lowerCamelCase__ ) A : List[str] = max([len(lowerCamelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape, (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Dict = """google/owlvit-base-patch32""" A : int = OwlViTProcessor.from_pretrained(lowerCamelCase__ ) A : str = ["""cat""", """nasa badge"""] A : Optional[Any] = processor(text=lowerCamelCase__ ) A : int = 16 A : Optional[Any] = inputs["""input_ids"""] A : Optional[int] = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape, (2, seq_length) ) self.assertListEqual(list(input_ids[0] ), predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ), predicted_ids[1] ) def _lowerCAmelCase ( self ): A : Tuple = self.get_image_processor() A : Dict = self.get_tokenizer() A : Optional[Any] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = self.prepare_image_inputs() A : Optional[Any] = self.prepare_image_inputs() A : List[str] = processor(images=lowerCamelCase__, query_images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Any = self.get_image_processor() A : Optional[Any] = self.get_tokenizer() A : List[str] = OwlViTProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A : Optional[Any] = processor.batch_decode(lowerCamelCase__ ) A : Union[str, Any] = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ )
115
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __lowerCamelCase = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCAmelCase ( unittest.TestCase ,A_ ): def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' snake_case : Optional[Any] = load_tool("text-question-answering" ) self.tool.setup() snake_case : str = load_tool("text-question-answering" , remote=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : Tuple = self.tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = self.remote_tool(snake_case__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Dict = self.tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : List[Any] = self.remote_tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
59
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( __A, __A=0.999, __A="cosine", ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase__ = [] for i in range(__A ): UpperCAmelCase__ = i / num_diffusion_timesteps UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__A ) / alpha_bar_fn(__A ), __A ) ) return torch.tensor(__A, dtype=torch.floataa ) class A ( UpperCAmelCase_ , UpperCAmelCase_ ): @register_to_config def __init__(self : List[str] , __UpperCAmelCase : int = 1_0_0_0 , __UpperCAmelCase : str = "fixed_small_log" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[float] = 1.0 , __UpperCAmelCase : str = "epsilon" , __UpperCAmelCase : str = "squaredcos_cap_v2" , ) -> Optional[int]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase__ = betas_for_alpha_bar(__UpperCAmelCase ) UpperCAmelCase__ = 1.0 - self.betas UpperCAmelCase__ = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase__ = 1.0 # setable values UpperCAmelCase__ = None UpperCAmelCase__ = torch.from_numpy(np.arange(0 , __UpperCAmelCase )[::-1].copy() ) UpperCAmelCase__ = variance_type def lowercase_ (self : List[str] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, torch.device] = None ) -> Any: """simple docstring""" UpperCAmelCase__ = num_inference_steps UpperCAmelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase__ = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ) def lowercase_ (self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase__ = torch.log(torch.clamp(__UpperCAmelCase , min=1E-20 ) ) UpperCAmelCase__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase__ = variance.log() UpperCAmelCase__ = beta.log() UpperCAmelCase__ = (predicted_variance + 1) / 2 UpperCAmelCase__ = frac * max_log + (1 - frac) * min_log return variance def lowercase_ (self : Optional[int] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" UpperCAmelCase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase__ , UpperCAmelCase__ = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 ) else: UpperCAmelCase__ = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] UpperCAmelCase__ = self.alphas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ = torch.clamp( __UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase__ = 0 if t > 0: UpperCAmelCase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase , device=model_output.device ) UpperCAmelCase__ = self._get_variance( __UpperCAmelCase , predicted_variance=__UpperCAmelCase , prev_timestep=__UpperCAmelCase , ) if self.variance_type == "fixed_small_log": UpperCAmelCase__ = variance elif self.variance_type == "learned_range": UpperCAmelCase__ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) UpperCAmelCase__ = variance * variance_noise UpperCAmelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase__ = timesteps.to(original_samples.device ) UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
65
0
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__lowerCAmelCase ): _UpperCAmelCase :Dict = ['''torch''', '''torchsde'''] def __init__( self , *A_ , **A_ ): '''simple docstring''' requires_backends(self , ["torch", "torchsde"] ) @classmethod def __UpperCamelCase( cls , *A_ , **A_ ): '''simple docstring''' requires_backends(cls , ["torch", "torchsde"] ) @classmethod def __UpperCamelCase( cls , *A_ , **A_ ): '''simple docstring''' requires_backends(cls , ["torch", "torchsde"] )
365
from scipy.stats import spearmanr import datasets __lowerCamelCase : List[str] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowerCamelCase : List[Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowerCamelCase : Optional[int] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : Tuple = spearmanr(A_ , A_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
140
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowercase__ : Dict = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(**__lowercase ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__lowercase ) def snake_case__ ( self : Optional[int] , **__lowercase : Optional[Any] ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = {} # preprocess args if "points_per_batch" in kwargs: snake_case_ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: snake_case_ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: snake_case_ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: snake_case_ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: snake_case_ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: snake_case_ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: snake_case_ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: snake_case_ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: snake_case_ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: snake_case_ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: snake_case_ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: snake_case_ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , __lowercase : List[str] , *__lowercase : Optional[Any] , __lowercase : Dict=None , __lowercase : List[str]=None , **__lowercase : Optional[Any] ): """simple docstring""" return super().__call__(__lowercase , *__lowercase , num_workers=__lowercase , batch_size=__lowercase , **__lowercase ) def snake_case__ ( self : str , __lowercase : int , __lowercase : List[str]=64 , __lowercase : int = 0 , __lowercase : float = 5_12 / 15_00 , __lowercase : Optional[int] = 32 , __lowercase : Optional[int] = 1 , ): """simple docstring""" snake_case_ = load_image(__lowercase ) snake_case_ = self.image_processor.size["longest_edge"] snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.image_processor.generate_crop_boxes( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ = self.image_processor(images=__lowercase , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": snake_case_ = self.get_inference_context() with inference_context(): snake_case_ = self._ensure_tensor_on_device(__lowercase , device=self.device ) snake_case_ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) snake_case_ = image_embeddings snake_case_ = grid_points.shape[1] snake_case_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , __lowercase , __lowercase ): snake_case_ = grid_points[:, i : i + points_per_batch, :, :] snake_case_ = input_labels[:, i : i + points_per_batch] snake_case_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case__ ( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Union[str, Any]=0.88 , __lowercase : Union[str, Any]=0.95 , __lowercase : int=0 , __lowercase : int=1 , ): """simple docstring""" snake_case_ = model_inputs.pop("input_boxes" ) snake_case_ = model_inputs.pop("is_last" ) snake_case_ = model_inputs.pop("original_sizes" ).tolist() snake_case_ = model_inputs.pop("reshaped_input_sizes" ).tolist() snake_case_ = self.model(**__lowercase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks snake_case_ = model_outputs["pred_masks"] snake_case_ = self.image_processor.post_process_masks( __lowercase , __lowercase , __lowercase , __lowercase , binarize=__lowercase ) snake_case_ = model_outputs["iou_scores"] snake_case_ , snake_case_ , snake_case_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowercase , __lowercase , __lowercase , __lowercase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case__ ( self : str , __lowercase : Any , __lowercase : Optional[int]=False , __lowercase : int=False , __lowercase : List[str]=0.7 , ): """simple docstring""" snake_case_ = [] snake_case_ = [] snake_case_ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) snake_case_ = torch.cat(__lowercase ) snake_case_ = torch.cat(__lowercase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.image_processor.post_process_for_mask_generation( __lowercase , __lowercase , __lowercase , __lowercase ) snake_case_ = defaultdict(__lowercase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowercase ) snake_case_ = {} if output_rle_mask: snake_case_ = rle_mask if output_bboxes_mask: snake_case_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
187
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Dict = DiTPipeline snake_case__ : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case__ : Optional[int] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case__ : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case__ : str = False def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = TransformeraDModel( sample_size=1_6 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase__ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_0_0_0 , norm_type="ada_norm_zero" , norm_elementwise_affine=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = AutoencoderKL() __SCREAMING_SNAKE_CASE = DDIMScheduler() __SCREAMING_SNAKE_CASE = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str=0 ) -> Dict: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "cpu" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 1_6, 1_6, 3) ) __SCREAMING_SNAKE_CASE = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ , 1E-3 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase__ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self : Any ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __SCREAMING_SNAKE_CASE = ["vase", "umbrella", "white shark", "white wolf"] __SCREAMING_SNAKE_CASE = pipe.get_label_ids(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=4_0 , output_type="np" ).images for word, image in zip(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __SCREAMING_SNAKE_CASE = ["vase", "umbrella"] __SCREAMING_SNAKE_CASE = pipe.get_label_ids(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=2_5 , output_type="np" ).images for word, image in zip(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
195
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Dict = "ctrl" snake_case__ : int = ["past_key_values"] snake_case__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , UpperCAmelCase__ : Any=2_4_6_5_3_4 , UpperCAmelCase__ : List[Any]=2_5_6 , UpperCAmelCase__ : Optional[int]=1_2_8_0 , UpperCAmelCase__ : Optional[Any]=8_1_9_2 , UpperCAmelCase__ : int=4_8 , UpperCAmelCase__ : Optional[int]=1_6 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=1E-6 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Tuple , ) -> str: __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = dff __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache super().__init__(**UpperCAmelCase__ )
195
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCamelCase : Union[str, Any] = (720, 1280) # Height, Width _lowerCamelCase : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCamelCase : str = 1 / 100 _lowerCamelCase : List[str] = """""" _lowerCamelCase : List[str] = """""" _lowerCamelCase : Optional[Any] = """""" _lowerCamelCase : Dict = 250 def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" A__ , A__ = get_dataset(lowercase_ , lowercase_ ) for index in range(lowercase_ ): A__ = random.sample(range(len(lowercase_ ) ) , 4 ) A__ , A__ , A__ = update_image_and_anno( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , filter_scale=lowercase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ = random_chars(32 ) A__ = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] A__ = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , lowercase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) A__ = [] for anno in new_annos: A__ = anno[3] - anno[1] A__ = anno[4] - anno[2] A__ = anno[1] + width / 2 A__ = anno[2] + height / 2 A__ = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(lowercase_ ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[list, list]: """simple docstring""" A__ = [] A__ = [] for label_file in glob.glob(os.path.join(lowercase_ , '''*.txt''' ) ): A__ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(lowercase_ ) as in_file: A__ = in_file.readlines() A__ = os.path.join(lowercase_ , f"""{label_name}.jpg""" ) A__ = [] for obj_list in obj_lists: A__ = obj_list.rstrip('''\n''' ).split(''' ''' ) A__ = float(obj[1] ) - float(obj[3] ) / 2 A__ = float(obj[2] ) - float(obj[4] ) / 2 A__ = float(obj[1] ) + float(obj[3] ) / 2 A__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase_ ) labels.append(lowercase_ ) return img_paths, labels def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" A__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ = int(scale_x * output_size[1] ) A__ = int(scale_y * output_size[0] ) A__ = [] A__ = [] for i, index in enumerate(lowercase_ ): A__ = all_img_list[index] path_list.append(lowercase_ ) A__ = all_annos[index] A__ = cva.imread(lowercase_ ) if i == 0: # top-left A__ = cva.resize(lowercase_ , (divid_point_x, divid_point_y) ) A__ = img for bbox in img_annos: A__ = bbox[1] * scale_x A__ = bbox[2] * scale_y A__ = bbox[3] * scale_x A__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right A__ = cva.resize(lowercase_ , (output_size[1] - divid_point_x, divid_point_y) ) A__ = img for bbox in img_annos: A__ = scale_x + bbox[1] * (1 - scale_x) A__ = bbox[2] * scale_y A__ = scale_x + bbox[3] * (1 - scale_x) A__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left A__ = cva.resize(lowercase_ , (divid_point_x, output_size[0] - divid_point_y) ) A__ = img for bbox in img_annos: A__ = bbox[1] * scale_x A__ = scale_y + bbox[2] * (1 - scale_y) A__ = bbox[3] * scale_x A__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right A__ = cva.resize( lowercase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) A__ = img for bbox in img_annos: A__ = scale_x + bbox[1] * (1 - scale_x) A__ = scale_y + bbox[2] * (1 - scale_y) A__ = scale_x + bbox[3] * (1 - scale_x) A__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: A__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" A__ = ascii_lowercase + digits return "".join(random.choice(lowercase_ ) for _ in range(lowercase_ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
14
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
1
'''simple docstring''' from __future__ import annotations def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(__lowerCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __UpperCamelCase = i + 1 else: __UpperCamelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
368
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> Any: torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def __lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=1_0 , ) return model @property def __lowerCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) __UpperCamelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase = DDPMScheduler() __UpperCamelCase = AudioDiffusionPipeline(vqvae=lowercase , unet=self.dummy_unet , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase , steps=4 , return_dict=lowercase ) __UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase = DDIMScheduler() __UpperCamelCase = self.dummy_vqvae_and_unet __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(raw_audio=lowercase , generator=lowercase , start_step=5 , steps=1_0 ) __UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = self.dummy_unet_condition __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowercase , mel=lowercase , scheduler=lowercase ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) np.random.seed(0 ) __UpperCamelCase = torch.rand((1, 1, 1_0) ) __UpperCamelCase = pipe(generator=lowercase , encoding=lowercase ) __UpperCamelCase = output.images[0] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> str: __UpperCamelCase = torch_device __UpperCamelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) __UpperCamelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(4_2 ) __UpperCamelCase = pipe(generator=lowercase ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:1_0] __UpperCamelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
243
0
from itertools import permutations def __snake_case ( _UpperCAmelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __a = [7, 11, 13, 17] for i, test in enumerate(_UpperCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __snake_case ( _UpperCAmelCase = 10 ): return sum( int(''''''.join(map(_UpperCAmelCase , _UpperCAmelCase ) ) ) for num in permutations(range(_UpperCAmelCase ) ) if is_substring_divisible(_UpperCAmelCase ) ) if __name__ == "__main__": print(f'{solution() = }')
49
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> List[Any]: snake_case__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = '' else: snake_case__ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : int = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ , A__ , A__ ) -> str: snake_case__ : Optional[int] = dct.pop(A__ ) snake_case__ : int = val def UpperCamelCase__ ( ) -> Dict: snake_case__ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Any = 1000 snake_case__ : Union[str, Any] = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : int = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case__ : Optional[int] = 192 snake_case__ : str = 768 snake_case__ : Optional[Any] = 12 snake_case__ : Tuple = 3 elif deit_name[9:].startswith('small' ): snake_case__ : str = 384 snake_case__ : str = 1536 snake_case__ : Dict = 12 snake_case__ : str = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : str = 4096 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : Optional[int] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Tuple = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model snake_case__ : int = DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : List[Any] = DeiTImageProcessor(size=A__ , crop_size=config.image_size ) snake_case__ : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : Dict = model(A__ ) snake_case__ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A: '''simple docstring''' def __init__( self : Any , A_ : Optional[Any] , A_ : Optional[Any]=13 , A_ : int=7 , A_ : int=True , A_ : int=True , A_ : str=True , A_ : int=True , A_ : Optional[Any]=99 , A_ : Union[str, Any]=32 , A_ : str=2 , A_ : int=4 , A_ : Any=37 , A_ : Union[str, Any]="gelu" , A_ : Union[str, Any]=0.1 , A_ : Any=0.1 , A_ : Dict=512 , A_ : str=16 , A_ : List[str]=2 , A_ : Dict=0.02 , A_ : Any=3 , A_ : str=4 , A_ : Tuple=None , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 384 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = 'gelu' lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 128 lowerCamelCase_ = 2 lowerCamelCase_ = 9 lowerCamelCase_ = 1 lowerCamelCase_ = None def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : str , A_ : Union[str, Any] , A_ : Any , A_ : Any , A_ : List[str] , A_ : Tuple , A_ : str , A_ : Dict ) -> str: """simple docstring""" lowerCamelCase_ = TFConvBertModel(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : str , A_ : Tuple , A_ : List[str] , A_ : str , A_ : int , A_ : Union[str, Any] , A_ : Any , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = TFConvBertForMaskedLM(config=A_ ) lowerCamelCase_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Dict , A_ : Tuple , A_ : Tuple , A_ : Optional[int] , A_ : Dict , A_ : str , A_ : Union[str, Any] , A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFConvBertForSequenceClassification(config=A_ ) lowerCamelCase_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : int , A_ : Dict , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFConvBertForMultipleChoice(config=A_ ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : int , A_ : Optional[int] , A_ : Any , A_ : Optional[int] , A_ : int , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFConvBertForTokenClassification(config=A_ ) lowerCamelCase_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Optional[Any] , A_ : Dict , A_ : Optional[int] , A_ : List[str] , A_ : str , A_ : Dict , A_ : str , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = TFConvBertForQuestionAnswering(config=A_ ) lowerCamelCase_ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = TFConvBertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = True if hasattr(A_ , 'use_cache' ): lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase_ = getattr(self.model_tester , 'key_length' , A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = self._prepare_for_class(A_ , A_ ) lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) lowerCamelCase_ = os.path.join(A_ , 'saved_model' , '1' ) lowerCamelCase_ = tf.keras.models.load_model(A_ ) lowerCamelCase_ = model(A_ ) if self.is_encoder_decoder: lowerCamelCase_ = outputs['encoder_hidden_states'] lowerCamelCase_ = outputs['encoder_attentions'] else: lowerCamelCase_ = outputs['hidden_states'] lowerCamelCase_ = outputs['attentions'] self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(A_ ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase_ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) lowerCamelCase_ = getattr(self.model_tester , 'key_length' , A_ ) lowerCamelCase_ = getattr(self.model_tester , 'key_length' , A_ ) def check_decoder_attentions_output(A_ : Tuple ): lowerCamelCase_ = len(A_ ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase_ = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ : int ): lowerCamelCase_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = [1, 6, 768] self.assertEqual(output.shape , A_ ) lowerCamelCase_ = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 )
