code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" __UpperCamelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __UpperCamelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __UpperCamelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __UpperCamelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __UpperCamelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __UpperCamelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __UpperCamelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __UpperCamelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
113
"""simple docstring""" from math import isclose, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple[float, float, float]: SCREAMING_SNAKE_CASE = point_y / 4 / point_x SCREAMING_SNAKE_CASE = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) SCREAMING_SNAKE_CASE = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) SCREAMING_SNAKE_CASE = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 SCREAMING_SNAKE_CASE = outgoing_gradient**2 + 4 SCREAMING_SNAKE_CASE = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) SCREAMING_SNAKE_CASE = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 SCREAMING_SNAKE_CASE = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) SCREAMING_SNAKE_CASE = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point SCREAMING_SNAKE_CASE = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus SCREAMING_SNAKE_CASE = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowercase (SCREAMING_SNAKE_CASE_ : float = 1.4 , SCREAMING_SNAKE_CASE_ : float = -9.6 ) -> int: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = first_x_coord SCREAMING_SNAKE_CASE = first_y_coord SCREAMING_SNAKE_CASE = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
113
1
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__=None ): '''simple docstring''' lowercase__ : Union[str, Any]= data lowercase__ : Optional[Any]= None def __repr__( self ): '''simple docstring''' lowercase__ : str= [] lowercase__ : Tuple= self while temp: string_rep.append(F'''{temp.data}''' ) lowercase__ : Optional[int]= temp.next return "->".join(snake_case__ ) def lowercase__(A ) ->Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ : Optional[int]= Node(elements_list[0] ) for i in range(1 , len(A ) ): lowercase__ : Optional[Any]= Node(elements_list[i] ) lowercase__ : str= current.next return head def lowercase__(A ) ->None: """simple docstring""" if head_node is not None and isinstance(A , A ): print_reverse(head_node.next ) print(head_node.data ) def lowercase__() ->str: """simple docstring""" from doctest import testmod testmod() lowercase__ : Optional[int]= make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A ) print("Elements in Reverse:" ) print_reverse(A ) if __name__ == "__main__": main()
150
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : List[Any] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] a : Dict = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowercase__(A ) ->Optional[int]: """simple docstring""" lowercase__ : Any= torch.load(A , map_location="cpu" ) return sd def lowercase__(A , A , A=rename_keys_prefix ) ->List[str]: """simple docstring""" lowercase__ : int= OrderedDict() lowercase__ : Optional[Any]= torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase__ : Union[str, Any]= key for name_pair in rename_keys_prefix: lowercase__ : str= new_key.replace(name_pair[0] , name_pair[1] ) lowercase__ : Union[str, Any]= d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase__ : Optional[int]= new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowercase__(A , A ) ->str: """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: lowercase__ : Union[str, Any]= "pretraining" if "vcr" in checkpoint_path: lowercase__ : str= {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: lowercase__ : Optional[Any]= {"visual_embedding_dim": 2_048} elif "vqa" in checkpoint_path: lowercase__ : int= {"visual_embedding_dim": 2_048} elif "nlvr" in checkpoint_path: lowercase__ : Tuple= {"visual_embedding_dim": 1_024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: lowercase__ : int= {"visual_embedding_dim": 512} lowercase__ : int= "multichoice" elif "vqa_advanced" in checkpoint_path: lowercase__ : Dict= {"visual_embedding_dim": 2_048} lowercase__ : Optional[Any]= "vqa_advanced" elif "vqa" in checkpoint_path: lowercase__ : Optional[int]= {"visual_embedding_dim": 2_048, "num_labels": 3_129} lowercase__ : List[str]= "vqa" elif "nlvr" in checkpoint_path: lowercase__ : Dict= { "visual_embedding_dim": 1_024, "num_labels": 2, } lowercase__ : Any= "nlvr" lowercase__ : List[Any]= VisualBertConfig(**A ) # Load State Dict lowercase__ : Union[str, Any]= load_state_dict(A ) lowercase__ : List[str]= get_new_dict(A , A ) if model_type == "pretraining": lowercase__ : Optional[Any]= VisualBertForPreTraining(A ) elif model_type == "vqa": lowercase__ : Any= VisualBertForQuestionAnswering(A ) elif model_type == "nlvr": lowercase__ : Union[str, Any]= VisualBertForVisualReasoning(A ) elif model_type == "multichoice": lowercase__ : str= VisualBertForMultipleChoice(A ) model.load_state_dict(A ) # Save Checkpoints Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") a : Dict = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
150
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase , encoder_hidden_states=lowercase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFEsmForMaskedLM(config=lowercase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(lowercase , lowercase ) for k, v in name.items(): assert isinstance(lowercase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(lowercase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
1
from __future__ import annotations import math def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) ) def __A ( ): '''simple docstring''' _A = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] _A = math.log(len(_lowercase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , _lowercase , _lowercase , _lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
75
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __A ( _lowercase ): '''simple docstring''' _A = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _A = True if '''large''' in model_name or '''huge''' in model_name else False _A = True if '''large''' in model_name or '''huge''' in model_name else False _A = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _A = [3, 3, 3, 3] _A = [5, 5, 5, 5] elif "fl4" in model_name: _A = [4, 4, 4, 4] _A = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _A = [3, 3, 3, 3] if "lrf" in model_name: _A = [3, 3, 3, 3] else: _A = [2, 2, 2, 2] if "tiny" in model_name: _A = 96 elif "small" in model_name: _A = 96 elif "base" in model_name: _A = 1_28 elif "large" in model_name: _A = 1_92 elif "xlarge" in model_name: _A = 2_56 elif "huge" in model_name: _A = 3_52 # set label information _A = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _A = '''imagenet-22k-id2label.json''' else: _A = '''imagenet-1k-id2label.json''' _A = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) _A = {int(_lowercase ): v for k, v in idalabel.items()} _A = {v: k for k, v in idalabel.items()} _A = FocalNetConfig( embed_dim=_lowercase , depths=_lowercase , focal_levels=_lowercase , focal_windows=_lowercase , use_conv_embed=_lowercase , idalabel=_lowercase , labelaid=_lowercase , use_post_layernorm=_lowercase , use_layerscale=_lowercase , ) return config def __A ( _lowercase ): '''simple docstring''' if "patch_embed.proj" in name: _A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _A = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _A = '''encoder.''' + name if "encoder.layers" in name: _A = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: _A = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: _A = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _A = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _A = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _A = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": _A = '''layernorm.weight''' if name == "norm.bias": _A = '''layernorm.bias''' if "head" in name: _A = name.replace('''head''' , '''classifier''' ) else: _A = '''focalnet.''' + name return name def __A ( _lowercase , _lowercase , _lowercase=False ): '''simple docstring''' _A = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _A = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _lowercase ) _A = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): _A = state_dict.pop(_lowercase ) _A = val _A = get_focalnet_config(_lowercase ) _A = FocalNetForImageClassification(_lowercase ) model.eval() # load state dict model.load_state_dict(_lowercase ) # verify conversion _A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A = BitImageProcessor( do_resize=_lowercase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase , crop_size=2_24 , do_normalize=_lowercase , image_mean=_lowercase , image_std=_lowercase , ) _A = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) _A = processor(images=_lowercase , return_tensors='''pt''' ) _A = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _A = image_transforms(_lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _lowercase , atol=1e-4 ) _A = model(**_lowercase ) _A = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _A = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": _A = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": _A = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": _A = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": _A = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": _A = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
75