208
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase : Any = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''rag''' UpperCamelCase = True def __init__( self : Optional[Any] , A_ : Optional[Any]=None , A_ : Any=True , A_ : Dict=None , A_ : Optional[int]=None , A_ : str=None , A_ : int=None , A_ : List[Any]=None , A_ : List[str]=" / " , A_ : Tuple=" // " , A_ : Union[str, Any]=5 , A_ : Optional[Any]=300 , A_ : int=768 , A_ : Dict=8 , A_ : int="wiki_dpr" , A_ : int="train" , A_ : List[str]="compressed" , A_ : Tuple=None , A_ : Optional[Any]=None , A_ : Optional[int]=False , A_ : str=False , A_ : Optional[Any]=0.0 , A_ : Union[str, Any]=True , A_ : List[Any]=False , A_ : Union[str, Any]=False , A_ : Dict=False , A_ : str=True , A_ : List[str]=None , **A_ : Optional[Any] , ) -> str: """simple docstring""" super().__init__( bos_token_id=A_ , pad_token_id=A_ , eos_token_id=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , is_encoder_decoder=A_ , prefix=A_ , vocab_size=A_ , **A_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase_ = kwargs.pop('question_encoder' ) lowerCamelCase_ = question_encoder_config.pop('model_type' ) lowerCamelCase_ = kwargs.pop('generator' ) lowerCamelCase_ = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ = AutoConfig.for_model(A_ , **A_ ) lowerCamelCase_ = AutoConfig.for_model(A_ , **A_ ) lowerCamelCase_ = reduce_loss lowerCamelCase_ = label_smoothing lowerCamelCase_ = exclude_bos_score lowerCamelCase_ = do_marginalize lowerCamelCase_ = title_sep lowerCamelCase_ = doc_sep lowerCamelCase_ = n_docs lowerCamelCase_ = max_combined_length lowerCamelCase_ = dataset lowerCamelCase_ = dataset_split lowerCamelCase_ = index_name lowerCamelCase_ = retrieval_vector_size lowerCamelCase_ = retrieval_batch_size lowerCamelCase_ = passages_path lowerCamelCase_ = index_path lowerCamelCase_ = use_dummy_dataset lowerCamelCase_ = output_retrieved lowerCamelCase_ = do_deduplication lowerCamelCase_ = use_cache if self.forced_eos_token_id is None: lowerCamelCase_ = getattr(self.generator , 'forced_eos_token_id' , A_ ) @classmethod def a__ ( cls : str , A_ : PretrainedConfig , A_ : PretrainedConfig , **A_ : List[str] ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A_ ) def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.question_encoder.to_dict() lowerCamelCase_ = self.generator.to_dict() lowerCamelCase_ = self.__class__.model_type return output
208
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = data snake_case_ = None class UpperCamelCase : def __init__( self) -> Dict: snake_case_ = None snake_case_ = None def __iter__( self) -> Iterator[Any]: snake_case_ = self.head while self.head: yield node.data snake_case_ = node.next if node == self.head: break def __len__( self) -> int: return sum(1 for _ in self) def __repr__( self) -> str: return "->".join(str(lowerCAmelCase__) for item in iter(self)) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(len(self), lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(0, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> None: if index < 0 or index > len(self): raise IndexError('list index out of range.') snake_case_ = Node(lowerCAmelCase__) if self.head is None: snake_case_ = new_node # first node points itself snake_case_ = snake_case_ = new_node elif index == 0: # insert at head snake_case_ = self.head snake_case_ = snake_case_ = new_node else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = new_node if index == len(self) - 1: # insert at tail snake_case_ = new_node def a_ ( self) -> str: return self.delete_nth(0) def a_ ( self) -> Any: return self.delete_nth(len(self) - 1) def a_ ( self, lowerCAmelCase__ = 0) -> Any: if not 0 <= index < len(self): raise IndexError('list index out of range.') snake_case_ = self.head if self.head == self.tail: # just one node snake_case_ = snake_case_ = None elif index == 0: # delete head node snake_case_ = self.tail.next.next snake_case_ = self.head.next else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = temp.next.next if index == len(self) - 1: # delete at tail snake_case_ = temp return delete_node.data def a_ ( self) -> bool: return len(self) == 0 def UpperCAmelCase ( ) -> None: snake_case_ = CircularLinkedList() assert len(UpperCAmelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCAmelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCAmelCase ) == i circular_linked_list.insert_nth(UpperCAmelCase , i + 1 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
69
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Tuple = """informer""" lowercase_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = None , snake_case_ = "mean" , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = True , snake_case_ = "gelu" , snake_case_ = 0.05 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_=True , snake_case_ = "prob" , snake_case_ = 5 , snake_case_ = True , **snake_case_ , ): """simple docstring""" A_ : str = prediction_length A_ : List[Any] = context_length or prediction_length A_ : str = distribution_output A_ : Dict = loss A_ : Any = input_size A_ : Union[str, Any] = num_time_features A_ : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A_ : List[Any] = scaling A_ : Tuple = num_dynamic_real_features A_ : Any = num_static_real_features A_ : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A_ : Optional[int] = cardinality else: A_ : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A_ : Any = embedding_dimension else: A_ : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : int = num_parallel_samples # Transformer architecture configuration A_ : str = input_size * len(self.lags_sequence ) + self._number_of_features A_ : List[Any] = d_model A_ : Dict = encoder_attention_heads A_ : Dict = decoder_attention_heads A_ : List[Any] = encoder_ffn_dim A_ : Union[str, Any] = decoder_ffn_dim A_ : int = encoder_layers A_ : Any = decoder_layers A_ : List[Any] = dropout A_ : str = attention_dropout A_ : Tuple = activation_dropout A_ : List[str] = encoder_layerdrop A_ : List[str] = decoder_layerdrop A_ : str = activation_function A_ : Optional[int] = init_std A_ : List[Any] = use_cache # Informer A_ : Tuple = attention_type A_ : List[Any] = sampling_factor A_ : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
286
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 , snake_case_ : int = 10 ) -> int: '''simple docstring''' UpperCAmelCase_ = defaultdict(snake_case_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(snake_case_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"{solution() = }")
106
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Any = ["""pixel_values"""] def __init__(self : Any , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : Dict[str, int] = None , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Dict , ): super().__init__(**__a ) UpperCAmelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = do_rescale UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase (self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ): UpperCAmelCase_ = get_size_dict(__a ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def _lowercase (self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): UpperCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def _lowercase (self : str , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def _lowercase (self : Dict , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : Dict , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(__a ) if not is_batched(__a ): UpperCAmelCase_ = [images] if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
106
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) _UpperCAmelCase : Tuple = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : List[str] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
215
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(lowerCAmelCase_ ), magnitude * sin(lowerCAmelCase_ )] return [magnitude * cos(radians(lowerCAmelCase_ ) ), magnitude * sin(radians(lowerCAmelCase_ ) )] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10**-1 )-> bool: '''simple docstring''' _UpperCAmelCase : NDArray[floataa] = cross(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : float = sum(lowerCAmelCase_ ) return abs(lowerCAmelCase_ ) < eps if __name__ == "__main__": # Test to check if it works A_ : str = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) A_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A_ : List[str] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) A_ : Tuple = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A_ : Dict = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) A_ : Union[str, Any] = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
215
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model UpperCAmelCase__ = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def _a ( a :List[str] , a :Any , a :int=None ) -> Tuple: if rng is None: a = random.Random() a = 1 for dim in shape: total_dims *= dim a = [] for _ in range(_snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) a = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case ) return output def _a ( a :Optional[int] , a :List[Any]=None ) -> Any: a = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case ) # make sure that at least one token is attended to for each batch a = 1 return attn_mask @require_flax class lowercase_ : '''simple docstring''' __snake_case = None __snake_case = () def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a = 2 a = inputs['''input_ids'''].shape[-1] // 2 a = inputs['''input_ids'''][:max_batch_size, :sequence_length] a = jnp.ones_like(a_ ) a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length a = 0 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(a_ , a_ ) a = pt_model_class(a_ ).eval() a = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) a = flax_model.generate(a_ ).sequences a = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = self._get_input_ids_and_config() a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length a = 2 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = self._get_input_ids_and_config() a = False a = max_length a = 2 a = 2 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self._get_input_ids_and_config() a = True a = max_length a = 0.8 a = 10 a = 0.3 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self._get_input_ids_and_config() a = max_length a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self._get_input_ids_and_config() a = max_length a = 2 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = 2 a = max_length for model_class in self.all_generative_model_classes: a = model_class(a_ ) a = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) a = jit(model.generate ) a = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) a = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) a = '''Hello world''' a = tokenizer(a_ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , '''do_samples''' ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , '''foo''' ): a = {'''foo''': '''bar'''} model.generate(a_ , **a_ )
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __A : Any = logging.getLogger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """summarization""" UpperCamelCase__ = ["""loss"""] UpperCamelCase__ = ROUGE_KEYS UpperCamelCase__ = """rouge2""" def __init__( self : Optional[int] , __UpperCamelCase : Tuple , **__UpperCamelCase : List[str] )->Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: _UpperCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(__UpperCamelCase , num_labels=__UpperCamelCase , mode=self.mode , **__UpperCamelCase ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) _UpperCAmelCase = Path(self.output_dir ) / '''metrics.json''' _UpperCAmelCase = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(__UpperCamelCase ) _UpperCAmelCase = self.config.model_type _UpperCAmelCase = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size _UpperCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCAmelCase = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } _UpperCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCAmelCase = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCAmelCase = get_git_info()['''repo_sha'''] _UpperCAmelCase = hparams.num_workers _UpperCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __UpperCamelCase ): _UpperCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCAmelCase = self.decoder_start_token_id _UpperCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) _UpperCAmelCase = False _UpperCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCAmelCase = self.hparams.eval_max_gen_length else: _UpperCAmelCase = self.model.config.max_length _UpperCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowercase__ ( self : int , __UpperCamelCase : Dict[str, torch.Tensor] )->Dict[str, List[str]]: _UpperCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(__UpperCamelCase , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) _UpperCAmelCase = True return readable_batch def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , **__UpperCamelCase : Union[str, Any] )->Any: return self.model(__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : List[int] )->Any: _UpperCAmelCase = self.tokenizer.batch_decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) return lmap(str.strip , __UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : dict )->Tuple: _UpperCAmelCase = self.tokenizer.pad_token_id _UpperCAmelCase , _UpperCAmelCase = batch['''input_ids'''], batch['''attention_mask'''] _UpperCAmelCase = batch['''labels'''] if isinstance(self.model , __UpperCamelCase ): _UpperCAmelCase = self.model._shift_right(__UpperCamelCase ) else: _UpperCAmelCase = shift_tokens_right(__UpperCamelCase , __UpperCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCAmelCase = decoder_input_ids self.save_readable_batch(__UpperCamelCase ) _UpperCAmelCase = self(__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCAmelCase = nn.CrossEntropyLoss(ignore_index=__UpperCamelCase ) assert lm_logits.shape[-1] == self.vocab_size _UpperCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = label_smoothed_nll_loss( __UpperCamelCase , __UpperCamelCase , self.hparams.label_smoothing , ignore_index=__UpperCamelCase ) return (loss,) @property def lowercase__ ( self : Union[str, Any] )->int: return self.tokenizer.pad_token_id def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int )->Dict: _UpperCAmelCase = self._step(__UpperCamelCase ) _UpperCAmelCase = dict(zip(self.loss_names , __UpperCamelCase ) ) # tokens per batch _UpperCAmelCase = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() _UpperCAmelCase = batch['''input_ids'''].shape[0] _UpperCAmelCase = batch['''input_ids'''].eq(self.pad ).sum() _UpperCAmelCase = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple )->Dict: return self._generative_step(__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]="val" )->Dict: self.step_count += 1 _UpperCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCAmelCase = losses['''loss'''] _UpperCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } _UpperCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCAmelCase = torch.tensor(__UpperCamelCase ).type_as(__UpperCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__UpperCamelCase ) _UpperCAmelCase = {F'{prefix}_avg_{k}': x for k, x in losses.items()} _UpperCAmelCase = self.step_count self.metrics[prefix].append(__UpperCamelCase ) # callback writes this to self.metrics_save_path _UpperCAmelCase = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def lowercase__ ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict )->Dict: return calculate_rouge(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : dict )->dict: _UpperCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCAmelCase = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=__UpperCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _UpperCAmelCase = (time.time() - ta) / batch['''input_ids'''].shape[0] _UpperCAmelCase = self.ids_to_clean_text(__UpperCamelCase ) _UpperCAmelCase = self.ids_to_clean_text(batch['''labels'''] ) _UpperCAmelCase = self._step(__UpperCamelCase ) _UpperCAmelCase = dict(zip(self.loss_names , __UpperCamelCase ) ) _UpperCAmelCase = self.calc_generative_metrics(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = np.mean(lmap(__UpperCamelCase , __UpperCamelCase ) ) base_metrics.update(gen_time=__UpperCamelCase , gen_len=__UpperCamelCase , preds=__UpperCamelCase , target=__UpperCamelCase , **__UpperCamelCase ) return base_metrics def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int )->Optional[Any]: return self._generative_step(__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] )->Optional[int]: return self.validation_epoch_end(__UpperCamelCase , prefix='''test''' ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] )->SeqaSeqDataset: _UpperCAmelCase = self.n_obs[type_path] _UpperCAmelCase = self.target_lens[type_path] _UpperCAmelCase = self.dataset_class( self.tokenizer , type_path=__UpperCamelCase , n_obs=__UpperCamelCase , max_target_length=__UpperCamelCase , **self.dataset_kwargs , ) return dataset def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : bool = False )->DataLoader: _UpperCAmelCase = self.get_dataset(__UpperCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCAmelCase = dataset.make_sortish_sampler(__UpperCamelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( __UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=__UpperCamelCase , num_workers=self.num_workers , sampler=__UpperCamelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __UpperCamelCase , batch_sampler=__UpperCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=__UpperCamelCase , num_workers=self.num_workers , sampler=__UpperCamelCase , ) def lowercase__ ( self : int )->DataLoader: _UpperCAmelCase = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=__UpperCamelCase ) return dataloader def lowercase__ ( self : List[str] )->DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def lowercase__ ( self : Any )->DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowercase__ ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] )->Dict: BaseTransformer.add_model_specific_args(__UpperCamelCase , __UpperCamelCase ) add_generic_args(__UpperCamelCase , __UpperCamelCase ) parser.add_argument( '''--max_source_length''' , default=1_0_2_4 , type=__UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=5_6 , type=__UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=1_4_2 , type=__UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=1_4_2 , type=__UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=__UpperCamelCase ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=__UpperCamelCase ) parser.add_argument('''--max_tokens_per_batch''' , type=__UpperCamelCase , default=__UpperCamelCase ) parser.add_argument('''--logger_name''' , type=__UpperCamelCase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=__UpperCamelCase , default=-1 , required=__UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=__UpperCamelCase , default=5_0_0 , required=__UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=__UpperCamelCase , default=-1 , required=__UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=__UpperCamelCase , default='''summarization''' , required=__UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=__UpperCamelCase , default=0.0 , required=__UpperCamelCase ) parser.add_argument('''--src_lang''' , type=__UpperCamelCase , default='''''' , required=__UpperCamelCase ) parser.add_argument('''--tgt_lang''' , type=__UpperCamelCase , default='''''' , required=__UpperCamelCase ) parser.add_argument('''--eval_beams''' , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase ) parser.add_argument( '''--val_metric''' , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=__UpperCamelCase , default=1 , required=__UpperCamelCase , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=__UpperCamelCase , default=-1 , required=__UpperCamelCase , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """translation""" UpperCamelCase__ = ["""loss"""] UpperCamelCase__ = ["""bleu"""] UpperCamelCase__ = """bleu""" def __init__( self : List[Any] , __UpperCamelCase : str , **__UpperCamelCase : str )->Tuple: super().__init__(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = hparams.src_lang _UpperCAmelCase = hparams.tgt_lang def lowercase__ ( self : str , __UpperCamelCase : int , __UpperCamelCase : int )->dict: return calculate_bleu(__UpperCamelCase , __UpperCamelCase ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) check_output_dir(_SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCAmelCase = SummarizationModule(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = TranslationModule(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): _UpperCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase = os.environ.get('''WANDB_PROJECT''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=_SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' ) if args.early_stopping_patience >= 0: _UpperCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _UpperCAmelCase = False _UpperCAmelCase = args.val_metric == '''loss''' _UpperCAmelCase = generic_train( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _SCREAMING_SNAKE_CASE ) , early_stopping_callback=_SCREAMING_SNAKE_CASE , logger=_SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model _UpperCAmelCase = '''''' _UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=_SCREAMING_SNAKE_CASE ) ) if checkpoints: _UpperCAmelCase = checkpoints[-1] _UpperCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __A : Any = argparse.ArgumentParser() __A : str = pl.Trainer.add_argparse_args(parser) __A : Dict = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __A : List[str] = parser.parse_args() main(args)
260
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = (DPMSolverSinglestepScheduler,) UpperCamelCase__ = (("""num_inference_steps""", 25),) def lowercase__ ( self : Tuple , **__UpperCamelCase : Tuple )->Any: _UpperCAmelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**__UpperCamelCase ) return config def lowercase__ ( self : Dict , __UpperCamelCase : Tuple=0 , **__UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : Any )->Union[str, Any]: pass def lowercase__ ( self : str , __UpperCamelCase : Tuple=0 , **__UpperCamelCase : List[Any] )->Dict: _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : int , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Optional[int] )->List[Any]: if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 1_0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def lowercase__ ( self : List[Any] )->Dict: _UpperCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = 5_0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1e-3 def lowercase__ ( self : Dict )->Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def lowercase__ ( self : str )->Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def lowercase__ ( self : Union[str, Any] )->int: self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , algorithm_type='''dpmsolver++''' , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def lowercase__ ( self : str )->str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Tuple: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , algorithm_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , algorithm_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def lowercase__ ( self : Dict )->List[str]: self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def lowercase__ ( self : Dict )->str: self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowercase__ ( self : List[str] )->int: self.check_over_configs(variance_type=__UpperCamelCase ) self.check_over_configs(variance_type='''learned_range''' ) def lowercase__ ( self : List[str] )->Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def lowercase__ ( self : List[str] )->List[str]: _UpperCAmelCase = self.full_loop(use_karras_sigmas=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1e-3 def lowercase__ ( self : int )->List[Any]: _UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1e-3 def lowercase__ ( self : Optional[Any] )->Dict: _UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1e-3 def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 1_0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa
260
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a : int = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
307
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "sequence-classification" def __init__( self : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : List[str] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : str ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Dict , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : List[str] , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : Tuple , lowercase : Tuple ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> List[str]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
130
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a_ ( __lowercase : np.ndarray , __lowercase : np.ndarray , __lowercase : np.ndarray , __lowercase : int , __lowercase : int ) -> np.ndarray: _snake_case = cva.getAffineTransform(__lowercase , __lowercase ) return cva.warpAffine(__lowercase , __lowercase , (rows, cols) ) if __name__ == "__main__": # read original image _lowerCamelCase : Optional[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value _lowerCamelCase : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _lowerCamelCase , _lowerCamelCase : List[Any] = gray_img.shape # set different points to rotate image _lowerCamelCase : str = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) _lowerCamelCase : Optional[Any] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) _lowerCamelCase : List[str] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) _lowerCamelCase : Dict = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list _lowerCamelCase : int = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _lowerCamelCase : Any = plt.figure(1) _lowerCamelCase : List[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
130
1
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() snake_case_ : str = logging.get_logger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: UpperCAmelCase_ : int = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = downstream_dict['''projector.weight'''] UpperCAmelCase_ : List[Any] = downstream_dict['''projector.bias'''] UpperCAmelCase_ : Tuple = downstream_dict['''model.post_net.linear.weight'''] UpperCAmelCase_ : Optional[int] = downstream_dict['''model.post_net.linear.bias'''] return model def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: UpperCAmelCase_ : str = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = downstream_dict['''model.linear.weight'''] UpperCAmelCase_ : Union[str, Any] = downstream_dict['''model.linear.bias'''] return model def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[Any] = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = downstream_dict['''connector.weight'''] UpperCAmelCase_ : Union[str, Any] = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_ : Tuple = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] UpperCAmelCase_ : Any = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] UpperCAmelCase_ : Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] UpperCAmelCase_ : Optional[int] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] UpperCAmelCase_ : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] UpperCAmelCase_ : List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] UpperCAmelCase_ : Union[str, Any] = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: UpperCAmelCase_ : str = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' ) UpperCAmelCase_ : Optional[Any] = checkpoint['''Downstream'''] UpperCAmelCase_ : Union[str, Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): UpperCAmelCase_ : int = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith('''ForAudioFrameClassification''' ): UpperCAmelCase_ : Dict = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith('''ForXVector''' ): UpperCAmelCase_ : Optional[int] = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_ : str = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") snake_case_ : Optional[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
125
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: UpperCAmelCase_ : List[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[Any] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCAmelCase_ : str = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCAmelCase_ : Dict = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCAmelCase_ : Any = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCAmelCase_ : int = new_key.replace(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCAmelCase_ : Any = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = new_key.replace('''encoder''', '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCAmelCase_ : str = re.sub(R'''layers_(\d+)''', R'''layer.\1''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = flax_dict[key] UpperCAmelCase_ : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCAmelCase_ : Dict = torch.from_numpy(converted_dict[key].T ) else: UpperCAmelCase_ : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[str]=False, SCREAMING_SNAKE_CASE__ : Dict=False ) -> int: UpperCAmelCase_ : Optional[Any] = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: UpperCAmelCase_ : List[str] = PixaStructVisionConfig() UpperCAmelCase_ : List[str] = PixaStructTextConfig() else: UpperCAmelCase_ : Dict = PixaStructVisionConfig( hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18 ) UpperCAmelCase_ : Optional[int] = PixaStructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18 ) UpperCAmelCase_ : List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) UpperCAmelCase_ : Tuple = PixaStructImageProcessor() UpperCAmelCase_ : Optional[int] = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: UpperCAmelCase_ : Union[str, Any] = 4096 UpperCAmelCase_ : Union[str, Any] = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") snake_case_ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
125
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase = getLogger(__name__) def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : int = 8 , snake_case__ : int = 1024 , snake_case__ : Any="val" , snake_case__ : int=None , snake_case__ : Optional[Any]=False , snake_case__ : Any="summarization" , snake_case__ : Dict=None , snake_case__ : List[Any]=1 , snake_case__ : Dict = None , snake_case__ : Optional[Any]="" , **snake_case__ : List[str] , ) -> Dict: UpperCamelCase : Optional[Any] = str(snake_case__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=snake_case__ ) UpperCamelCase : Union[str, Any] = Path(snake_case__ ) UpperCamelCase : Optional[int] = save_dir.joinpath(F"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(snake_case__ ) UpperCamelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).cuda() if fpaa: UpperCamelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case__ , snake_case__ ) # update config with task specific params UpperCamelCase : Dict = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCamelCase : int = num_return_sequences UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(snake_case__ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCamelCase : Any = tokenizer.model_max_length if prefix is None: UpperCamelCase : Optional[int] = prefix or getattr(model.config , 'prefix' , '' ) or '' UpperCamelCase : Dict = SeqaSeqDataset( snake_case__ , snake_case__ , snake_case__ , max_target_length=1024 , type_path=snake_case__ , n_obs=snake_case__ , prefix=snake_case__ , **snake_case__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCamelCase : str = ds.make_sortish_sampler(snake_case__ , distributed=snake_case__ , add_extra_examples=snake_case__ , shuffle=snake_case__ ) UpperCamelCase : Optional[Any] = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=snake_case__ , collate_fn=ds.collate_fn ) UpperCamelCase : Optional[Any] = [] for batch in tqdm(snake_case__ ): UpperCamelCase : Tuple = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=snake_case__ , num_beams=snake_case__ , **snake_case__ , ) UpperCamelCase : Tuple = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) UpperCamelCase : List[str] = batch['ids'] if num_return_sequences > 1: UpperCamelCase : Any = chunks(snake_case__ , snake_case__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(snake_case__ , snake_case__ ) return results, sampler.num_replicas def UpperCamelCase ( ) -> Optional[Any]: UpperCamelCase : List[str] = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=snake_case__ , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=snake_case__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=snake_case__ , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=snake_case__ , default=snake_case__ ) parser.add_argument( '--type_path' , type=snake_case__ , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=snake_case__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=snake_case__ , default=8 , required=snake_case__ , help='batch size' ) parser.add_argument( '--local_rank' , type=snake_case__ , default=-1 , required=snake_case__ , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=snake_case__ , default=1 , required=snake_case__ , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=snake_case__ , default=600 , required=snake_case__ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument('--tgt_lang' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument( '--prefix' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) UpperCamelCase : str = time.time() UpperCamelCase : str = parser.parse_known_args() UpperCamelCase : str = parse_numeric_n_bool_cl_kwargs(snake_case__ ) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""" ) UpperCamelCase : List[Any] = Path(args.save_dir + '_tmp' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) # this handles locking. UpperCamelCase : List[Any] = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCamelCase : Union[str, Any] = {} if args.src_lang is not None: UpperCamelCase : Any = args.src_lang if args.tgt_lang is not None: UpperCamelCase : str = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case__ ) UpperCamelCase : List[str] = eval_data_dir( args.data_dir , snake_case__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case__ , **snake_case__ , ) if args.local_rank <= 0: UpperCamelCase : Tuple = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case__ ) UpperCamelCase : Tuple = gather_results_from_each_node(snake_case__ , snake_case__ , args.sync_timeout ) UpperCamelCase : Tuple = combine_partial_results(snake_case__ ) if args.num_return_sequences > 1: UpperCamelCase : Tuple = save_dir.joinpath('pseudolabel_results.json' ) print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(snake_case__ , snake_case__ ) return UpperCamelCase : Tuple = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(snake_case__ ) as f: UpperCamelCase : Any = [x.rstrip() for x in f.readlines()][: len(snake_case__ )] # Calculate metrics, save metrics, and save _generations.txt UpperCamelCase : Tuple = 'translation' in args.task UpperCamelCase : Any = calculate_bleu if calc_bleu else calculate_rouge UpperCamelCase : Tuple = 'bleu' if calc_bleu else 'rouge' UpperCamelCase : Dict = score_fn(snake_case__ , snake_case__ ) UpperCamelCase : Optional[Any] = len(snake_case__ ) UpperCamelCase : str = time.time() - start_time UpperCamelCase : Union[str, Any] = round(runtime / metrics['n_obs'] , 4 ) UpperCamelCase : Any = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCamelCase : Tuple = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""" ) save_json(snake_case__ , snake_case__ , indent=snake_case__ ) print(snake_case__ ) write_txt_file(snake_case__ , save_dir.joinpath(F"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(snake_case__ , save_dir.joinpath(F"""{args.type_path}.target""" ) ) else: shutil.rmtree(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> List: UpperCamelCase : Optional[int] = [] for partial_result in partial_results: records.extend(snake_case__ ) UpperCamelCase : List[str] = sorted(snake_case__ , key=lambda snake_case__ : x["id"] ) UpperCamelCase : Dict = [x['pred'] for x in records] return preds def UpperCamelCase ( snake_case__ : Dict , snake_case__ : int , snake_case__ : Union[str, Any] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files UpperCamelCase : List[Any] = time.time() logger.info('waiting for all nodes to finish' ) UpperCamelCase : Dict = None while (time.time() - start_wait) < timeout: UpperCamelCase : str = list(save_dir.glob('rank_*.json' ) ) if len(snake_case__ ) < num_replicas: continue try: # make sure all json files are fully saved UpperCamelCase : Optional[Any] = lmap(snake_case__ , snake_case__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
356
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Dict: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase : Optional[int] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
103
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class A_ : def lowercase ( self : str , snake_case_ : int ): raise NotImplementedError() def lowercase ( self : Any ): raise NotImplementedError() class A_ ( lowerCAmelCase_ ): def __init__( self : str , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , **snake_case_ : Tuple ): _UpperCAmelCase = tokenizer _UpperCAmelCase = skip_prompt _UpperCAmelCase = decode_kwargs # variables used in the streaming process _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = True def lowercase ( self : Tuple , snake_case_ : List[str] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: _UpperCAmelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCAmelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 # If the last token is a CJK character, we print the characters. elif len(snake_case_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCAmelCase = text[self.print_len :] self.print_len += len(snake_case_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCAmelCase = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(snake_case_ ) self.on_finalized_text(snake_case_ ) def lowercase ( self : Optional[int] ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 else: _UpperCAmelCase = "" _UpperCAmelCase = True self.on_finalized_text(snake_case_ , stream_end=snake_case_ ) def lowercase ( self : Any , snake_case_ : str , snake_case_ : bool = False ): print(snake_case_ , flush=snake_case_ , end="" if not stream_end else None ) def lowercase ( self : Optional[Any] , snake_case_ : Tuple ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class A_ ( lowerCAmelCase_ ): def __init__( self : List[Any] , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , snake_case_ : Optional[float] = None , **snake_case_ : Union[str, Any] ): super().__init__(snake_case_ , snake_case_ , **snake_case_ ) _UpperCAmelCase = Queue() _UpperCAmelCase = None _UpperCAmelCase = timeout def lowercase ( self : Tuple , snake_case_ : str , snake_case_ : bool = False ): self.text_queue.put(snake_case_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : str ): return self def lowercase ( self : Any ): _UpperCAmelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
22
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = """pixel_values""" lowercase__ = False lowercase__ = TimmBackboneConfig def __init__( self : Tuple, lowerCamelCase : List[str], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, '''timm''' ) super().__init__(lowerCamelCase ) lowercase__ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowercase__ = getattr(lowerCamelCase, '''use_pretrained_backbone''', lowerCamelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowercase__ = config.out_indices if getattr(lowerCamelCase, '''out_indices''', lowerCamelCase ) is not None else (-1,) lowercase__ = timm.create_model( config.backbone, pretrained=lowerCamelCase, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCamelCase, **lowerCamelCase, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase__ = self._backbone.return_layers lowercase__ = {layer['''module''']: str(lowerCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase ) @classmethod def lowercase__ ( cls : List[str], lowerCamelCase : List[str], *lowerCamelCase : Optional[int], **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowercase__ = kwargs.pop('''config''', TimmBackboneConfig() ) lowercase__ = kwargs.pop('''use_timm_backbone''', lowerCamelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowercase__ = kwargs.pop('''num_channels''', config.num_channels ) lowercase__ = kwargs.pop('''features_only''', config.features_only ) lowercase__ = kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowercase__ = kwargs.pop('''out_indices''', config.out_indices ) lowercase__ = TimmBackboneConfig( backbone=lowerCamelCase, num_channels=lowerCamelCase, features_only=lowerCamelCase, use_pretrained_backbone=lowerCamelCase, out_indices=lowerCamelCase, ) return super()._from_config(lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Optional[int]=None, lowerCamelCase : List[Any]=None, lowerCamelCase : int=None, **lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase__ = self._all_layers lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = self._return_layers lowercase__ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = None lowercase__ = tuple(lowerCamelCase ) lowercase__ = tuple(lowerCamelCase ) if hidden_states is not None else None if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: lowercase__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase, hidden_states=lowerCamelCase, attentions=lowerCamelCase )