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = ["""image_processor""", """tokenizer"""] _SCREAMING_SNAKE_CASE : Optional[Any] = """BlipImageProcessor""" _SCREAMING_SNAKE_CASE : str = """AutoTokenizer""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: __lowerCAmelCase = False super().__init__(snake_case_ , snake_case_ ) __lowerCAmelCase = self.image_processor def __call__( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] = None , SCREAMING_SNAKE_CASE__ : List[str] = None , SCREAMING_SNAKE_CASE__ : List[str] = True , SCREAMING_SNAKE_CASE__ : str = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : List[str] = None , SCREAMING_SNAKE_CASE__ : Any = 0 , SCREAMING_SNAKE_CASE__ : Tuple = None , SCREAMING_SNAKE_CASE__ : Optional[Any] = None , SCREAMING_SNAKE_CASE__ : str = False , SCREAMING_SNAKE_CASE__ : Optional[int] = False , SCREAMING_SNAKE_CASE__ : Optional[Any] = False , SCREAMING_SNAKE_CASE__ : List[Any] = False , SCREAMING_SNAKE_CASE__ : Any = False , SCREAMING_SNAKE_CASE__ : str = True , SCREAMING_SNAKE_CASE__ : Union[str, Any] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Union[str, Any]: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __lowerCAmelCase = self.tokenizer __lowerCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values __lowerCAmelCase = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: __lowerCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: __lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def a ( self : Any , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ) -> Tuple: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def a ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def a ( self : Any ) -> List[Any]: __lowerCAmelCase = self.tokenizer.model_input_names __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
229
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : List[str] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
281
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MgpstrTokenizer SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # fmt: off a :int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on a :List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = '''tester''' a :Union[str, Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a :Any = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) a :str = tokenizer.encode([special_token] , add_special_tokens=_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) , 1 ) a :Tuple = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a , a :Tuple = self.get_input_output_texts(_lowerCamelCase ) a :Tuple = tokenizer.tokenize(_lowerCamelCase ) a :int = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) a :Optional[int] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Any = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertNotEqual(len(_lowerCamelCase ) , 0 ) a :str = tokenizer.decode(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _lowerCamelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass
281
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''width_multiplier''' ) ) class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=64 , __A=2 , __A=3 , __A="swish" , __A=3 , __A=32 , __A=0.1 , __A=0.02 , __A=True , __A=True , __A=10 , __A=None , __A=0.25 , __A=0.0 , __A=0.0 , ) -> List[Any]: a =parent a =batch_size a =image_size a =patch_size a =num_channels a =make_divisible(512 * width_multiplier , divisor=8 ) a =hidden_act a =conv_kernel_size a =output_stride a =classifier_dropout_prob a =use_labels a =is_training a =num_labels a =initializer_range a =scope a =width_multiplier a =ffn_dropout a =attn_dropout def SCREAMING_SNAKE_CASE ( self ) -> Any: a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a =None a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.num_labels ) a =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a =self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A ) -> Any: a =MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() a =model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A ) -> Dict: a =self.num_labels a =MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() a =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A ) -> Tuple: a =self.num_labels a =MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() a =model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a =model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.prepare_config_and_inputs() a , a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( lowerCamelCase__, lowerCamelCase__, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCAmelCase = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =MobileViTVaModelTester(self ) a =MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self ) -> str: pass def SCREAMING_SNAKE_CASE ( self ) -> int: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__lowercase ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> int: def check_hidden_states_output(__A , __A , __A ): a =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__lowercase , __lowercase ) ) a =outputs.hidden_states a =5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a =2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowercase ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): a =model(**__lowercase ) # verify the logits a =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) a =torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> int: a =MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =model.to(__lowercase ) a =MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =prepare_img() a =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): a =model(**__lowercase ) a =outputs.logits # verify the logits a =torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) a =torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: a =MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =model.to(__lowercase ) a =MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =prepare_img() a =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): a =model(**__lowercase ) a =outputs.logits.detach().cpu() a =image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) a =torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) a =image_processor.post_process_semantic_segmentation(outputs=__lowercase ) a =torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
81
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A : List[str] = None A : Optional[int] = logging.get_logger(__name__) A : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : str = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 A : Dict = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ['''input_ids''', '''attention_mask'''] A__ = TaTokenizer A__ = [] def __init__(self : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Union[str, Any]="<unk>" , _UpperCAmelCase : str="<pad>" , _UpperCAmelCase : List[str]=100 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowercase__ = [f'''<extra_id_{i}>''' for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ = len(set(filter(lambda _UpperCAmelCase : bool("""extra_id_""" in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True lowercase__ = extra_ids @staticmethod def lowerCamelCase__ (_UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , _UpperCAmelCase , ) return max_model_length def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowerCamelCase__ (self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" return list( set(filter(lambda _UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , _UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" return [self.convert_tokens_to_ids(_UpperCAmelCase ) for token in self.get_sentinel_tokens()]
366
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : List[Any] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''segformer''' def __init__(self : Dict , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=[2, 2, 2, 2] , _UpperCAmelCase : List[str]=[8, 4, 2, 1] , _UpperCAmelCase : str=[32, 64, 160, 256] , _UpperCAmelCase : Optional[int]=[7, 3, 3, 3] , _UpperCAmelCase : int=[4, 2, 2, 2] , _UpperCAmelCase : str=[1, 2, 5, 8] , _UpperCAmelCase : Optional[int]=[4, 4, 4, 4] , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=1E-6 , _UpperCAmelCase : Optional[Any]=256 , _UpperCAmelCase : Any=255 , **_UpperCAmelCase : str , ) -> Tuple: """simple docstring""" super().__init__(**_UpperCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , _UpperCAmelCase , ) lowercase__ = num_channels lowercase__ = num_encoder_blocks lowercase__ = depths lowercase__ = sr_ratios lowercase__ = hidden_sizes lowercase__ = patch_sizes lowercase__ = strides lowercase__ = mlp_ratios lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = classifier_dropout_prob lowercase__ = initializer_range lowercase__ = drop_path_rate lowercase__ = layer_norm_eps lowercase__ = decoder_hidden_size lowercase__ = kwargs.get("""reshape_last_stage""" , _UpperCAmelCase ) lowercase__ = semantic_loss_ignore_index class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Optional[int] ) -> float: """simple docstring""" return 1E-4 @property def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" return 12
146
0
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any]=7 ): __a : Any = None if token is not None: __a : List[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"Bearer {token}"} # The id of a workflow (not of a workflow run) __a : Optional[int] = '''636036''' __a : Any = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" __a : List[str] = requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() return result["workflow_runs"] def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] ): __a : Dict = get_daily_ci_runs(UpperCAmelCase_ ) __a : Any = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __a : Optional[int] = workflow_run['''id'''] break return workflow_run_id def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): __a : Optional[int] = get_last_daily_ci_runs(UpperCAmelCase_ ) if workflow_run_id is not None: __a : Optional[Any] = get_artifacts_links(worflow_run_id=UpperCAmelCase_ , token=UpperCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __a : Tuple = artifacts_links[artifact_name] download_artifact( artifact_name=UpperCAmelCase_ , artifact_url=UpperCAmelCase_ , output_dir=UpperCAmelCase_ , token=UpperCAmelCase_ ) def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : str ): get_last_daily_ci_artifacts(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __a : Dict = {} for artifact_name in artifact_names: __a : Optional[Any] = os.path.join(UpperCAmelCase_ , f"{artifact_name}.zip" ) if os.path.isfile(UpperCAmelCase_ ): __a : Any = {} with zipfile.ZipFile(UpperCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase_ ): # read the file with z.open(UpperCAmelCase_ ) as f: __a : Union[str, Any] = f.read().decode('''UTF-8''' ) return results
216
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets SCREAMING_SNAKE_CASE_ : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE_ : str = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' SCREAMING_SNAKE_CASE_ : List[str] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: List[str] ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int = CHRF.CHAR_ORDER , UpperCamelCase: int = CHRF.WORD_ORDER , UpperCamelCase: int = CHRF.BETA , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , ): """simple docstring""" A__ = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A__ = [[refs[i] for refs in references] for i in range(UpperCamelCase )] A__ = CHRF(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = sb_chrf.corpus_score(UpperCamelCase , UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
335
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=3 , A_=4 , A_=None , ) -> Dict: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 384 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.0_2 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = 128 lowerCAmelCase = 2 lowerCAmelCase = 9 lowerCAmelCase = 1 lowerCAmelCase = None def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: lowerCAmelCase = TFConvBertModel(config=A_ ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = TFConvBertForMaskedLM(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForSequenceClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFConvBertForMultipleChoice(config=A_ ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForTokenClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = TFConvBertForQuestionAnswering(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = False def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = TFConvBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __snake_case ( self ) -> Any: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = True if hasattr(A_ , """use_cache""" ): lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) for model_class in self.all_model_classes: lowerCAmelCase = self._prepare_for_class(A_ , A_ ) lowerCAmelCase = model_class(A_ ) lowerCAmelCase = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) lowerCAmelCase = os.path.join(A_ , """saved_model""" , """1""" ) lowerCAmelCase = tf.keras.models.load_model(A_ ) lowerCAmelCase = model(A_ ) if self.is_encoder_decoder: lowerCAmelCase = outputs["""encoder_hidden_states"""] lowerCAmelCase = outputs["""encoder_attentions"""] else: lowerCAmelCase = outputs["""hidden_states"""] lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(A_ ) , A_ ) lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(A_ ) def __snake_case ( self ) -> str: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) def check_decoder_attentions_output(A_ ): lowerCAmelCase = len(A_ ) self.assertEqual(out_len % 2 , 0 ) lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) lowerCAmelCase = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> Any: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(A_ )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , A_ ) lowerCAmelCase = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
359
'''simple docstring''' class __snake_case: '''simple docstring''' def __init__( self ) -> None: lowerCAmelCase = {} # Mapping from char to TrieNode lowerCAmelCase = False def __snake_case ( self , A_ ) -> None: for word in words: self.insert(A_ ) def __snake_case ( self , A_ ) -> None: lowerCAmelCase = self for char in word: if char not in curr.nodes: lowerCAmelCase = TrieNode() lowerCAmelCase = curr.nodes[char] lowerCAmelCase = True def __snake_case ( self , A_ ) -> bool: lowerCAmelCase = self for char in word: if char not in curr.nodes: return False lowerCAmelCase = curr.nodes[char] return curr.is_leaf def __snake_case ( self , A_ ) -> None: def _delete(A_ , A_ , A_ ) -> bool: if index == len(A_ ): # If word does not exist if not curr.is_leaf: return False lowerCAmelCase = False return len(curr.nodes ) == 0 lowerCAmelCase = word[index] lowerCAmelCase = curr.nodes.get(A_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCAmelCase = _delete(A_ , A_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A_ , 0 ) def _snake_case ( _SCREAMING_SNAKE_CASE : TrieNode , _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" if node.is_leaf: print(_SCREAMING_SNAKE_CASE , end=""" """ ) for key, value in node.nodes.items(): print_words(_SCREAMING_SNAKE_CASE , word + key ) def _snake_case ( ) -> bool: """simple docstring""" lowerCAmelCase = """banana bananas bandana band apple all beast""".split() lowerCAmelCase = TrieNode() root.insert_many(_SCREAMING_SNAKE_CASE ) # print_words(root, "") assert all(root.find(_SCREAMING_SNAKE_CASE ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool ) -> None: """simple docstring""" print(str(_SCREAMING_SNAKE_CASE ) , """works!""" if passes else """doesn't work :(""" ) def _snake_case ( ) -> None: """simple docstring""" assert test_trie() def _snake_case ( ) -> None: """simple docstring""" print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
187
0
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
238
"""simple docstring""" from functools import lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =2 lowerCamelCase__ : Optional[int] =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return len(unique_prime_factors(__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : list ): """simple docstring""" return len(set(__lowerCamelCase ) ) in (0, 1) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =2 while True: # Increment each value of a generated range lowerCamelCase__ : Tuple =[base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase__ : Optional[Any] =[upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def snake_case__ ( __lowerCamelCase : int = 4 ): """simple docstring""" lowerCamelCase__ : List[Any] =run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
238
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : Any = 1 snake_case : Any = 3 snake_case : Tuple = (32, 32) snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case : List[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' snake_case : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Optional[int] = self.dummy_cond_unet_upscale snake_case : Union[str, Any] = DDPMScheduler() snake_case : Any = DDIMScheduler(prediction_type="v_prediction" ) snake_case : Union[str, Any] = self.dummy_vae snake_case : str = self.dummy_text_encoder snake_case : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Tuple = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case : List[Any] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) snake_case : Any = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Optional[Any] = "A painting of a squirrel eating a burger" snake_case : Optional[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) snake_case : List[str] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) snake_case : Optional[int] = output.images snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) snake_case : Dict = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=snake_case__ , )[0] snake_case : str = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] snake_case : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case : List[str] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.dummy_cond_unet_upscale snake_case : List[Any] = DDPMScheduler() snake_case : str = DDIMScheduler(prediction_type="v_prediction" ) snake_case : Union[str, Any] = self.dummy_vae snake_case : Union[str, Any] = self.dummy_text_encoder snake_case : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Any = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case : Tuple = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) snake_case : Optional[int] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Union[str, Any] = "A painting of a squirrel eating a burger" snake_case : Tuple = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) snake_case : int = output.images assert image.shape[0] == 2 snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) snake_case : Dict = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) snake_case : List[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' snake_case : Tuple = self.dummy_cond_unet_upscale snake_case : Any = DDPMScheduler() snake_case : List[Any] = DDIMScheduler(prediction_type="v_prediction" ) snake_case : Dict = self.dummy_vae snake_case : Any = self.dummy_text_encoder snake_case : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Tuple = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 snake_case : Any = unet.half() snake_case : str = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case : List[str] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) snake_case : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Optional[Any] = "A painting of a squirrel eating a burger" snake_case : Optional[int] = torch.manual_seed(0 ) snake_case : Optional[int] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ).images snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) snake_case : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) snake_case : Tuple = "stabilityai/stable-diffusion-x4-upscaler" snake_case : Tuple = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() snake_case : Dict = "a cat sitting on a park bench" snake_case : List[str] = torch.manual_seed(0 ) snake_case : int = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) snake_case : Tuple = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) snake_case : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) snake_case : int = "stabilityai/stable-diffusion-x4-upscaler" snake_case : str = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() snake_case : int = "a cat sitting on a park bench" snake_case : int = torch.manual_seed(0 ) snake_case : str = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) snake_case : Optional[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) snake_case : str = "stabilityai/stable-diffusion-x4-upscaler" snake_case : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : Union[str, Any] = "a cat sitting on a park bench" snake_case : List[Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type="np" , ) snake_case : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
10