207
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[Any] = torch.device("""cpu""") def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" a : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' a : Tuple = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : int , snake_case : Dict ): """simple docstring""" a : List[Any] = dct.pop(snake_case ) a : Dict = val def SCREAMING_SNAKE_CASE__ ( snake_case : Any ): """simple docstring""" a : Any = [] for k in state_dict.keys(): a : List[str] = k if ".pwconv" in k: a : Optional[int] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a : Dict = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a : int = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a : List[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a : Any = k_new.split('.' ) if ls[2].isdigit(): a : Any = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a : Union[str, Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Optional[int] ): """simple docstring""" a : Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a : Any = 1_000 a : Dict = 'huggingface/label-files' a : Any = 'imagenet-1k-id2label.json' a : str = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) a : Dict = {int(snake_case ): v for k, v in idalabel.items()} a : List[Any] = idalabel a : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a : int = [3, 3, 6, 4] a : List[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a : str = [3, 3, 9, 6] a : int = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a : List[str] = [4, 3, 10, 5] a : int = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a : Any = [4, 4, 12, 6] a : Optional[int] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a : Any = torch.hub.load_state_dict_from_url(snake_case , map_location='cpu' , check_hash=snake_case ) else: a : List[str] = torch.load(snake_case , map_location='cpu' ) a : List[Any] = checkpoint a : List[str] = create_rename_keys(snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) # load HuggingFace model a : Union[str, Any] = SwiftFormerForImageClassification(snake_case ).eval() hf_model.load_state_dict(snake_case ) # prepare test inputs a : List[Any] = prepare_img() a : Dict = ViTImageProcessor.from_pretrained('preprocessor_config' ) a : str = processor(images=snake_case , return_tensors='pt' ) # compare outputs from both models a : Any = get_expected_output(snake_case ) a : str = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case , atol=1E-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") UpperCamelCase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
358
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = ["pixel_values"] def __init__( self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : List[str] = size if size is not None else {'shortest_edge': 2_2_4} a : str = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : Dict = size a : Optional[Any] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Optional[Any] = do_rescale a : Dict = rescale_factor a : Tuple = do_normalize a : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ): """simple docstring""" a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: a : int = int((2_5_6 / 2_2_4) * size['shortest_edge']) a : Optional[int] = get_resize_output_image_size(UpperCAmelCase_ , size=UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : Optional[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""") return resize( UpperCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): """simple docstring""" a : str = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , UpperCAmelCase_ : Optional[TensorType] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : Optional[int] = resample if resample is not None else self.resample a : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : Tuple = image_mean if image_mean is not None else self.image_mean a : int = image_std if image_std is not None else self.image_std a : Optional[int] = size if size is not None else self.size a : Optional[Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : List[Any] = crop_size if crop_size is not None else self.crop_size a : str = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : Any = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Optional[int] = [self.resize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_center_crop: a : int = [self.center_crop(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_rescale: a : Any = [self.rescale(UpperCAmelCase_ , UpperCAmelCase_) for image in images] if do_normalize: a : str = [self.normalize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : Optional[int] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
345
0
from collections import namedtuple import requests from lxml import html # type: ignore UpperCamelCase__ = namedtuple('covid_data', 'cases deaths recovered') def lowerCAmelCase_ ( __A = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' UpperCAmelCase__ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__A ).content ).xpath(__A ) ) UpperCamelCase__ = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
65
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase_ ) , 'Tatoeba directory does not exist.' ) class A ( unittest.TestCase ): @cached_property def lowercase_ (self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() return TatoebaConverter(save_dir=__UpperCAmelCase ) @slow def lowercase_ (self : List[Any] ) -> Optional[int]: """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
65
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCAmelCase__ : list[list[int]] ) ->bool: A__ : Optional[int] = len(UpperCAmelCase__ ) # We need to create solution object to save path. A__ : List[Any] = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] A__ : List[Any] = run_maze(UpperCAmelCase__, 0, 0, UpperCAmelCase__ ) if solved: print("""\n""".join(str(UpperCAmelCase__ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _lowerCAmelCase ( UpperCAmelCase__ : list[list[int]], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : list[list[int]] ) ->bool: A__ : List[Any] = len(UpperCAmelCase__ ) # Final check point. if i == j == (size - 1): A__ : Dict = 1 return True A__ : List[str] = (not i < 0) and (not j < 0) # Check lower bounds A__ : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A__ : List[str] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A__ : Any = 1 # check for directions if ( run_maze(UpperCAmelCase__, i + 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j + 1, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, i - 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j - 1, UpperCAmelCase__ ) ): return True A__ : Union[str, Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
330
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __a ( unittest.TestCase ): def snake_case_ ( self ): _lowerCamelCase = torch.nn.Linear(10 , 10 ) _lowerCamelCase = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCamelCase = Accelerator() _lowerCamelCase = accelerator.prepare(a__ ) try: pickle.loads(pickle.dumps(a__ ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
80
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowerCamelCase = [True] * (num + 1) _lowerCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case ): _lowerCamelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[int] =int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
80
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Any = [0] * len(__lowerCAmelCase ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] lowerCAmelCase : Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCAmelCase ) ): if indegree[i] == 0: queue.append(__lowerCAmelCase ) while queue: lowerCAmelCase : List[Any] = queue.pop(0 ) cnt += 1 topo.append(__lowerCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__lowerCAmelCase ) if cnt != len(__lowerCAmelCase ): print('Cycle exists' ) else: print(__lowerCAmelCase ) # Adjacency List of Graph __A : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
138
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): def __init__( self , _UpperCamelCase ) -> List[str]: super().__init__() lowerCAmelCase_ = model lowerCAmelCase_ = 2 lowerCAmelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __a ( self ) -> Tuple: pass def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = LongformerModel.from_pretrained(__lowerCAmelCase ) lowerCAmelCase_ = LightningModel(__lowerCAmelCase ) lowerCAmelCase_ = torch.load(__lowerCAmelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model lowerCAmelCase_ = LongformerForQuestionAnswering.from_pretrained(__lowerCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowerCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _A = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
231
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase_ = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def __magic_name__ ( __a : Dict , __a : List[str] , __a : Union[str, Any]=8 ): '''simple docstring''' UpperCamelCase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , movq=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if latents is None: UpperCamelCase__ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCamelCase__ = latents.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCamelCase__ = torch.device(F"cuda:{gpu_id}" ) UpperCamelCase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCamelCase__ = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=SCREAMING_SNAKE_CASE_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase__ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase__ , UpperCamelCase__ = cpu_offload_with_hook(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prev_module_hook=SCREAMING_SNAKE_CASE_ ) # We'll offload the last model manually. UpperCamelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ (self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_ ) def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = 4.0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , ): UpperCamelCase__ = self._execution_device UpperCamelCase__ = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCamelCase__ = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = hint.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE_ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.scheduler.timesteps UpperCamelCase__ = self.movq.config.latent_channels UpperCamelCase__ , UpperCamelCase__ = downscale_height_and_width(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.movq_scale_factor ) # create initial latent UpperCamelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = {"""image_embeds""": image_embeds, """hint""": hint} UpperCamelCase__ = self.unet( sample=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , added_cond_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase__ , UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__ , UpperCamelCase__ = variance_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase__ , UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )[0] # post-processing UpperCamelCase__ = self.movq.decode(SCREAMING_SNAKE_CASE_ , force_not_quantize=SCREAMING_SNAKE_CASE_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCamelCase__ = image * 0.5 + 0.5 UpperCamelCase__ = image.clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
178
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = R"""\w+[.]\d+""" UpperCamelCase__ = re.findall(__a , __a ) for pat in pats: UpperCamelCase__ = key.replace(__a , """_""".join(pat.split(""".""" ) ) ) return key def __magic_name__ ( __a : str , __a : Dict , __a : int ): '''simple docstring''' UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __a : List[Any] , __a : List[Any] , __a : Optional[int]=42 ): '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase__ = flax_model.init_weights(PRNGKey(__a ) ) UpperCamelCase__ = flatten_dict(__a ) UpperCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = rename_key(__a ) UpperCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(__a ) return unflatten_dict(__a )
178
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return 32 @property def UpperCamelCase ( self: List[Any] ): """simple docstring""" return 32 @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self: List[str] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self: Any ): """simple docstring""" return 1_00 @property def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCamelCase ( self: str ): """simple docstring""" torch.manual_seed(0 ) A__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) A__ = MultilingualCLIP(UpperCamelCase ) A__ = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self: Dict ): """simple docstring""" torch.manual_seed(0 ) A__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A__ = UNetaDConditionModel(**UpperCamelCase ) return model @property def UpperCamelCase ( self: List[Any] ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCamelCase , ) A__ = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: int=0 ): """simple docstring""" A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase ) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask A__ = np.ones((64, 64) , dtype=np.floataa ) A__ = 0 if str(UpperCamelCase ).startswith("""mps""" ): A__ = torch.manual_seed(UpperCamelCase ) else: A__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) A__ = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = """cpu""" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCamelCase ) A__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def UpperCamelCase ( self: Any ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) A__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A__ = np.ones((7_68, 7_68) , dtype=np.floataa ) A__ = 0 A__ = """a hat""" A__ = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) A__ = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) A__ = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) A__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ , A__ = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A__ = pipeline( UpperCamelCase , image=UpperCamelCase , mask_image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
335
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = RobertaConfig UpperCAmelCase = "roberta" def __init__( self: Union[str, Any] , UpperCamelCase: Any ): """simple docstring""" super().__init__(UpperCamelCase ) A__ = RobertaEmbeddings(UpperCamelCase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ", _lowerCamelCase, ) class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = RobertaConfig UpperCAmelCase = "roberta" def __init__( self: Optional[Any] , UpperCamelCase: int ): """simple docstring""" super().__init__(UpperCamelCase ) A__ = config.num_labels A__ = config.num_hidden_layers A__ = DeeRobertaModel(UpperCamelCase ) A__ = nn.Dropout(config.hidden_dropout_prob ) A__ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[int]=None , UpperCamelCase: str=None , UpperCamelCase: str=None , UpperCamelCase: List[str]=None , UpperCamelCase: Dict=None , UpperCamelCase: List[Any]=None , UpperCamelCase: Tuple=None , UpperCamelCase: Optional[int]=-1 , UpperCamelCase: Optional[Any]=False , ): """simple docstring""" A__ = self.num_layers try: A__ = self.roberta( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , position_ids=UpperCamelCase , head_mask=UpperCamelCase , inputs_embeds=UpperCamelCase , ) A__ = outputs[1] A__ = self.dropout(UpperCamelCase ) A__ = self.classifier(UpperCamelCase ) A__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A__ = e.message A__ = e.exit_layer A__ = outputs[0] if not self.training: A__ = entropy(UpperCamelCase ) A__ = [] A__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression A__ = MSELoss() A__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits A__ = [] for highway_exit in outputs[-1]: A__ = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A__ = MSELoss() A__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: A__ = CrossEntropyLoss() A__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase ) if train_highway: A__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A__ = (loss,) + outputs if not self.training: A__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
335
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=3_6 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Union[str, Any]=5_1_2 , lowerCAmelCase__ : Optional[Any]=1_6 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=None , ) -> Dict: """simple docstring""" _UpperCAmelCase : str = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : Any = use_token_type_ids _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[str] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Any = num_labels _UpperCAmelCase : List[Any] = num_choices _UpperCAmelCase : Tuple = scope def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[str] = None _UpperCAmelCase : int = None _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_config() _UpperCAmelCase : Optional[int] = 3_0_0 return config def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : int = MraModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[Any] = MraModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) _UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = MraForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = MraForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Dict = MraForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : List[str] = MraForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : Optional[Any] = MraForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCAmelCase : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Any = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = False UpperCamelCase_ : str = False UpperCamelCase_ : Union[str, Any] = () def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = MraModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = MraModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="MRA does not output attentions" ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCAmelCase : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCAmelCase : Any = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : str = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = 5_0_2_6_5 _UpperCAmelCase : Any = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _UpperCAmelCase : Dict = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Dict = 5_0_2_6_5 _UpperCAmelCase : List[str] = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
17
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> None: warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
32
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
'''simple docstring''' import numpy as np import datasets UpperCamelCase = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' UpperCamelCase = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' UpperCamelCase = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: '''simple docstring''' A: int = np.array(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = np.array(SCREAMING_SNAKE_CASE_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction A: Dict = X - np.mean(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = np.cov(reference_distribution.T ) try: A: Any = np.linalg.inv(SCREAMING_SNAKE_CASE_ ) except np.linalg.LinAlgError: A: List[Any] = np.linalg.pinv(SCREAMING_SNAKE_CASE_ ) A: Dict = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Optional[int] = np.dot(SCREAMING_SNAKE_CASE_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
334
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[Any]=99 , UpperCamelCase__ : Dict=36 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Dict=6 , UpperCamelCase__ : Optional[Any]=6 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Any=None , UpperCamelCase__ : Tuple=1000 , ) -> Optional[int]: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = text_seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = coordinate_size __magic_name__ = shape_size __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __magic_name__ = text_seq_length __magic_name__ = (image_size // patch_size) ** 2 + 1 __magic_name__ = self.text_seq_length + self.image_seq_length def _lowercase ( self : int ) -> Union[str, Any]: """simple docstring""" __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __magic_name__ = bbox[i, j, 3] __magic_name__ = bbox[i, j, 1] __magic_name__ = t if bbox[i, j, 2] < bbox[i, j, 0]: __magic_name__ = bbox[i, j, 2] __magic_name__ = bbox[i, j, 0] __magic_name__ = t __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.text_seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __magic_name__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" __magic_name__ = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image __magic_name__ = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __magic_name__ = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> Tuple: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" __magic_name__ = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : int ) -> List[str]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = False a__ = False a__ = False a__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) a__ = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def _lowercase ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" return True def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = LayoutLMvaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" __magic_name__ = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): __magic_name__ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): __magic_name__ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowercase ( self : str ) -> Tuple: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def _lowercase ( self : Tuple ) -> Any: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def _lowercase ( self : int ) -> Optional[Any]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : Dict ) -> int: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(UpperCamelCase__ ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) __magic_name__ = torch.tensor([[1, 2]] ) __magic_name__ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __magic_name__ = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits __magic_name__ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) __magic_name__ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
88
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf_8' ) as f: __UpperCamelCase =csv.reader(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] for dataset in encoded_datasets: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCamelCase =np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =mc_label __UpperCamelCase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE__ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE__ , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) __UpperCamelCase =parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCamelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCamelCase =['_start_', '_delimiter_', '_classify_'] __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : str ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info('Encoding dataset...' ) __UpperCamelCase =load_rocstories_dataset(args.train_dataset ) __UpperCamelCase =load_rocstories_dataset(args.eval_dataset ) __UpperCamelCase =(train_dataset, eval_dataset) __UpperCamelCase =tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer __UpperCamelCase =model.config.n_positions // 2 - 2 __UpperCamelCase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCamelCase =pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =tensor_datasets[0], tensor_datasets[1] __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =SequentialSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCamelCase =args.max_steps __UpperCamelCase =args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCamelCase =list(model.named_parameters() ) __UpperCamelCase =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __UpperCamelCase =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __UpperCamelCase =AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCamelCase =get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(SCREAMING_SNAKE_CASE__ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCamelCase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCamelCase ='Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCamelCase =model.module if hasattr(SCREAMING_SNAKE_CASE__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() __UpperCamelCase , __UpperCamelCase =0, 0 __UpperCamelCase , __UpperCamelCase =0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc='Evaluating' ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch with torch.no_grad(): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =mc_logits.detach().cpu().numpy() __UpperCamelCase =mc_labels.to('cpu' ).numpy() __UpperCamelCase =accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCamelCase =eval_loss / nb_eval_steps __UpperCamelCase =eval_accuracy / nb_eval_examples __UpperCamelCase =tr_loss / nb_tr_steps if args.do_train else None __UpperCamelCase ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __UpperCamelCase =os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
62
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" print("Generating primitive root of p" ) while True: lowercase__ : List[str] = random.randrange(3 , lowerCamelCase__ ) if pow(lowerCamelCase__ , 2 , lowerCamelCase__ ) == 1: continue if pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) == 1: continue return g def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" print("Generating prime p..." ) lowercase__ : List[Any] = rabin_miller.generate_large_prime(lowerCamelCase__ ) # select large prime number. lowercase__ : str = primitive_root(lowerCamelCase__ ) # one primitive root on modulo p. lowercase__ : List[str] = random.randrange(3 , lowerCamelCase__ ) # private_key -> have to be greater than 2 for safety. lowercase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) lowercase__ : List[Any] = (key_size, e_a, e_a, p) lowercase__ : List[Any] = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() lowercase__ , lowercase__ : Optional[int] = generate_key(lowerCamelCase__ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , "w" ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , "w" ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ): """simple docstring""" print("Making key files..." ) make_key_files("elgamal" , 2_048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
121
from collections import Counter from timeit import timeit def __lowerCamelCase ( lowerCamelCase__ = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def __lowerCamelCase ( lowerCamelCase__ = "" ): """simple docstring""" if len(lowerCamelCase__ ) == 0: return True lowercase__ : str = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowercase__ : dict[str, int] = {} for character in lower_case_input_str: lowercase__ : List[Any] = character_freq_dict.get(lowerCamelCase__ , 0 ) + 1 lowercase__ : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCamelCase ( lowerCamelCase__ = "" ): """simple docstring""" print("\nFor string = " , lowerCamelCase__ , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(lowerCamelCase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": lowerCAmelCase__ = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) lowerCAmelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
121
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" from math import factorial, radians def lowercase ( _snake_case : float , _snake_case : int = 18 , _snake_case : int = 10 ) ->float: """simple docstring""" __snake_case : Any = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __snake_case : int = radians(_snake_case ) __snake_case : str = angle_in_radians __snake_case : Optional[int] = 3 __snake_case : List[Any] = -1 for _ in range(_snake_case ): result += (b * (angle_in_radians**a)) / factorial(_snake_case ) __snake_case : int = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_snake_case , _snake_case ) if __name__ == "__main__": __import__("""doctest""").testmod()
102
0
from typing import Any def __lowerCamelCase ( lowerCAmelCase__ ): if not input_list: return [] lowerCAmelCase__ = [input_list.count(lowerCAmelCase__ ) for value in input_list] lowerCAmelCase__ = max(lowerCAmelCase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCAmelCase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
356
from __future__ import annotations lowerCAmelCase__ = tuple[int, int, int] lowerCAmelCase__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCAmelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCAmelCase__ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowerCAmelCase__ = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowerCAmelCase__ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowerCAmelCase__ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowerCAmelCase__ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowerCAmelCase__ = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowerCAmelCase__ = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowerCAmelCase__ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowerCAmelCase__ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowerCAmelCase__ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(lowerCAmelCase__ ) )) < 3: lowerCAmelCase__ = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowerCAmelCase__ ) # Checks if rotor positions are valid lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotpos if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): lowerCAmelCase__ = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase__ ) # Validates string and returns dict lowerCAmelCase__ = _plugboard(lowerCAmelCase__ ) return rotpos, rotsel, pbdict def __lowerCamelCase ( lowerCAmelCase__ ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = F"""Plugboard setting isn't type string ({type(lowerCAmelCase__ )})""" raise TypeError(lowerCAmelCase__ ) elif len(lowerCAmelCase__ ) % 2 != 0: lowerCAmelCase__ = F"""Odd number of symbols ({len(lowerCAmelCase__ )})""" raise Exception(lowerCAmelCase__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCAmelCase__ = set() for i in pbstring: if i not in abc: lowerCAmelCase__ = F"""'{i}' not in list of symbols""" raise Exception(lowerCAmelCase__ ) elif i in tmppbl: lowerCAmelCase__ = F"""Duplicate symbol ({i})""" raise Exception(lowerCAmelCase__ ) else: tmppbl.add(lowerCAmelCase__ ) del tmppbl # Created the dictionary lowerCAmelCase__ = {} for j in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): lowerCAmelCase__ = pbstring[j + 1] lowerCAmelCase__ = pbstring[j] return pb def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = (rotora, rotora, rotora) , lowerCAmelCase__ = "" , ): lowerCAmelCase__ = text.upper() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _validator( lowerCAmelCase__ , lowerCAmelCase__ , plugb.upper() ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotor_position lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCAmelCase__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCAmelCase__ = plugboard[symbol] # rotor ra -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # rotor rb -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # rotor rc -------------------------- lowerCAmelCase__ = abc.index(lowerCAmelCase__ ) + rotorposa lowerCAmelCase__ = rotora[index % len(lowerCAmelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCAmelCase__ = reflector[symbol] # 2nd rotors lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] lowerCAmelCase__ = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCAmelCase__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): lowerCAmelCase__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = 'This is my Python script that emulates the Enigma machine from WWII.' lowerCAmelCase__ = (1, 1, 1) lowerCAmelCase__ = 'pictures' lowerCAmelCase__ = (rotora, rotora, rotora) lowerCAmelCase__ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
119
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Optional[Any]: _a = '''ZinengTang/tvlt-base''' _a = tempfile.mkdtemp() def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[Any]: return TvltImageProcessor.from_pretrained(self.checkpoint , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> int: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _a = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) _a = np.ones([12000] ) _a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ) _a = processor(audio=__UpperCAmelCase , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> int: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) _a = np.ones([3, 224, 224] ) _a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) _a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> Dict: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) _a = np.ones([12000] ) _a = np.ones([3, 224, 224] ) _a = processor(audio=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def _UpperCAmelCase ( self ) -> int: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
from maths.prime_factors import prime_factors def snake_case_ ( snake_case ) -> int: if not isinstance(snake_case , snake_case ): lowercase__: Union[str, Any] = f'Input value of [number={number}] must be an integer' raise TypeError(snake_case ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(snake_case ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
288
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: lowercase__: Dict = os.path.abspath(snake_case ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model lowercase__: Optional[Any] = tf.train.list_variables(snake_case ) lowercase__: List[Any] = [] lowercase__: Tuple = [] lowercase__: int = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase__: Union[str, Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' lowercase__: str = name[1:] # figure out how many levels deep the name is lowercase__: Optional[Any] = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(snake_case ) # read data lowercase__: Optional[Any] = tf.train.load_variable(snake_case , snake_case ) names.append('/'.join(snake_case ) ) arrays.append(snake_case ) logger.info(f'Read a total of {len(snake_case ):,} layers' ) # Sanity check if len(set(snake_case ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(snake_case ) )})' ) lowercase__: Any = list(set(snake_case ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(snake_case , snake_case ): lowercase__: Optional[int] = full_name.split('/' ) lowercase__: List[Any] = model lowercase__: Any = [] for i, m_name in enumerate(snake_case ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): lowercase__: Any = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) lowercase__: str = getattr(snake_case , 'embeddings' ) lowercase__: int = getattr(snake_case , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) lowercase__: int = getattr(snake_case , 'encoder' ) lowercase__: List[str] = getattr(snake_case , 'layer' ) lowercase__: Union[str, Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) lowercase__: Tuple = getattr(snake_case , 'pooler' ) lowercase__: Tuple = getattr(snake_case , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) lowercase__: Union[str, Any] = getattr(snake_case , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) lowercase__: Union[str, Any] = getattr(snake_case , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) lowercase__: Dict = getattr(snake_case , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) lowercase__: Optional[Any] = getattr(snake_case , 'token_type_embeddings' ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) lowercase__: List[str] = getattr(snake_case , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) lowercase__: int = getattr(snake_case , 'attention' ) lowercase__: Union[str, Any] = getattr(snake_case , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) lowercase__: str = getattr(snake_case , 'attention' ) lowercase__: Optional[Any] = getattr(snake_case , 'output' ) lowercase__: List[Any] = getattr(snake_case , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) lowercase__: Optional[Any] = getattr(snake_case , 'attention' ) lowercase__: Optional[int] = getattr(snake_case , 'output' ) lowercase__: Optional[Any] = getattr(snake_case , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) lowercase__: Union[str, Any] = getattr(snake_case , 'output' ) lowercase__: List[Any] = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) lowercase__: Any = getattr(snake_case , 'output' ) lowercase__: str = getattr(snake_case , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) lowercase__: Tuple = getattr(snake_case , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) lowercase__: List[str] = getattr(snake_case , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) lowercase__: Optional[int] = getattr(snake_case , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) lowercase__: Any = getattr(snake_case , 'intermediate' ) lowercase__: str = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) lowercase__: Union[str, Any] = getattr(snake_case , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) lowercase__: str = getattr(snake_case , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) lowercase__: Tuple = getattr(snake_case , 'weight' ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary lowercase__: Any = '.'.join(snake_case ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , snake_case ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , snake_case ): lowercase__: Union[str, Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase__: str = array.transpose() if pointer.shape == array.shape: lowercase__: Union[str, Any] = torch.from_numpy(snake_case ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: # Instantiate model logger.info(f'Loading model based on config from {config_path}...' ) lowercase__: int = BertConfig.from_json_file(snake_case ) lowercase__: Tuple = BertModel(snake_case ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(snake_case , snake_case , snake_case ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __lowerCAmelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
288
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1000 ): snake_case_, snake_case_ = 1, 1 snake_case_ = [] for i in range(1 , n + 1 ): snake_case_ = prev_numerator + 2 * prev_denominator snake_case_ = prev_numerator + prev_denominator if len(str(SCREAMING_SNAKE_CASE__ ) ) > len(str(SCREAMING_SNAKE_CASE__ ) ): result.append(SCREAMING_SNAKE_CASE__ ) snake_case_ = numerator snake_case_ = denominator return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] =["image_processor", "tokenizer"] lowerCamelCase : Union[str, Any] ="LayoutLMv2ImageProcessor" lowerCamelCase : int =("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[int] , a : Any=None , a : Any=None , **a : Union[str, Any] ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a , ) __lowerCamelCase = kwargs.pop('''feature_extractor''' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a , a ) def __call__( self : Tuple , a : Optional[int] , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , a : Union[List[List[int]], List[List[List[int]]]] = None , a : Optional[Union[List[int], List[List[int]]]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : Tuple , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __lowerCamelCase = self.image_processor(images=a , return_tensors=a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(a , a ): __lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCamelCase = features['''words'''] __lowerCamelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel values __lowerCamelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __lowerCamelCase = self.get_overflowing_images(a , encoded_inputs['''overflow_to_sample_mapping'''] ) __lowerCamelCase = images return encoded_inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[Any] , a : str ): """simple docstring""" __lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(a ) != len(a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(a )} and {len(a )}""" ) return images_with_overflow def SCREAMING_SNAKE_CASE__ ( self : List[str] , *a : Optional[Any] , **a : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , *a : Union[str, Any] , **a : Tuple ): """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a , ) return self.image_processor
67
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCAmelCase_ ( __lowerCAmelCase = "isbn/0140328726" )-> dict: '''simple docstring''' UpperCAmelCase : Tuple =olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: UpperCAmelCase : Any =f'''{olid} is not a valid Open Library olid''' raise ValueError(__lowerCAmelCase ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def lowerCAmelCase_ ( __lowerCAmelCase )-> dict: '''simple docstring''' UpperCAmelCase : int ={ '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } UpperCAmelCase : Tuple ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase : Optional[int] =[ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] UpperCAmelCase : List[str] =data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : str =''', '''.join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: __snake_case = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('''\n'''.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
78
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Any ='''rougeLsum''' UpperCAmelCase : Optional[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCAmelCase_ ( )-> Any: '''simple docstring''' UpperCAmelCase : str =['''rouge1''', '''rouge2''', '''rougeL'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) UpperCAmelCase : Tuple =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) assert score_sep == score_no_sep def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : int =[ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] UpperCAmelCase : Any =[ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) == calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] UpperCAmelCase : Optional[Any] =[ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] , newline_sep=__lowerCAmelCase )['''rougeLsum'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =Path('''examples/seq2seq/test_data/wmt_en_ro''' ) UpperCAmelCase : Tuple =calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