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( snake_case ): UpperCamelCase =["image_processor", "tokenizer"] UpperCamelCase ="CLIPImageProcessor" UpperCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ) -> Optional[int]: __lowercase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase_ , ) __lowercase : Optional[int] = kwargs.pop('''feature_extractor''' ) __lowercase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ) -> List[str]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase : Optional[int] = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if images is not None: __lowercase : Optional[int] = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None and images is not None: __lowercase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> Optional[int]: return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Any = self.tokenizer.model_input_names __lowercase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self ) -> Union[str, Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase_ , ) return self.image_processor_class @property def _lowerCamelCase ( self ) -> Tuple: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCamelCase_ , ) return self.image_processor
249
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run a_ = True except (ImportError, AttributeError): a_ = object def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): pass a_ = False a_ = logging.get_logger('transformers-cli/serving') def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__UpperCamelCase , args.host , args.port , args.workers ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): UpperCamelCase =42 class UpperCAmelCase_ ( snake_case ): @staticmethod def _lowerCamelCase ( UpperCamelCase_ ) -> Tuple: __lowercase : Dict = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=UpperCamelCase_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=UpperCamelCase_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=UpperCamelCase_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=UpperCamelCase_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=UpperCamelCase_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=UpperCamelCase_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=UpperCamelCase_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=UpperCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: __lowercase : List[Any] = pipeline __lowercase : str = host __lowercase : List[str] = port __lowercase : str = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) __lowercase : int = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=UpperCamelCase_ , response_class=UpperCamelCase_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def _lowerCamelCase ( self ) -> Union[str, Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _lowerCamelCase ( self ) -> Tuple: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowerCamelCase ( self , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) ) -> Optional[int]: try: __lowercase : Any = self._pipeline.tokenizer.tokenize(UpperCamelCase_ ) if return_ids: __lowercase : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) return ServeTokenizeResult(tokens=UpperCamelCase_ , tokens_ids=UpperCamelCase_ ) else: return ServeTokenizeResult(tokens=UpperCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(UpperCamelCase_ )} ) def _lowerCamelCase ( self , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , UpperCamelCase_ = Body(UpperCamelCase_ , embed=UpperCamelCase_ ) , ) -> Dict: try: __lowercase : Tuple = self._pipeline.tokenizer.decode(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return ServeDeTokenizeResult(model='''''' , text=UpperCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(UpperCamelCase_ )} ) async def _lowerCamelCase ( self , UpperCamelCase_=Body(UpperCamelCase_ , embed=UpperCamelCase_ ) ) -> Union[str, Any]: # Check we don't have empty string if len(UpperCamelCase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowercase : Optional[Any] = self._pipeline(UpperCamelCase_ ) return ServeForwardResult(output=UpperCamelCase_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(UpperCamelCase_ )} )
249
1
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a : Dict = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a : str = concatenate_datasets a : Dict = DownloadConfig a : Union[str, Any] = DownloadManager a : Dict = DownloadMode a : str = DownloadConfig a : Any = DownloadMode a : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' snake_case_ : Union[str, Any] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) snake_case_ : List[str] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = from_type.lower().strip('s' ) _UpperCamelCase : Tuple = to_type.lower().strip('s' ) _UpperCamelCase : Optional[int] = UNIT_SYMBOL.get(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = UNIT_SYMBOL.get(UpperCAmelCase_ , UpperCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: _UpperCamelCase : List[Any] = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(UpperCAmelCase_ )}' ) raise ValueError(UpperCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: _UpperCamelCase : int = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(UpperCAmelCase_ )}' ) raise ValueError(UpperCAmelCase_ ) _UpperCamelCase : Tuple = METRIC_CONVERSION[from_sanitized] _UpperCamelCase : int = METRIC_CONVERSION[to_sanitized] _UpperCamelCase : str = 1 if from_exponent > to_exponent: _UpperCamelCase : Tuple = from_exponent - to_exponent else: _UpperCamelCase : Optional[int] = -(to_exponent - from_exponent) return value * pow(1_0 , UpperCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
83
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') snake_case_ : Any = logging.getLogger(__name__) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowercase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowercase__ : lowercase__ = field(default=lowercase , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' if self.train_file is not None: _UpperCamelCase : List[Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCamelCase : Union[str, Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None def __call__( self : Optional[Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = 'label' if 'label' in features[0].keys() else 'labels' _UpperCamelCase : List[Any] = [feature.pop(lowerCamelCase__ ) for feature in features] _UpperCamelCase : Dict = len(lowerCamelCase__ ) _UpperCamelCase : List[str] = len(features[0]['input_ids'] ) _UpperCamelCase : List[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase__ )] for feature in features ] _UpperCamelCase : str = list(chain(*lowerCamelCase__ ) ) _UpperCamelCase : Tuple = self.tokenizer.pad( lowerCamelCase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten _UpperCamelCase : str = {k: v.view(lowerCamelCase__ ,lowerCamelCase__ ,-1 ) for k, v in batch.items()} # Add back labels _UpperCamelCase : Optional[int] = torch.tensor(lowerCamelCase__ ,dtype=torch.intaa ) return batch def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) datasets.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _UpperCamelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCamelCase : Optional[int] = {} if data_args.train_file is not None: _UpperCamelCase : Tuple = data_args.train_file if data_args.validation_file is not None: _UpperCamelCase : Tuple = data_args.validation_file _UpperCamelCase : Any = data_args.train_file.split('.' )[-1] _UpperCamelCase : Union[str, Any] = load_dataset( UpperCAmelCase_ , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCamelCase : List[str] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCamelCase : Any = [f'ending{i}' for i in range(4 )] _UpperCamelCase : int = 'sent1' _UpperCamelCase : List[str] = 'sent2' if data_args.max_seq_length is None: _UpperCamelCase : int = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _UpperCamelCase : int = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _UpperCamelCase : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase_ ): _UpperCamelCase : str = [[context] * 4 for context in examples[context_name]] _UpperCamelCase : Optional[Any] = examples[question_header_name] _UpperCamelCase : Tuple = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(UpperCAmelCase_ ) ] # Flatten out _UpperCamelCase : Optional[int] = list(chain(*UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = list(chain(*UpperCAmelCase_ ) ) # Tokenize _UpperCamelCase : Tuple = tokenizer( UpperCAmelCase_ , UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCamelCase : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCamelCase : Tuple = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _UpperCamelCase : Tuple = train_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _UpperCamelCase : Union[str, Any] = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCamelCase : str = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCamelCase : Union[str, Any] = min(len(UpperCAmelCase_ ) , data_args.max_eval_samples ) _UpperCamelCase : str = eval_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _UpperCamelCase : Dict = eval_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCamelCase : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = eval_predictions _UpperCamelCase : List[str] = np.argmax(UpperCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCamelCase : Optional[int] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: _UpperCamelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase : int = last_checkpoint _UpperCamelCase : List[str] = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCamelCase : Union[str, Any] = train_result.metrics _UpperCamelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCamelCase : List[Any] = trainer.evaluate() _UpperCamelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ ) _UpperCamelCase : int = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
83
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
0
import os import platform import sys lowerCamelCase_ = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
244
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase_ = random.Random() if is_torch_available(): import torch def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=1.0 , __UpperCamelCase=None , __UpperCamelCase=None ): """simple docstring""" if rng is None: __A = global_rng __A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any, _lowerCamelCase : List[str], _lowerCamelCase : Any=7, _lowerCamelCase : Optional[int]=4_00, _lowerCamelCase : Optional[int]=20_00, _lowerCamelCase : Dict=1, _lowerCamelCase : Optional[Any]=0.0, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : Dict=True, ): '''simple docstring''' __A = parent __A = batch_size __A = min_seq_length __A = max_seq_length __A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __A = feature_size __A = padding_value __A = sampling_rate __A = return_attention_mask __A = do_normalize def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[Any]=False, _lowerCamelCase : int=False ): '''simple docstring''' def _flatten(_lowerCamelCase : List[str] ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: __A = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __A = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: __A = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : int = ASTFeatureExtractor def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ASTFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A = [floats_list((1, x) )[0] for x in range(8_00, 14_00, 2_00 )] __A = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __A = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values __A = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test batched __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __A = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __A = np.asarray(_lowerCamelCase ) __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' import torch __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A = np.random.rand(1_00 ).astype(np.floataa ) __A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' from datasets import load_dataset __A = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech __A = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # fmt: off __A = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on __A = self._load_datasamples(1 ) __A = ASTFeatureExtractor() __A = feature_extractor(_lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30], _lowerCamelCase, atol=1e-4 ) )
266
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) lowercase__ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(_lowercase )["last_hidden_state"].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1e-3 ) ) @slow def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) lowercase__ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(_lowercase )["last_hidden_state"].detach() self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowercase , atol=1e-3 ) )
201
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): __lowerCamelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = (3, 32, 1_28) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) lowercase__ = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 1_28}, } lowercase__ = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[Any] , **_lowercase :str ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase ( self :List[Any] , **_lowercase :List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) return image_input def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_lowercase , return_tensors="np" ) lowercase__ = processor(images=_lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "test" lowercase__ = processor(text=_lowercase ) lowercase__ = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "test" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(_lowercase ) lowercase__ = tokenizer.batch_decode(_lowercase ) lowercase__ = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(_lowercase , _lowercase ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = torch.randn(1 , 27 , 38 ) lowercase__ = torch.randn(1 , 27 , 5_02_57 ) lowercase__ = torch.randn(1 , 27 , 3_05_22 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
201
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True ): '''simple docstring''' model.train() UpperCAmelCase : List[str] = model(__magic_name__ ) UpperCAmelCase : Union[str, Any] = F.mse_loss(__magic_name__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__=False ): '''simple docstring''' set_seed(42 ) UpperCAmelCase : str = RegressionModel() UpperCAmelCase : Optional[Any] = deepcopy(__magic_name__ ) UpperCAmelCase : Any = RegressionDataset(length=80 ) UpperCAmelCase : Optional[Any] = DataLoader(__magic_name__ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase : Optional[Any] = AdamW(params=model.parameters() , lr=1e-3 ) UpperCAmelCase : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCAmelCase : int = LambdaLR(__magic_name__ , lr_lambda=lambda __magic_name__ : epoch**0.6_5 ) UpperCAmelCase : List[Any] = LambdaLR(__magic_name__ , lr_lambda=lambda __magic_name__ : epoch**0.6_5 ) # Make a copy of `model` if sched: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = accelerator.prepare(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: UpperCAmelCase , UpperCAmelCase : Dict = accelerator.prepare(__magic_name__ , __magic_name__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = get_training_setup(__magic_name__ ) # Use a single batch UpperCAmelCase , UpperCAmelCase : Union[str, Any] = next(iter(__magic_name__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__magic_name__ ): step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: # Sync grads step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : Any = ddp_input[torch.randperm(len(__magic_name__ ) )] def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = get_training_setup(__magic_name__ ) # Use a single batch UpperCAmelCase , UpperCAmelCase : List[str] = next(iter(__magic_name__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__magic_name__ ): step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: # Sync grads step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : Tuple = ddp_input[torch.randperm(len(__magic_name__ ) )] def lowercase ( __magic_name__=False , __magic_name__=False ): '''simple docstring''' UpperCAmelCase : Tuple = Accelerator( split_batches=__magic_name__ , dispatch_batches=__magic_name__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = get_training_setup(__magic_name__ ) for iteration, batch in enumerate(__magic_name__ ): UpperCAmelCase , UpperCAmelCase : Any = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Any = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__magic_name__ ): step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__magic_name__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : Tuple = ddp_input[torch.randperm(len(__magic_name__ ) )] GradientState._reset_state() def lowercase ( __magic_name__=False , __magic_name__=False ): '''simple docstring''' UpperCAmelCase : str = Accelerator( split_batches=__magic_name__ , dispatch_batches=__magic_name__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = get_training_setup(__magic_name__ , __magic_name__ ) for iteration, batch in enumerate(__magic_name__ ): UpperCAmelCase , UpperCAmelCase : List[str] = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Tuple = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__magic_name__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__magic_name__ ): step_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" UpperCAmelCase : Union[str, Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__magic_name__ )) if accelerator.num_processes > 1: check_model_parameters(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = Accelerator() UpperCAmelCase : Optional[int] = RegressionDataset(length=80 ) UpperCAmelCase : int = DataLoader(__magic_name__ , batch_size=16 ) UpperCAmelCase : Optional[int] = RegressionDataset(length=96 ) UpperCAmelCase : Optional[int] = DataLoader(__magic_name__ , batch_size=16 ) UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare(__magic_name__ , __magic_name__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__magic_name__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(__magic_name__ ) if iteration < len(__magic_name__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__magic_name__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(__magic_name__ ) if batch_num < len(__magic_name__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase ( ): '''simple docstring''' UpperCAmelCase : Optional[int] = Accelerator() UpperCAmelCase : List[str] = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__magic_name__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__magic_name__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(__magic_name__ , __magic_name__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(__magic_name__ , __magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' main() if __name__ == "__main__": main()
311
'''simple docstring''' # Lint as: python3 import itertools import os import re a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])") a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])") a : str = re.compile(R"(?<!_)_(?!_)") a : List[Any] = re.compile(R"(_{2,})") a : List[Any] = R"^\w+(\.\w+)*$" a : Dict = R"<>:/\|?*" def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ ) return name.lower() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ ) UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" ) def lowercase ( __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if os.path.basename(__magic_name__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __magic_name__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__magic_name__ )}-{split}" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) if filetype_suffix: prefix += F".{filetype_suffix}" UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) return F"{filepath}*" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ ) if shard_lengths: UpperCAmelCase : Tuple = len(__magic_name__ ) UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )] if filetype_suffix: UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: UpperCAmelCase : int = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
311
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a ={"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Tuple = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') __lowerCamelCase : str = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__)['last_hidden_state'] __lowerCamelCase : Dict = tf.TensorShape((1, 1_0, 7_6_8)) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) # compare the actual values for a slice. __lowerCamelCase : Any = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
113