78
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 1_6 lowercase_ = 3_2 def a ( A__ : int , A__ : Optional[Any] = 16 ) -> Tuple: """simple docstring""" _lowercase =AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase =load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ : Dict ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase =datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase =16 elif accelerator.mixed_precision != "no": _lowercase =8 else: _lowercase =None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ , drop_last=A__ ) _lowercase =DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def a ( A__ : int , A__ : str ) -> int: """simple docstring""" _lowercase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config['lr'] _lowercase =int(config['num_epochs'] ) _lowercase =int(config['seed'] ) _lowercase =int(config['batch_size'] ) _lowercase =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowercase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase =batch_size // MAX_GPU_BATCH_SIZE _lowercase =MAX_GPU_BATCH_SIZE set_seed(A__ ) _lowercase =get_dataloaders(A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase =model.to(accelerator.device ) # Instantiate optimizer _lowercase =AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler _lowercase =get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase =accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase =model(**A__ ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase =model(**A__ ) _lowercase =outputs.logits.argmax(dim=-1 ) _lowercase =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=A__ , references=A__ , ) _lowercase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , A__ ) def a ( ) -> Dict: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowercase =parser.parse_args() _lowercase ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
205
import colorsys from PIL import Image # type: ignore def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: __A : List[str] = x __A : str = y for step in range(a ): # noqa: B007 __A : Union[str, Any] = a * a - b * b + x __A : Optional[int] = 2 * a * b + y __A : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a , 1 , 1 ) ) def _SCREAMING_SNAKE_CASE ( a = 8_00 , a = 6_00 , a = -0.6 , a = 0 , a = 3.2 , a = 50 , a = True , ) -> Image.Image: __A : str = Image.new('RGB' , (image_width, image_height) ) __A : Dict = img.load() # loop through the image-coordinates for image_x in range(a ): for image_y in range(a ): # determine the figure-coordinates based on the image-coordinates __A : Dict = figure_width / image_width * image_height __A : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width __A : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __A : Union[str, Any] = get_distance(a , a , a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __A : Optional[Any] = get_color_coded_rgb(a ) else: __A : Dict = get_black_and_white_rgb(a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
280
0
from __future__ import annotations SCREAMING_SNAKE_CASE__ = tuple[int, int, int] SCREAMING_SNAKE_CASE__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase SCREAMING_SNAKE_CASE__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- SCREAMING_SNAKE_CASE__ = """EGZWVONAHDCLFQMSIPJBYUKXTR""" SCREAMING_SNAKE_CASE__ = """FOBHMDKEXQNRAULPGSJVTYICZW""" SCREAMING_SNAKE_CASE__ = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- SCREAMING_SNAKE_CASE__ = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- SCREAMING_SNAKE_CASE__ = """RMDJXFUWGISLHVTCQNKYPBEZOA""" SCREAMING_SNAKE_CASE__ = """SGLCPQWZHKXAREONTFBVIYJUDM""" SCREAMING_SNAKE_CASE__ = """HVSICLTYKQUBXDWAJZOMFGPREN""" SCREAMING_SNAKE_CASE__ = """RZWQHFMVDBKICJLNTUXAGYPSOE""" SCREAMING_SNAKE_CASE__ = """LFKIJODBEGAMQPXVUHYSTCZRWN""" SCREAMING_SNAKE_CASE__ = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: RotorPositionT , __lowerCamelCase: RotorSelectionT , __lowerCamelCase: str ): '''simple docstring''' if (unique_rotsel := len(set(__lowerCamelCase ) )) < 3: lowercase_ = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(__lowerCamelCase ) # Checks if rotor positions are valid lowercase_ , lowercase_ , lowercase_ = rotpos if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(__lowerCamelCase ) if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(__lowerCamelCase ) if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(__lowerCamelCase ) # Validates string and returns dict lowercase_ = _plugboard(__lowerCamelCase ) return rotpos, rotsel, pbdict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = F'Plugboard setting isn\'t type string ({type(__lowerCamelCase )})' raise TypeError(__lowerCamelCase ) elif len(__lowerCamelCase ) % 2 != 0: lowercase_ = F'Odd number of symbols ({len(__lowerCamelCase )})' raise Exception(__lowerCamelCase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique lowercase_ = set() for i in pbstring: if i not in abc: lowercase_ = F'\'{i}\' not in list of symbols' raise Exception(__lowerCamelCase ) elif i in tmppbl: lowercase_ = F'Duplicate symbol ({i})' raise Exception(__lowerCamelCase ) else: tmppbl.add(__lowerCamelCase ) del tmppbl # Created the dictionary lowercase_ = {} for j in range(0 , len(__lowerCamelCase ) - 1 , 2 ): lowercase_ = pbstring[j + 1] lowercase_ = pbstring[j] return pb def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: RotorPositionT , __lowerCamelCase: RotorSelectionT = (rotora, rotora, rotora) , __lowerCamelCase: str = "" , ): '''simple docstring''' lowercase_ = text.upper() lowercase_ , lowercase_ , lowercase_ = _validator( __lowerCamelCase , __lowerCamelCase , plugb.upper() ) lowercase_ , lowercase_ , lowercase_ = rotor_position lowercase_ , lowercase_ , lowercase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase_ = plugboard[symbol] # rotor ra -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # rotor rb -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # rotor rc -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase_ = reflector[symbol] # 2nd rotors lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = """This is my Python script that emulates the Enigma machine from WWII.""" SCREAMING_SNAKE_CASE__ = (1, 1, 1) SCREAMING_SNAKE_CASE__ = """pictures""" SCREAMING_SNAKE_CASE__ = (rotora, rotora, rotora) SCREAMING_SNAKE_CASE__ = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Optional[int] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case_ : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : List[Any] = TFAutoModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : int = AutoModel.from_pretrained(lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Union[str, Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case_ : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Any = TFAutoModelForPreTraining.from_pretrained(lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : str = AutoModelForPreTraining.from_pretrained(lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Optional[Any] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[int] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Dict = TFAutoModelForCausalLM.from_pretrained(lowercase_ , from_pt=lowercase_ ) snake_case_, snake_case_ : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase_ , output_loading_info=lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase_ , from_tf=lowercase_ ) snake_case_, snake_case_ : List[Any] = AutoModelForCausalLM.from_pretrained( lowercase_ , output_loading_info=lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Any = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Dict = TFAutoModelWithLMHead.from_pretrained(lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : str = AutoModelWithLMHead.from_pretrained(lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Tuple ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Tuple = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowercase_ , from_pt=lowercase_ ) snake_case_, snake_case_ : str = TFAutoModelForMaskedLM.from_pretrained( lowercase_ , output_loading_info=lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Tuple = AutoModelForMaskedLM.from_pretrained(lowercase_ , from_tf=lowercase_ ) snake_case_, snake_case_ : Dict = AutoModelForMaskedLM.from_pretrained( lowercase_ , output_loading_info=lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : str ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Any = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ , from_pt=lowercase_ ) snake_case_, snake_case_ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase_ , output_loading_info=lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowercase_ , from_tf=lowercase_ ) snake_case_, snake_case_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained( lowercase_ , output_loading_info=lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Tuple ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case_ : Any = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Tuple = TFAutoModelForSequenceClassification.from_pretrained(lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: snake_case_ : List[str] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(lowercase_ , from_pt=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ : List[str] = AutoModelForQuestionAnswering.from_pretrained(lowercase_ , from_tf=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self : Any ): snake_case_ : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase_ , from_pt=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14410 ) snake_case_ : Tuple = AutoModelWithLMHead.from_pretrained(lowercase_ , from_tf=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14410 ) def _snake_case ( self : int ): snake_case_ : str = TFAutoModelWithLMHead.from_pretrained(lowercase_ , from_pt=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14410 ) snake_case_ : Any = AutoModelWithLMHead.from_pretrained(lowercase_ , from_tf=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14410 )
264
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase__ : int = None lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[str] = '''▁''' lowercase__ : Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : str = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowercase__ : List[Any] = { '''google/pegasus-xsum''': 5_12, } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Tuple = PegasusTokenizer _lowerCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase_ : Optional[Any]=None , lowercase_ : int=None , lowercase_ : Tuple="<pad>" , lowercase_ : int="</s>" , lowercase_ : Tuple="<unk>" , lowercase_ : str="<mask_2>" , lowercase_ : Optional[Any]="<mask_1>" , lowercase_ : str=None , lowercase_ : List[str]=103 , **lowercase_ : List[Any] , ): snake_case_ : Dict = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase_ )}, but is" f" {type(lowercase_ )}" ) snake_case_ : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) snake_case_ : Union[str, Any] = additional_special_tokens_extended else: snake_case_ : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = vocab_file snake_case_ : List[Any] = False if not self.vocab_file else True def _snake_case ( self : str , lowercase_ : Union[str, Any] ): snake_case_ : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self : int , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : str=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ : Dict = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
264
1
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets A = datasets.logging.get_logger(__name__) A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.config_name == "default": __a : List[str] = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: __a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ): if gpus is None: __a : str = 1 if torch.cuda.is_available() else 0 __a : Optional[Any] = {'''src''': sources, '''mt''': predictions, '''ref''': references} __a : Dict = [dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) for t in zip(*data.values() )] __a , __a : int = self.scorer.predict(_UpperCAmelCase , gpus=_UpperCAmelCase , progress_bar=_UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
188
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
90
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = {'vocab_file': 'vocab.txt'} UpperCAmelCase__ : List[Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } UpperCAmelCase__ : Union[str, Any] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } UpperCAmelCase__ : Dict = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ConvBertTokenizer def __init__( self : Tuple , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : List[Any]="[CLS]" , lowerCAmelCase_ : Optional[int]="[MASK]" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A: List[str] = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _A: List[Any] = do_lower_case _A: Optional[Any] = strip_accents _A: Union[str, Any] = tokenize_chinese_chars _A: Optional[int] = normalizer_class(**lowerCAmelCase_ ) _A: Optional[Any] = do_lower_case def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=None ): """simple docstring""" _A: Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Any = [self.sep_token_id] _A: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" _A: str = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
121
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCAmelCase_ :List[str] = "CIDAS/clipseg-rd64-refined" UpperCAmelCase_ :List[Any] = "image_segmenter" UpperCAmelCase_ :Optional[int] = CLIPSegForImageSegmentation UpperCAmelCase_ :Tuple = ["image", "text"] UpperCAmelCase_ :Dict = ["image"] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ["""vision"""] ) super().__init__(*__A , **__A ) def __lowerCAmelCase ( self , __A , __A ) -> Any: return self.pre_processor(text=[label] , images=[image] , padding=__A , return_tensors="""pt""" ) def __lowerCAmelCase ( self , __A ) -> Tuple: with torch.no_grad(): lowerCAmelCase_ :Dict = self.model(**__A ).logits return logits def __lowerCAmelCase ( self , __A ) -> Tuple: lowerCAmelCase_ :Optional[int] = outputs.cpu().detach().numpy() lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
1
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """M-CLIP""" def __init__( self : Tuple , UpperCamelCase__ : Optional[Any]=1024 , UpperCamelCase__ : Any=768 , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = transformerDimSize SCREAMING_SNAKE_CASE : List[str] = imageDimSize super().__init__(**_SCREAMING_SNAKE_CASE ) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = MCLIPConfig def __init__( self : Union[str, Any] , UpperCamelCase__ : str , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = XLMRobertaModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __A ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.transformer(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] SCREAMING_SNAKE_CASE : List[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_SCREAMING_SNAKE_CASE ), embs
182
'''simple docstring''' import math def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
321
0
'''simple docstring''' def a__ ( ): return 1 def a__ ( a__ ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a__ ( a__ ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(a__ ) def a__ ( a__ = 2_00 ): return two_pound(a__ ) if __name__ == "__main__": print(solution(int(input().strip())))
370
'''simple docstring''' class lowerCAmelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = row __SCREAMING_SNAKE_CASE = col __SCREAMING_SNAKE_CASE = graph def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] __SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: # And finally, count all islands. """simple docstring""" __SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] __SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += 1 return count
331
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Any = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "donut-swin" lowerCAmelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=224 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=96 , __SCREAMING_SNAKE_CASE : Union[str, Any]=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE : str=[3, 6, 12, 24] , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : List[str]=4.0 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-5 , **__SCREAMING_SNAKE_CASE : str , ) -> Tuple: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) )
267
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( __SCREAMING_SNAKE_CASE , { """score""": ANY(__SCREAMING_SNAKE_CASE ), """label""": ANY(__SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(__SCREAMING_SNAKE_CASE ), """ymin""": ANY(__SCREAMING_SNAKE_CASE ), """xmax""": ANY(__SCREAMING_SNAKE_CASE ), """ymax""": ANY(__SCREAMING_SNAKE_CASE )}, } , ) import datasets __SCREAMING_SNAKE_CASE = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __SCREAMING_SNAKE_CASE = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __SCREAMING_SNAKE_CASE = object_detector(__SCREAMING_SNAKE_CASE , threshold=0.0 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for outputs in batch_outputs: self.assertGreater(len(__SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( __SCREAMING_SNAKE_CASE , { """score""": ANY(__SCREAMING_SNAKE_CASE ), """label""": ANY(__SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(__SCREAMING_SNAKE_CASE ), """ymin""": ANY(__SCREAMING_SNAKE_CASE ), """xmax""": ANY(__SCREAMING_SNAKE_CASE ), """ymax""": ANY(__SCREAMING_SNAKE_CASE )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" pass @require_torch def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-detr-mobilenetsv3""" __SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0.9985 __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def UpperCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """Narsil/layoutlmv3-finetuned-funsd""" __SCREAMING_SNAKE_CASE = 0.9993 __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" , model=__SCREAMING_SNAKE_CASE , threshold=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
267
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : str=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=6 , UpperCAmelCase : Optional[int]=17 , UpperCAmelCase : Union[str, Any]=23 , UpperCAmelCase : List[str]=11 , UpperCAmelCase : Dict=True , ) -> List[str]: lowerCamelCase__ : Optional[int] = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[Any] = seq_length lowerCamelCase__ : Optional[int] = act_dim lowerCamelCase__ : Tuple = state_dim lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Any = max_length lowerCamelCase__ : Tuple = is_training def A_ ( self : List[Any] ) -> Optional[int]: lowerCamelCase__ : str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowerCamelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowerCamelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCamelCase__ : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) lowerCamelCase__ : Any = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowerCamelCase__ : Tuple = random_attention_mask((self.batch_size, self.seq_length) ) lowerCamelCase__ : List[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A_ ( self : int ) -> Dict: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A_ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Tuple = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A_ ( self : List[str] ) -> str: lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = config_and_inputs lowerCamelCase__ : List[str] = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () UpperCAmelCase__ = () UpperCAmelCase__ = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : List[str] ) -> Any: lowerCamelCase__ : str = DecisionTransformerModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A_ ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> Dict: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A_ ( self : int ) -> List[str]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCAmelCase ) lowerCamelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : int = [*signature.parameters.keys()] lowerCamelCase__ : Dict = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : str ) -> Optional[Any]: lowerCamelCase__ : Dict = 2 # number of steps of autoregressive prediction we will perform lowerCamelCase__ : Dict = 10 # defined by the RL environment, may be normalized lowerCamelCase__ : List[str] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) lowerCamelCase__ : Dict = model.to(UpperCAmelCase ) lowerCamelCase__ : Dict = model.config torch.manual_seed(0 ) lowerCamelCase__ : int = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowerCamelCase__ : Any = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowerCamelCase__ : Tuple = state lowerCamelCase__ : int = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowerCamelCase__ : Optional[Any] = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowerCamelCase__ : Any = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowerCamelCase__ : int = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowerCamelCase__ : str = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowerCamelCase__ : Union[str, Any] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowerCamelCase__ : Optional[Any] = action_pred[0, -1] lowerCamelCase__ : Optional[Any] = torch.cat([states, state] , dim=1 ) lowerCamelCase__ : int = returns_to_go[0, -1] - reward lowerCamelCase__ : str = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowerCamelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