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig class snake_case_ (_a ): UpperCAmelCase__ : List[Any] = """bert-generation""" def __init__( self :int ,__snake_case :Dict=5_03_58 ,__snake_case :Dict=10_24 ,__snake_case :Any=24 ,__snake_case :Dict=16 ,__snake_case :Optional[Any]=40_96 ,__snake_case :Optional[int]="gelu" ,__snake_case :Any=0.1 ,__snake_case :Optional[Any]=0.1 ,__snake_case :Tuple=5_12 ,__snake_case :List[str]=0.02 ,__snake_case :Union[str, Any]=1E-12 ,__snake_case :int=0 ,__snake_case :Any=2 ,__snake_case :Optional[Any]=1 ,__snake_case :Optional[Any]="absolute" ,__snake_case :Dict=True ,**__snake_case :Tuple ,) -> str: super().__init__(pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = initializer_range a__ = layer_norm_eps a__ = position_embedding_type a__ = use_cache
368
from __future__ import annotations def __lowercase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a__ , a__ = array[indexa], array[indexa] def __lowercase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): if length > 1: a__ = int(length / 2 ) for i in range(__lowerCAmelCase , low + middle ): comp_and_swap(__lowerCAmelCase , __lowerCAmelCase , i + middle , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , low + middle , __lowerCAmelCase , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): if length > 1: a__ = int(length / 2 ) bitonic_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) bitonic_sort(__lowerCAmelCase , low + middle , __lowerCAmelCase , 0 ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": snake_case : int = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
109
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class UpperCamelCase__ ( _lowercase ): """simple docstring""" _SCREAMING_SNAKE_CASE = "imagegpt" _SCREAMING_SNAKE_CASE = ["past_key_values"] _SCREAMING_SNAKE_CASE = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_1_2 + 1 , SCREAMING_SNAKE_CASE_ : int=3_2 * 3_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE_ : str=2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=8 , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : List[str]="quick_gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1E-5 , SCREAMING_SNAKE_CASE_ : int=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : str=False , **SCREAMING_SNAKE_CASE_ : List[Any] , ): lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : Optional[int] = n_positions lowerCAmelCase_ : List[str] = n_embd lowerCAmelCase_ : Optional[int] = n_layer lowerCAmelCase_ : int = n_head lowerCAmelCase_ : Dict = n_inner lowerCAmelCase_ : Any = activation_function lowerCAmelCase_ : Optional[int] = resid_pdrop lowerCAmelCase_ : int = embd_pdrop lowerCAmelCase_ : Optional[int] = attn_pdrop lowerCAmelCase_ : Tuple = layer_norm_epsilon lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : Optional[int] = scale_attn_weights lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : List[Any] = scale_attn_by_inverse_layer_idx lowerCAmelCase_ : Optional[Any] = reorder_and_upcast_attn lowerCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class UpperCamelCase__ ( _lowercase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : "FeatureExtractionMixin" , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 3_2 , ): lowerCAmelCase_ : Optional[int] = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
224
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _snake_case = parser.parse_args() _snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _snake_case = CLIPImageProcessor() _snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
157
0
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 a_ = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 a_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __snake_case : """simple docstring""" def __init__( self ): '''simple docstring''' __A : str = WATERMARK_BITS __A : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if images.shape[-1] < 256: return images __A : Any = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Any = [self.encoder.encode(__lowerCamelCase , '''dwtDct''' ) for image in images] __A : Union[str, Any] = torch.from_numpy(np.array(__lowerCamelCase ) ).permute(0 , 3 , 1 , 2 ) __A : Union[str, Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
291
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __lowercase ( snake_case_ : int ) ->bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(snake_case_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( ) ->Iterator[int]: '''simple docstring''' __A : int = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def __lowercase ( snake_case_ : int = 2000000 ) ->int: '''simple docstring''' return sum(takewhile(lambda snake_case_ : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
291
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ ) self.check_model_type(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : List[str]=None ,**lowerCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = {}, {} if padding is not None: SCREAMING_SNAKE_CASE = padding if truncation is not None: SCREAMING_SNAKE_CASE = truncation if top_k is not None: SCREAMING_SNAKE_CASE = top_k return preprocess_params, {}, postprocess_params def __call__( self : Dict ,lowerCamelCase__ : Union["Image.Image", str] ,lowerCamelCase__ : str = None ,**lowerCamelCase__ : Any ) -> Tuple: '''simple docstring''' if isinstance(lowerCamelCase__ ,(Image.Image, str) ) and isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = {"""image""": image, """question""": question} else: SCREAMING_SNAKE_CASE = image SCREAMING_SNAKE_CASE = super().__call__(lowerCamelCase__ ,**lowerCamelCase__ ) return results def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Any=False ,lowerCamelCase__ : Optional[Any]=False ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = load_image(inputs["""image"""] ) SCREAMING_SNAKE_CASE = self.tokenizer( inputs["""question"""] ,return_tensors=self.framework ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.image_processor(images=lowerCamelCase__ ,return_tensors=self.framework ) model_inputs.update(lowerCamelCase__ ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase__ ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int=5 ) -> Dict: '''simple docstring''' if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE = model_outputs.logits.sigmoid()[0] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = probs.topk(lowerCamelCase__ ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) SCREAMING_SNAKE_CASE = scores.tolist() SCREAMING_SNAKE_CASE = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase__ ,lowerCamelCase__ )]
296
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __snake_case : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __snake_case : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Use FP16 to accelerate inference."} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Benchmark training of model"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Verbose memory tracing"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace memory line by line"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save result to a CSV file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Save all print statements in a log file"} ) __snake_case : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to print environment information"} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __snake_case : str = field( default=F"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , ) __snake_case : str = field( default=F"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __snake_case : str = field( default=F"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __snake_case : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __snake_case : str = field( default=F"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , ) __snake_case : str = field( default=F"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , ) __snake_case : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" ,lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
296
1
def lowerCamelCase_ ( lowerCamelCase__ ): return "".join(chr(ord(lowerCamelCase__ ) - 3_2 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
47
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A =logging.get_logger(__name__) __A ={ '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } __A =[ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): for attribute in key.split("." ): lowerCamelCase_ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCamelCase_ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(lowerCamelCase__ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , lowerCamelCase__ ) if "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "bias" in name: lowerCamelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ = "weight" else: lowerCamelCase_ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ): if config_path is not None: lowerCamelCase_ = UniSpeechSatConfig.from_pretrained(lowerCamelCase__ ) else: lowerCamelCase_ = UniSpeechSatConfig() lowerCamelCase_ = "" if is_finetuned: lowerCamelCase_ = UniSpeechSatForCTC(lowerCamelCase__ ) else: lowerCamelCase_ = UniSpeechSatForPreTraining(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCamelCase_ = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A =parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
47
1
def a__ ( snake_case ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __SCREAMING_SNAKE_CASE : Tuple = sorted(string.lower() ) return len(snake_case ) == len(set(snake_case ) ) if __name__ == "__main__": lowercase_ = input("""Enter a string """).strip() lowercase_ = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCAmelCase = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''DPTFeatureExtractor'''] __lowerCAmelCase = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> list: if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
107
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : str = logging.get_logger(__name__) def a_ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False ): UpperCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def a_ ( lowerCamelCase , lowerCamelCase ): for i in range(config.num_hidden_layers ): UpperCAmelCase__ = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = in_proj_bias[: config.hidden_size] UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = in_proj_bias[-config.hidden_size :] def a_ ( lowerCamelCase ): UpperCAmelCase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = dct.pop(_lowercase ) UpperCAmelCase__ = val @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=_lowercase ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if "vqa" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = 3_1_2_9 UpperCAmelCase__ = '''huggingface/label-files''' UpperCAmelCase__ = '''vqa2-id2label.json''' UpperCAmelCase__ = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase__ = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = ViltForQuestionAnswering(_lowercase ) elif "nlvr" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = 2 UpperCAmelCase__ = {0: '''False''', 1: '''True'''} UpperCAmelCase__ = {v: k for k, v in config.idalabel.items()} UpperCAmelCase__ = 3 UpperCAmelCase__ = ViltForImagesAndTextClassification(_lowercase ) elif "irtr" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = ViltForImageAndTextRetrieval(_lowercase ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase__ = True UpperCAmelCase__ = ViltForMaskedLM(_lowercase ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = torch.hub.load_state_dict_from_url(_lowercase , map_location='cpu' )['''state_dict'''] UpperCAmelCase__ = create_rename_keys(_lowercase , _lowercase , _lowercase , _lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase ) if mlm_model or irtr_model: UpperCAmelCase__ = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase__ = model.load_state_dict(_lowercase , strict=_lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowercase ) # Define processor UpperCAmelCase__ = ViltImageProcessor(size=3_8_4 ) UpperCAmelCase__ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCAmelCase__ = ViltProcessor(_lowercase , _lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowercase ).raw ) UpperCAmelCase__ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowercase ).raw ) UpperCAmelCase__ = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' ) UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' ) UpperCAmelCase__ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase__ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_lowercase ).raw ) if mlm_model: UpperCAmelCase__ = '''a bunch of [MASK] laying on a [MASK].''' else: UpperCAmelCase__ = '''How many cats are there?''' UpperCAmelCase__ = processor(_lowercase , _lowercase , return_tensors='pt' ) UpperCAmelCase__ = model(**_lowercase ) # Verify outputs if mlm_model: UpperCAmelCase__ = torch.Size([1, 1_1, 3_0_5_2_2] ) UpperCAmelCase__ = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 ) # verify masked token prediction equals "cats" UpperCAmelCase__ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase__ = torch.Size([1, 3_1_2_9] ) UpperCAmelCase__ = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1e-4 ) # verify vqa prediction equals "2" UpperCAmelCase__ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase__ = torch.Size([1, 2] ) UpperCAmelCase__ = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
98
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowercase__ ( )-> Union[str, Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__UpperCamelCase ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowercase__ ( )-> Tuple: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowercase__ ( )-> str: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__UpperCamelCase ): http_head("""https://huggingface.co""" )
355
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> int: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
183
0
"""simple docstring""" import numpy as np def a__ ( __SCREAMING_SNAKE_CASE ) -> np.array: return 1 / (1 + np.exp(-vector )) def a__ ( __SCREAMING_SNAKE_CASE ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
217
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: Optional[Any] = hf_hub_url(repo_id=__SCREAMING_SNAKE_CASE , path=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__SCREAMING_SNAKE_CASE )}"
217
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class snake_case__ ( snake_case_ ): def __init__( self , *lowerCamelCase , **lowerCamelCase ): super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self , lowerCamelCase=None ): __a = {} if top_k is not None: __a = top_k return {}, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ): return super().__call__(lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase ): __a = load_image(lowerCamelCase ) __a = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) return model_inputs def a__ ( self , lowerCamelCase ): __a = self.model(**lowerCamelCase ) return model_outputs def a__ ( self , lowerCamelCase , lowerCamelCase=5 ): if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.softmax(-1 )[0] __a , __a = probs.topk(lowerCamelCase ) elif self.framework == "tf": __a = stable_softmax(model_outputs.logits , axis=-1 )[0] __a = tf.math.top_k(lowerCamelCase , k=lowerCamelCase ) __a , __a = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __a = scores.tolist() __a = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
268
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency SCREAMING_SNAKE_CASE__:Any = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } SCREAMING_SNAKE_CASE__:Optional[int] = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" SCREAMING_SNAKE_CASE__:Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _lowerCamelCase( a ): __a = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _lowerCamelCase( a ): return x[0] def _lowerCamelCase( a ): __a = get_letter_count(a ) __a = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(a ) __a = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=a ) __a = "".join(freq_to_letter[freq] ) __a = list(freq_to_letter_str.items() ) freq_pairs.sort(key=a , reverse=a ) __a = [freq_pair[1] for freq_pair in freq_pairs] return "".join(a ) def _lowerCamelCase( a ): __a = get_frequency_order(a ) __a = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
268
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
148
"""simple docstring""" import sys from collections import defaultdict class lowerCamelCase__ : def __init__( self ): """simple docstring""" snake_case : Dict = [] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self.node_position[vertex] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Dict = pos def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case : Any = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case : Any = 2 * start + 1 else: snake_case : Union[str, Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case , snake_case : Dict = heap[smallest_child], positions[smallest_child] snake_case , snake_case : Any = ( heap[start], positions[start], ) snake_case , snake_case : str = temp, tempa snake_case : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE ) self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = position[index] while index != 0: snake_case : Dict = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case : Tuple = heap[parent] snake_case : str = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE ) else: snake_case : Union[str, Any] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) break snake_case : Optional[Any] = parent else: snake_case : Optional[int] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , 0 ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = len(SCREAMING_SNAKE_CASE ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = positions[0] snake_case : List[str] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return temp def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : Tuple = Heap() snake_case : List[str] = [0] * len(lowercase__ ) snake_case : Optional[int] = [-1] * len(lowercase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex snake_case : List[Any] = [] for vertex in range(len(lowercase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowercase__ ) heap.node_position.append(lowercase__ ) snake_case : Optional[int] = [] snake_case : Union[str, Any] = 1 snake_case : Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case : List[Any] = 0 snake_case : Tuple = distance heap.heapify(lowercase__ , lowercase__ ) for _ in range(1 , len(lowercase__ ) ): snake_case : Optional[Any] = heap.delete_minimum(lowercase__ , lowercase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case : Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowercase__ )] ): snake_case : str = distance heap.bottom_to_top( lowercase__ , heap.get_position(lowercase__ ) , lowercase__ , lowercase__ ) snake_case : Optional[int] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
148
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
171
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase : ClassVar[Features] = Features({'text': Value('string' )} ) lowercase : ClassVar[Features] = Features({'labels': ClassLabel} ) lowercase : str = "text" lowercase : str = "labels" def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase : int = copy.deepcopy(self ) __UpperCamelCase : List[Any] = self.label_schema.copy() __UpperCamelCase : Union[str, Any] = features[self.label_column] __UpperCamelCase : Optional[Any] = label_schema return task_template @property def __lowerCamelCase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
171
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> str: lowerCamelCase : int = size if size is not None else {"height": 18, "width": 18} lowerCamelCase : int = parent lowerCamelCase : str = batch_size lowerCamelCase : List[Any] = num_channels lowerCamelCase : Any = image_size lowerCamelCase : Optional[int] = min_resolution lowerCamelCase : Dict = max_resolution lowerCamelCase : Tuple = do_resize lowerCamelCase : Tuple = size lowerCamelCase : Tuple = do_normalize lowerCamelCase : Any = image_mean lowerCamelCase : int = image_std def _lowercase ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Dict = ViTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = EfficientFormerImageProcessorTester(self ) @property def _lowercase ( self ) -> Tuple: return self.image_proc_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) def _lowercase ( self ) -> List[Any]: pass def _lowercase ( self ) -> List[str]: # Initialize image_processor lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input lowerCamelCase : Dict = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Union[str, Any] = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _lowercase ( self ) -> str: # Initialize image_processor lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input lowerCamelCase : List[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Tuple = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _lowercase ( self ) -> int: # Initialize image_processor lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input lowerCamelCase : Union[str, Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowerCamelCase : Tuple = image_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