45
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : List[Any] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): _lowerCamelCase =True from torch.cuda.amp import autocast _lowerCamelCase =logging.getLogger(__name__) def _a ( lowerCamelCase=None, lowerCamelCase=None ): return field(default_factory=lambda: default, metadata=lowerCamelCase ) @dataclass class A__ : _UpperCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _UpperCAmelCase : Optional[bool] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""}) _UpperCAmelCase : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""}) _UpperCAmelCase : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""}) _UpperCAmelCase : Optional[float] = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) _UpperCAmelCase : Optional[float] = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) _UpperCAmelCase : Optional[float] = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) _UpperCAmelCase : Optional[float] = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""}) @dataclass class A__ : _UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _UpperCAmelCase : Optional[str] = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""}) _UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) _UpperCAmelCase : List[str] = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class A__ : _UpperCAmelCase : WavaVecaProcessor _UpperCAmelCase : Union[bool, str] = True _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None def __call__( self , __magic_name__ ): # split inputs and labels since they have to be of different lenghts and need # different padding methods lowerCamelCase : str = [{"""input_values""": feature["""input_values"""]} for feature in features] lowerCamelCase : Any = [{"""input_ids""": feature["""labels"""]} for feature in features] lowerCamelCase : List[str] = self.processor.pad( __magic_name__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) lowerCamelCase : Optional[Any] = self.processor.pad( labels=__magic_name__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly lowerCamelCase : int = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) lowerCamelCase : Dict = labels return batch class A__ ( __SCREAMING_SNAKE_CASE): def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ ): model.train() lowerCamelCase : int = self._prepare_inputs(__magic_name__ ) if self.use_amp: with autocast(): lowerCamelCase : str = self.compute_loss(__magic_name__ , __magic_name__ ) else: lowerCamelCase : Any = self.compute_loss(__magic_name__ , __magic_name__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowerCamelCase : int = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCamelCase : List[str] = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowerCamelCase : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__magic_name__ ).backward() elif self.use_apex: with amp.scale_loss(__magic_name__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__magic_name__ ) else: loss.backward() return loss.detach() def _a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""", lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowerCamelCase : Dict = datasets.load_dataset( """common_voice""", data_args.dataset_config_name, split=data_args.train_split_name ) lowerCamelCase : Optional[Any] = datasets.load_dataset("""common_voice""", data_args.dataset_config_name, split="""test""" ) # Create and save tokenizer lowerCamelCase : Optional[Any] = F'''[{"".join(data_args.chars_to_ignore )}]''' def remove_special_characters(lowerCamelCase ): lowerCamelCase : Union[str, Any] = re.sub(lowerCamelCase, """""", batch["""sentence"""] ).lower() + """ """ return batch lowerCamelCase : int = train_dataset.map(lowerCamelCase, remove_columns=["""sentence"""] ) lowerCamelCase : Any = eval_dataset.map(lowerCamelCase, remove_columns=["""sentence"""] ) def extract_all_chars(lowerCamelCase ): lowerCamelCase : int = """ """.join(batch["""text"""] ) lowerCamelCase : int = list(set(lowerCamelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} lowerCamelCase : Optional[int] = train_dataset.map( lowerCamelCase, batched=lowerCamelCase, batch_size=-1, keep_in_memory=lowerCamelCase, remove_columns=train_dataset.column_names, ) lowerCamelCase : Tuple = train_dataset.map( lowerCamelCase, batched=lowerCamelCase, batch_size=-1, keep_in_memory=lowerCamelCase, remove_columns=eval_dataset.column_names, ) lowerCamelCase : Union[str, Any] = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) lowerCamelCase : Tuple = {v: k for k, v in enumerate(lowerCamelCase )} lowerCamelCase : Optional[Any] = vocab_dict[""" """] del vocab_dict[" "] lowerCamelCase : str = len(lowerCamelCase ) lowerCamelCase : str = len(lowerCamelCase ) with open("""vocab.json""", """w""" ) as vocab_file: json.dump(lowerCamelCase, lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase : Dict = WavaVecaCTCTokenizer( """vocab.json""", unk_token="""[UNK]""", pad_token="""[PAD]""", word_delimiter_token="""|""", ) lowerCamelCase : int = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCamelCase, return_attention_mask=lowerCamelCase ) lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCamelCase, tokenizer=lowerCamelCase ) lowerCamelCase : Dict = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction="""mean""", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: lowerCamelCase : Optional[int] = min(len(lowerCamelCase ), data_args.max_train_samples ) lowerCamelCase : List[str] = train_dataset.select(range(lowerCamelCase ) ) if data_args.max_val_samples is not None: lowerCamelCase : str = eval_dataset.select(range(data_args.max_val_samples ) ) lowerCamelCase : Dict = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCamelCase ): lowerCamelCase , lowerCamelCase : Optional[Any] = torchaudio.load(batch["""path"""] ) lowerCamelCase : Optional[Any] = resampler(lowerCamelCase ).squeeze().numpy() lowerCamelCase : List[str] = 1_6000 lowerCamelCase : Any = batch["""text"""] return batch lowerCamelCase : int = train_dataset.map( lowerCamelCase, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) lowerCamelCase : Optional[Any] = eval_dataset.map( lowerCamelCase, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCamelCase ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' lowerCamelCase : Any = processor( audio=batch["""speech"""], text=batch["""target_text"""], sampling_rate=batch["""sampling_rate"""][0] ) batch.update(lowerCamelCase ) return batch lowerCamelCase : Any = train_dataset.map( lowerCamelCase, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCamelCase, num_proc=data_args.preprocessing_num_workers, ) lowerCamelCase : Union[str, Any] = eval_dataset.map( lowerCamelCase, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCamelCase, num_proc=data_args.preprocessing_num_workers, ) # Metric lowerCamelCase : List[str] = datasets.load_metric("""wer""" ) def compute_metrics(lowerCamelCase ): lowerCamelCase : str = pred.predictions lowerCamelCase : Optional[Any] = np.argmax(lowerCamelCase, axis=-1 ) lowerCamelCase : Union[str, Any] = processor.tokenizer.pad_token_id lowerCamelCase : Optional[int] = processor.batch_decode(lowerCamelCase ) # we do not want to group tokens when computing the metrics lowerCamelCase : Any = processor.batch_decode(pred.label_ids, group_tokens=lowerCamelCase ) lowerCamelCase : Union[str, Any] = wer_metric.compute(predictions=lowerCamelCase, references=lowerCamelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowerCamelCase : Dict = DataCollatorCTCWithPadding(processor=lowerCamelCase, padding=lowerCamelCase ) # Initialize our Trainer lowerCamelCase : Tuple = CTCTrainer( model=lowerCamelCase, data_collator=lowerCamelCase, args=lowerCamelCase, compute_metrics=lowerCamelCase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase : Optional[Any] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowerCamelCase : str = model_args.model_name_or_path else: lowerCamelCase : int = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowerCamelCase : Tuple = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() lowerCamelCase : Tuple = train_result.metrics lowerCamelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) lowerCamelCase : Tuple = min(lowerCamelCase, len(lowerCamelCase ) ) trainer.log_metrics("""train""", lowerCamelCase ) trainer.save_metrics("""train""", lowerCamelCase ) trainer.save_state() # Evaluation lowerCamelCase : Tuple = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase : List[Any] = trainer.evaluate() lowerCamelCase : Dict = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCamelCase ) lowerCamelCase : List[str] = min(lowerCamelCase, len(lowerCamelCase ) ) trainer.log_metrics("""eval""", lowerCamelCase ) trainer.save_metrics("""eval""", lowerCamelCase ) return results if __name__ == "__main__": main()
287
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _lowerCamelCase ="""pytorch_model.bin""" _lowerCamelCase ="""pytorch_model.bin.index.json""" _lowerCamelCase ="""adapter_config.json""" _lowerCamelCase ="""adapter_model.bin""" _lowerCamelCase ="""adapter_model.safetensors""" _lowerCamelCase ="""tf_model.h5""" _lowerCamelCase ="""tf_model.h5.index.json""" _lowerCamelCase ="""model.ckpt""" _lowerCamelCase ="""flax_model.msgpack""" _lowerCamelCase ="""flax_model.msgpack.index.json""" _lowerCamelCase ="""model.safetensors""" _lowerCamelCase ="""model.safetensors.index.json""" _lowerCamelCase ="""config.json""" _lowerCamelCase ="""preprocessor_config.json""" _lowerCamelCase =FEATURE_EXTRACTOR_NAME _lowerCamelCase ="""generation_config.json""" _lowerCamelCase ="""modelcard.json""" _lowerCamelCase ="""▁""" _lowerCamelCase =SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _lowerCamelCase =[ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _lowerCamelCase =[[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _lowerCamelCase =[[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _a ( lowerCamelCase ): if version.parse(lowerCamelCase ) < version.parse(lowerCamelCase ): if "dev" in min_version: lowerCamelCase : Optional[int] = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: lowerCamelCase : int = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
287
1
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=10_000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) __SCREAMING_SNAKE_CASE : Optional[bool] = field( default=lowercase_ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=50_000 , metadata={'''help''': '''Maximum number of training steps.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=1_024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase_ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) __SCREAMING_SNAKE_CASE : Optional[bool] = field(default=lowercase_ , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=1_024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=lowercase_ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowercase_ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) __SCREAMING_SNAKE_CASE : Optional[bool] = field( default=lowercase_ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowercase_ , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=100_000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=1_000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) __SCREAMING_SNAKE_CASE : Optional[bool] = field( default=lowercase_ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=200_000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=32_768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) __SCREAMING_SNAKE_CASE : Optional[bool] = field(default=lowercase_ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=lowercase_ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) __SCREAMING_SNAKE_CASE : Optional[bool] = field(default=lowercase_ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
350
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = '''roformer''' def __init__( self , snake_case=5_0000 , snake_case=None , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1536 , snake_case=2 , snake_case=0.02 , snake_case=1e-1_2 , snake_case=0 , snake_case=False , snake_case=True , **snake_case , ): super().__init__(pad_token_id=snake_case , **snake_case ) snake_case_ = vocab_size snake_case_ = hidden_size if embedding_size is None else embedding_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = rotary_value snake_case_ = use_cache class lowercase ( lowercase_ ): @property def a ( self ): if self.task == "multiple-choice": snake_case_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case_ = {0: 'batch', 1: 'sequence'} snake_case_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
200
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ): __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = True __a = 99 __a = 384 __a = 2 __a = 4 __a = 37 __a = '''gelu''' __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = 128 __a = 2 __a = 9 __a = 1 __a = None def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFConvBertModel(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = [input_ids, input_mask] __a = model(_a ) __a = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFConvBertForMaskedLM(config=_a ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = TFConvBertForSequenceClassification(config=_a ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_choices __a = TFConvBertForMultipleChoice(config=_a ) __a = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) __a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = TFConvBertForTokenClassification(config=_a ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a ): __a = TFConvBertForQuestionAnswering(config=_a ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase : str = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False def __UpperCAmelCase ( self ): __a = TFConvBertModelTester(self ) __a = ConfigTester(self , config_class=_a , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = True if hasattr(_a , '''use_cache''' ): __a = True __a = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __a = getattr(self.model_tester , '''key_length''' , _a ) for model_class in self.all_model_classes: __a = self._prepare_for_class(_a , _a ) __a = model_class(_a ) __a = len(model(_a ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a , saved_model=_a ) __a = os.path.join(_a , '''saved_model''' , '''1''' ) __a = tf.keras.models.load_model(_a ) __a = model(_a ) if self.is_encoder_decoder: __a = outputs['''encoder_hidden_states'''] __a = outputs['''encoder_attentions'''] else: __a = outputs['''hidden_states'''] __a = outputs['''attentions'''] self.assertEqual(len(_a ) , _a ) __a = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_a ) , _a ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCAmelCase ( self ): __a = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) __a = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __a = getattr(self.model_tester , '''key_length''' , _a ) __a = getattr(self.model_tester , '''key_length''' , _a ) def check_decoder_attentions_output(_a ): __a = len(_a ) self.assertEqual(out_len % 2 , 0 ) __a = outputs.decoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_a ): __a = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __a = True __a = False __a = model_class(_a ) __a = model(self._prepare_for_class(_a , _a ) ) __a = len(_a ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: __a = model_class(_a ) __a = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __a = True __a = model_class(_a ) __a = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(_a ) __a = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_a ) ) self.assertEqual(model.config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(_a )[0] __a = [1, 6, 768] self.assertEqual(output.shape , _a ) __a = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-4 )
45
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( _snake_case ): '''simple docstring''' __snake_case = ['pixel_values'] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = 3_2 , __lowerCamelCase=PILImageResampling.BILINEAR , __lowerCamelCase = True , **__lowerCamelCase , ) -> None: _SCREAMING_SNAKE_CASE : List[str] = do_resize _SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale _SCREAMING_SNAKE_CASE : Union[str, Any] = size_divisor _SCREAMING_SNAKE_CASE : Any = resample super().__init__(**UpperCamelCase__ ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase ) -> np.ndarray: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _SCREAMING_SNAKE_CASE : str = height // size_divisor * size_divisor _SCREAMING_SNAKE_CASE : Union[str, Any] = width // size_divisor * size_divisor _SCREAMING_SNAKE_CASE : List[Any] = resize(UpperCamelCase__ , (new_h, new_w) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) return image def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase ) -> np.ndarray: return rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ) -> BatchFeature: _SCREAMING_SNAKE_CASE : Dict = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : Any = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : Tuple = size_divisor if size_divisor is not None else self.size_divisor _SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) _SCREAMING_SNAKE_CASE : List[str] = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : str = [to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: _SCREAMING_SNAKE_CASE : int = [self.resize(UpperCamelCase__ , size_divisor=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : List[str] = [self.rescale(UpperCamelCase__ , scale=1 / 2_5_5 ) for image in images] _SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] _SCREAMING_SNAKE_CASE : int = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
363
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
0
from __future__ import annotations lowercase : Tuple = """Muhammad Umer Farooq""" lowercase : List[str] = """MIT""" lowercase : Any = """1.0.0""" lowercase : str = """Muhammad Umer Farooq""" lowercase : List[str] = """[email protected]""" lowercase : Union[str, Any] = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__() lowercase : list[str] = [] lowercase : Union[str, Any] = domain def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowercase : Tuple = parse.urljoin(self.domain ,snake_case ) self.urls.append(snake_case ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: return ".".join(get_sub_domain_name(SCREAMING_SNAKE_CASE__ ).split(""".""" )[-2:] ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: return parse.urlparse(SCREAMING_SNAKE_CASE__ ).netloc def _snake_case( SCREAMING_SNAKE_CASE__ = "https://github.com" ) -> list[str]: lowercase : List[Any] = get_domain_name(SCREAMING_SNAKE_CASE__ ) # Initialize the parser lowercase : List[str] = Parser(SCREAMING_SNAKE_CASE__ ) try: # Open URL lowercase : Tuple = requests.get(SCREAMING_SNAKE_CASE__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowercase : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowercase : Tuple = requests.get(SCREAMING_SNAKE_CASE__ ) # Get the valid email. lowercase : Any = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(SCREAMING_SNAKE_CASE__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Optional[Any] = emails_from_url("""https://github.com""") print(F'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
20
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : Optional[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class snake_case_ ( __A ): def __init__( self : Dict , lowercase_ : int , lowercase_ : Optional[int] = None ) -> List[str]: lowercase__ : str = max_length lowercase__ : Optional[int] = max_position_embeddings @add_start_docstrings(lowercase_ ) def __call__( self : Tuple , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: lowercase__ : str = input_ids.shape[-1] lowercase__ : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : int , lowercase_ : int ) -> List[str]: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , lowercase_ , ) lowercase__ : Optional[int] = start_length lowercase__ : str = max_new_tokens lowercase__ : Tuple = start_length + max_new_tokens @add_start_docstrings(lowercase_ ) def __call__( self : List[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Dict ) -> bool: return input_ids.shape[-1] >= self.max_length class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : float , lowercase_ : Optional[float] = None ) -> Dict: lowercase__ : List[str] = max_time lowercase__ : Tuple = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase_ ) def __call__( self : int , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: return time.time() - self.initial_timestamp > self.max_time class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : str , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: return any(criteria(lowercase_ , lowercase_ ) for criteria in self ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: for stopping_criterium in self: if isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length elif isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length return None def lowercase_ ( _lowerCamelCase : StoppingCriteriaList , _lowerCamelCase : int): lowercase__ : Optional[int] = stopping_criteria.max_length lowercase__ : str = deepcopy(_lowerCamelCase) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCamelCase) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCamelCase)) return new_stopping_criteria
87
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 384 UpperCAmelCase__ : Any = 7 if "tiny" in model_name: UpperCAmelCase__ : List[str] = 96 UpperCAmelCase__ : List[Any] = (2, 2, 6, 2) UpperCAmelCase__ : List[str] = (3, 6, 12, 24) elif "small" in model_name: UpperCAmelCase__ : List[Any] = 96 UpperCAmelCase__ : str = (2, 2, 18, 2) UpperCAmelCase__ : int = (3, 6, 12, 24) elif "base" in model_name: UpperCAmelCase__ : List[str] = 128 UpperCAmelCase__ : Any = (2, 2, 18, 2) UpperCAmelCase__ : str = (4, 8, 16, 32) UpperCAmelCase__ : Optional[int] = 12 UpperCAmelCase__ : Dict = 512 elif "large" in model_name: UpperCAmelCase__ : int = 192 UpperCAmelCase__ : str = (2, 2, 18, 2) UpperCAmelCase__ : Union[str, Any] = (6, 12, 24, 48) UpperCAmelCase__ : Dict = 12 UpperCAmelCase__ : List[Any] = 768 # set label information UpperCAmelCase__ : Optional[Any] = 150 UpperCAmelCase__ : Tuple = '''huggingface/label-files''' UpperCAmelCase__ : Dict = '''ade20k-id2label.json''' UpperCAmelCase__ : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ : Optional[int] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase__ : Tuple = {v: k for k, v in idalabel.items()} UpperCAmelCase__ : Tuple = SwinConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , num_heads=UpperCamelCase__ , window_size=UpperCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) UpperCAmelCase__ : Dict = UperNetConfig( backbone_config=UpperCamelCase__ , auxiliary_in_channels=UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , ) return config def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Any )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = dct.pop(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = val def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Optional[int] )-> Dict: '''simple docstring''' UpperCAmelCase__ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase__ : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase__ : Union[str, Any] = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) UpperCAmelCase__ : Optional[Any] = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ : Any = in_proj_weight[:dim, :] UpperCAmelCase__ : Optional[Any] = in_proj_bias[: dim] UpperCAmelCase__ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase__ : str = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase__ : List[Any] = in_proj_weight[ -dim :, : ] UpperCAmelCase__ : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : str = x.shape UpperCAmelCase__ : Union[str, Any] = x.reshape(UpperCamelCase__ , 4 , in_channel // 4 ) UpperCAmelCase__ : List[str] = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = x.shape UpperCAmelCase__ : Any = x.reshape(UpperCamelCase__ , in_channel // 4 , 4 ) UpperCAmelCase__ : Tuple = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> Any: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = x.shape[0] UpperCAmelCase__ : Tuple = x.reshape(4 , in_channel // 4 ) UpperCAmelCase__ : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(UpperCamelCase__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> int: '''simple docstring''' UpperCAmelCase__ : str = x.shape[0] UpperCAmelCase__ : List[Any] = x.reshape(in_channel // 4 , 4 ) UpperCAmelCase__ : Optional[Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(UpperCamelCase__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } UpperCAmelCase__ : int = model_name_to_url[model_name] UpperCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="cpu" , file_name=UpperCamelCase__ )[ '''state_dict''' ] for name, param in state_dict.items(): print(UpperCamelCase__ , param.shape ) UpperCAmelCase__ : Optional[int] = get_upernet_config(UpperCamelCase__ ) UpperCAmelCase__ : List[str] = UperNetForSemanticSegmentation(UpperCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase__ : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) if "bn" in key: UpperCAmelCase__ : Optional[Any] = key.replace("bn" , "batch_norm" ) UpperCAmelCase__ : List[Any] = val # rename keys UpperCAmelCase__ : Optional[int] = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: UpperCAmelCase__ : Optional[Any] = reverse_correct_unfold_reduction_order(UpperCamelCase__ ) if "norm" in key: UpperCAmelCase__ : Tuple = reverse_correct_unfold_norm_order(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify on image UpperCAmelCase__ : int = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase__ : Dict = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("RGB" ) UpperCAmelCase__ : Optional[int] = SegformerImageProcessor() UpperCAmelCase__ : List[Any] = processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": UpperCAmelCase__ : Optional[int] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": UpperCAmelCase__ : str = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": UpperCAmelCase__ : List[Any] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F"""upernet-swin-{size}""" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCAmelCase : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class a_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] ,snake_case : Dict[str, int] ,snake_case : List[str] ,snake_case : int = None ,snake_case : int = None ): super().__init__() SCREAMING_SNAKE_CASE =pad_token_id SCREAMING_SNAKE_CASE =max_length SCREAMING_SNAKE_CASE =vocab SCREAMING_SNAKE_CASE =merges SCREAMING_SNAKE_CASE =BytePairTokenizer(snake_case ,snake_case ,sequence_length=snake_case ) @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : GPTaTokenizer ,*snake_case : List[str] ,**snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =[' '.join(snake_case ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE =tokenizer.get_vocab() return cls(snake_case ,snake_case ,*snake_case ,**snake_case ) @classmethod def _lowerCAmelCase ( cls : Optional[Any] ,snake_case : Union[str, os.PathLike] ,*snake_case : Optional[int] ,**snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =GPTaTokenizer.from_pretrained(snake_case ,*snake_case ,**snake_case ) return cls.from_tokenizer(snake_case ,*snake_case ,**snake_case ) @classmethod def _lowerCAmelCase ( cls : Any ,snake_case : List[Any] ): return cls(**snake_case ) def _lowerCAmelCase ( self : Any ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _lowerCAmelCase ( self : Dict ,snake_case : Any ,snake_case : int = None ): SCREAMING_SNAKE_CASE =self.tf_tokenizer(snake_case ) SCREAMING_SNAKE_CASE =tf.ones_like(snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE =max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =pad_model_inputs( snake_case ,max_seq_length=snake_case ,pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
334
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 4_2 class UpperCamelCase_ (a__, a__ ): """simple docstring""" @register_to_config def __init__( self : Any , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 3 , _lowerCamelCase : Tuple[str] = ("DownEncoderBlock2D",) , _lowerCamelCase : Tuple[str] = ("UpDecoderBlock2D",) , _lowerCamelCase : Tuple[int] = (64,) , _lowerCamelCase : int = 1 , _lowerCamelCase : str = "silu" , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 32 , _lowerCamelCase : int = 256 , _lowerCamelCase : int = 32 , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : float = 0.1_82_15 , _lowerCamelCase : str = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder A_ : Optional[Any] = Encoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , down_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , double_z=_lowerCamelCase , ) A_ : int = vq_embed_dim if vq_embed_dim is not None else latent_channels A_ : Tuple = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1 ) A_ : Dict = VectorQuantizer(_lowerCamelCase , _lowerCamelCase , beta=0.25 , remap=_lowerCamelCase , sane_index_shape=_lowerCamelCase ) A_ : str = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1 ) # pass init params to Decoder A_ : List[Any] = Decoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , up_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , norm_type=_lowerCamelCase , ) @apply_forward_hook def _a ( self : List[Any] , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = True ): """simple docstring""" A_ : Any = self.encoder(_lowerCamelCase ) A_ : str = self.quant_conv(_lowerCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCamelCase ) @apply_forward_hook def _a ( self : int , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = False , _lowerCamelCase : bool = True ): """simple docstring""" if not force_not_quantize: A_ : Union[str, Any] = self.quantize(_lowerCamelCase ) else: A_ : Tuple = h A_ : int = self.post_quant_conv(_lowerCamelCase ) A_ : List[Any] = self.decoder(_lowerCamelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase ) def _a ( self : Optional[Any] , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : bool = True ): """simple docstring""" A_ : List[str] = sample A_ : Dict = self.encode(_lowerCamelCase ).latents A_ : Optional[Any] = self.decode(_lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase )
369
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] A_ : List[str] = [] def generate(lowerCamelCase__ : int , lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A_ ,A_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd A_ ,A_ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": snake_case__ = input("""Enter numbers separated by a comma:\n""").strip() snake_case__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
4
0
'''simple docstring''' import os from distutils.util import strtobool def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for e in env_keys: lowerCAmelCase__ : List[Any] = int(os.environ.get(UpperCamelCase , -1 ) ) if val >= 0: return val return default def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ : List[Any] = os.environ.get(UpperCamelCase , str(UpperCamelCase ) ) return strtobool(UpperCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase="no" ): """simple docstring""" lowerCAmelCase__ : List[str] = os.environ.get(UpperCamelCase , str(UpperCamelCase ) ) return value
37
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase_ ( __UpperCAmelCase ) -> tuple: return (data["data"], data["target"]) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> np.ndarray: lowerCAmelCase__ : List[Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__UpperCAmelCase , __UpperCAmelCase ) # Predict target for test data lowerCAmelCase__ : Dict = xgb.predict(__UpperCAmelCase ) lowerCAmelCase__ : Any = predictions.reshape(len(__UpperCAmelCase ) , 1 ) return predictions def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[Any] = fetch_california_housing() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = data_handling(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = train_test_split( __UpperCAmelCase , __UpperCAmelCase , test_size=0.25 , random_state=1 ) lowerCAmelCase__ : Optional[Any] = xgboost(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(__UpperCAmelCase , __UpperCAmelCase )}""" ) print(f"""Mean Square Error : {mean_squared_error(__UpperCAmelCase , __UpperCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
242
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( A_ ): UpperCAmelCase__ : Tuple = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : Optional[int] = (("num_inference_steps", 25),) def UpperCAmelCase(self : Optional[int] , **_A : List[Any] ) -> Any: snake_case = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_A ) return config def UpperCAmelCase(self : Dict , _A : Optional[int]=0 , **_A : List[str] ) -> Dict: snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop("num_inference_steps" , _A ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config(**_A ) snake_case = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) snake_case = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case , snake_case = sample, sample for t in range(_A , time_step + scheduler.config.solver_order + 1 ): snake_case = scheduler.step(_A , _A , _A , **_A ).prev_sample snake_case = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase(self : Union[str, Any] ) -> Any: pass def UpperCAmelCase(self : str , _A : int=0 , **_A : List[Any] ) -> Optional[int]: snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop("num_inference_steps" , _A ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config() snake_case = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) snake_case = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case = scheduler.step(_A , _A , _A , **_A ).prev_sample snake_case = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase(self : List[str] , _A : Tuple=None , **_A : Optional[int] ) -> str: if scheduler is None: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(**_A ) snake_case = scheduler_class(**_A ) snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(**_A ) snake_case = scheduler_class(**_A ) snake_case = 1_0 snake_case = self.dummy_model() snake_case = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): snake_case = model(_A , _A ) snake_case = scheduler.step(_A , _A , _A ).prev_sample return sample def UpperCAmelCase(self : Union[str, Any] ) -> Optional[Any]: snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) snake_case = 5_0 snake_case = self.dummy_model() snake_case = self.dummy_sample_deter scheduler.set_timesteps(_A ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): snake_case = model(_A , _A ) snake_case = scheduler.step(_A , _A , _A ).prev_sample snake_case = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.25_74 ) < 1E-3 def UpperCAmelCase(self : Union[str, Any] ) -> Optional[int]: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def UpperCAmelCase(self : int ) -> Dict: # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) snake_case = self.full_loop(scheduler=_A ) snake_case = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 snake_case = DEISMultistepScheduler.from_config(scheduler.config ) snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case = self.full_loop(scheduler=_A ) snake_case = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def UpperCAmelCase(self : Tuple ) -> List[Any]: self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , algorithm_type="dpmsolver++" , solver_order=_A , solver_type=_A , ) def UpperCAmelCase(self : Tuple ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCAmelCase(self : Dict ) -> List[Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A , solver_type=_A , prediction_type=_A , algorithm_type=_A , ) snake_case = self.full_loop( solver_order=_A , solver_type=_A , prediction_type=_A , algorithm_type=_A , ) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def UpperCAmelCase(self : Any ) -> str: self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def UpperCAmelCase(self : Optional[int] ) -> str: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase(self : List[str] ) -> Optional[Any]: self.check_over_configs(variance_type=_A ) self.check_over_configs(variance_type="learned_range" ) def UpperCAmelCase(self : List[str] ) -> Tuple: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=_A , time_step=0 ) def UpperCAmelCase(self : int ) -> Any: snake_case = self.full_loop() snake_case = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def UpperCAmelCase(self : List[Any] ) -> Dict: snake_case = self.full_loop(use_karras_sigmas=_A ) snake_case = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.22_48 ) < 1E-3 def UpperCAmelCase(self : List[str] ) -> Any: snake_case = self.full_loop(prediction_type="v_prediction" ) snake_case = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.14_53 ) < 1E-3 def UpperCAmelCase(self : int ) -> Union[str, Any]: snake_case = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_A ) snake_case = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.06_49 ) < 1E-3 def UpperCAmelCase(self : List[Any] ) -> List[str]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(thresholding=_A , dynamic_thresholding_ratio=0 ) snake_case = scheduler_class(**_A ) snake_case = 1_0 snake_case = self.dummy_model() snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): snake_case = model(_A , _A ) snake_case = scheduler.step(_A , _A , _A ).prev_sample assert sample.dtype == torch.floataa
137
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default=A_ , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase__ : Optional[List[str]] = dataclasses.field( default=A_ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowerCamelCase : UpperCAmelCase__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase__ : Optional[bool] = dataclasses.field( default=A_ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase__ : Optional[int] = dataclasses.field( default=A_ , metadata={"help": "Random seed for initialization."} , ) def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case = dataset.filter(lambda A__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case = int(eval_result * len(A__ ) ) print(A__ ) snake_case = dataset.sort("probability" , reverse=A__ ) snake_case = dataset.select(range(A__ ) ) snake_case = dataset.remove_columns(["label", "probability"] ) snake_case = dataset.rename_column("prediction" , "label" ) snake_case = dataset.map(lambda A__ : {"label": idalabel[example["label"]]} ) snake_case = dataset.shuffle(seed=args.seed ) snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(A__ , index=A__ ) else: dataset.to_json(A__ ) def lowercase_ ( A__ , A__ , A__ , A__ , **A__ ) -> List[Any]: """simple docstring""" snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case = STModelArguments(model_name_or_path=A__ ) snake_case = STDataArguments(train_file=A__ , infer_file=A__ ) snake_case = STTrainingArguments(output_dir=A__ ) snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(A__ ).items(): setattr(A__ , A__ , A__ ) for key, value in kwargs.items(): if hasattr(A__ , A__ ): setattr(A__ , A__ , A__ ) # Sanity checks snake_case = {} snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case = args.train_file snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case = args.eval_file for key in data_files: snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: snake_case = extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case = F'{args.output_dir}/self-train_iter-{{}}'.format snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=A__ ) os.makedirs(A__ , exist_ok=A__ ) accelerator.wait_for_everyone() snake_case = None snake_case = None snake_case = 0 snake_case = False # Show the progress bar snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case = data_dir_format(A__ ) assert os.path.exists(A__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case = os.path.join(A__ , "stage-1" ) snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(A__ , A__ ): arguments_dict.update({key: value} ) snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , A__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case = os.path.join(A__ , "best-checkpoint" ) snake_case = os.path.join(A__ , "stage-2" ) # Update arguments_dict snake_case = model_path snake_case = data_files["train"] snake_case = current_output_dir snake_case = os.path.join(A__ , "best-checkpoint" , A__ ) if os.path.exists(A__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , A__ , A__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , A__ ) finetune(**A__ ) accelerator.wait_for_everyone() assert os.path.exists(A__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , A__ ) snake_case = iteration snake_case = data_dir_format(iteration + 1 ) snake_case = AutoConfig.from_pretrained(os.path.join(A__ , "best-checkpoint" ) ) snake_case = config.idalabel snake_case = os.path.join(A__ , "eval_results_best-checkpoint.json" ) snake_case = os.path.join(A__ , "test_results_best-checkpoint.json" ) assert os.path.exists(A__ ) with open(A__ , "r" ) as f: snake_case = float(json.load(A__ )[args.eval_metric] ) snake_case = os.path.join(A__ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(A__ ) # Loading the dataset from local csv or json files. snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(A__ , exist_ok=A__ ) shutil.copy(A__ , os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(A__ ): shutil.copy(A__ , os.path.join(A__ , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(A__ , A__ , A__ , A__ , A__ , A__ ) accelerator.wait_for_everyone() snake_case = os.path.join(A__ , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case = eval_result if best_iteration is None: snake_case = new_iteration snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case = new_iteration snake_case = new_eval_result snake_case = 0 else: if new_eval_result == best_eval_result: snake_case = new_iteration snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , A__ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{iteration}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A__ , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(A__ , "eval_results_best-iteration.json" ) , )
137
1