48
def A ( _SCREAMING_SNAKE_CASE ) -> list: if n_term == "": return [] lowerCamelCase : list = [] for temp in range(int(_SCREAMING_SNAKE_CASE ) ): series.append(f'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
48
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "depth_multiplier" ) ) class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=3 , UpperCamelCase__=32 , UpperCamelCase__=0.25 , UpperCamelCase__=8 , UpperCamelCase__=True , UpperCamelCase__=1024 , UpperCamelCase__=32 , UpperCamelCase__="relu6" , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=10 , UpperCamelCase__=None , ) -> List[Any]: '''simple docstring''' snake_case : int = parent snake_case : int = batch_size snake_case : List[Any] = num_channels snake_case : Any = image_size snake_case : str = depth_multiplier snake_case : Dict = min_depth snake_case : List[Any] = tf_padding snake_case : Tuple = int(last_hidden_size * depth_multiplier ) snake_case : Tuple = output_stride snake_case : int = hidden_act snake_case : int = classifier_dropout_prob snake_case : Any = use_labels snake_case : Union[str, Any] = is_training snake_case : Dict = num_labels snake_case : Dict = initializer_range snake_case : Optional[Any] = scope def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : str = None snake_case : Dict = None if self.use_labels: snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = MobileNetVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = self.num_labels snake_case : int = MobileNetVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Tuple = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Any = self.prepare_config_and_inputs() snake_case : List[str] = config_and_inputs snake_case : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCAmelCase : List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __UpperCAmelCase : Tuple = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Any = False __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : str = False def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = MobileNetVaModelTester(self ) snake_case : Union[str, Any] = MobileNetVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def lowerCamelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[Any] = model_class(UpperCamelCase__ ) snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : int = [*signature.parameters.keys()] snake_case : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Any = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : str = outputs.hidden_states snake_case : List[str] = 26 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : str = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase ( self ) -> str: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Union[str, Any] = MobileNetVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCAmelCase ( ) -> List[str]: """simple docstring""" snake_case : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ) -> int: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(UpperCamelCase__ ) snake_case : List[Any] = self.default_image_processor snake_case : Dict = prepare_img() snake_case : Optional[int] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Any = model(**UpperCamelCase__ ) # verify the logits snake_case : List[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Any = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
360
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = MgpstrTokenizer __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : List[str] = False def lowerCamelCase ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off snake_case : List[str] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case : Union[str, Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) def lowerCamelCase ( self , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : int = "tester" snake_case : List[str] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : int = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): snake_case : List[Any] = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case : str = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) snake_case : List[Any] = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): snake_case ,snake_case : Union[str, Any] = self.get_input_output_texts(UpperCamelCase__ ) snake_case : Dict = tokenizer.tokenize(UpperCamelCase__ ) snake_case : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) snake_case : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) snake_case : Tuple = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , UpperCamelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass
112
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple )->Dict: A__ = 1.5 A__ = int(factor * num_class_images ) A__ = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=UpperCamelCase__ , aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images" , exist_ok=UpperCamelCase__ ) if len(list(Path(f"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: A__ = client.query(text=UpperCamelCase__ ) if len(UpperCamelCase__ ) >= factor * num_class_images or num_images > 1e4: break else: A__ = int(factor * num_images ) A__ = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=UpperCamelCase__ , aesthetic_weight=0.1 , ) A__ = 0 A__ = 0 A__ = tqdm(desc='''downloading real regularization images''' , total=UpperCamelCase__ ) with open(f"{class_data_dir}/caption.txt" , '''w''' ) as fa, open(f"{class_data_dir}/urls.txt" , '''w''' ) as fa, open( f"{class_data_dir}/images.txt" , '''w''' ) as fa: while total < num_class_images: A__ = class_images[count] count += 1 try: A__ = requests.get(images['''url'''] ) if img.status_code == 2_00: A__ = Image.open(BytesIO(img.content ) ) with open(f"{class_data_dir}/images/{total}.jpg" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f"{class_data_dir}/images/{total}.jpg" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase__( )->List[str]: A__ = argparse.ArgumentParser('''''' , add_help=UpperCamelCase__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=UpperCamelCase__ , type=UpperCamelCase__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=UpperCamelCase__ , type=UpperCamelCase__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=UpperCamelCase__ ) return parser.parse_args() if __name__ == "__main__": a__: Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
193
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Any="cosine" , )->List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : str ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A__ = [] for i in range(UpperCamelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = [e.name for e in KarrasDiffusionSchedulers] __SCREAMING_SNAKE_CASE = 2 @register_to_config def __init__( self,__lowerCamelCase = 1000,__lowerCamelCase = 0.00085,__lowerCamelCase = 0.012,__lowerCamelCase = "linear",__lowerCamelCase = None,__lowerCamelCase = "epsilon",__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = 1.0,__lowerCamelCase = "linspace",__lowerCamelCase = 0,): if trained_betas is not None: A__ = torch.tensor(__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5,beta_end**0.5,__lowerCamelCase,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas,dim=0 ) # set all values self.set_timesteps(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = use_karras_sigmas def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): if schedule_timesteps is None: A__ = self.timesteps A__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A__ = 1 if len(__lowerCamelCase ) > 1 else 0 else: A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep A__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,): A__ = self.index_for_timestep(__lowerCamelCase ) A__ = self.sigmas[step_index] A__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,): A__ = num_inference_steps A__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A__ = np.linspace(0,num_train_timesteps - 1,__lowerCamelCase,dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": A__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0,__lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(__lowerCamelCase,0,-step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) A__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A__ = np.log(__lowerCamelCase ) A__ = np.interp(__lowerCamelCase,np.arange(0,len(__lowerCamelCase ) ),__lowerCamelCase ) if self.config.use_karras_sigmas: A__ = self._convert_to_karras(in_sigmas=__lowerCamelCase,num_inference_steps=self.num_inference_steps ) A__ = np.array([self._sigma_to_t(__lowerCamelCase,__lowerCamelCase ) for sigma in sigmas] ) A__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A__ = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) A__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A__ = torch.from_numpy(__lowerCamelCase ) A__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__lowerCamelCase ).startswith('''mps''' ): # mps does not support float64 A__ = timesteps.to(__lowerCamelCase,dtype=torch.floataa ) else: A__ = timesteps.to(device=__lowerCamelCase ) # empty dt and derivative A__ = None A__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A__ = defaultdict(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): # get log sigma A__ = np.log(__lowerCamelCase ) # get distribution A__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A__ = np.cumsum((dists >= 0),axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A__ = low_idx + 1 A__ = log_sigmas[low_idx] A__ = log_sigmas[high_idx] # interpolate sigmas A__ = (low - log_sigma) / (low - high) A__ = np.clip(__lowerCamelCase,0,1 ) # transform interpolation to time range A__ = (1 - w) * low_idx + w * high_idx A__ = t.reshape(sigma.shape ) return t def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = in_sigmas[-1].item() A__ = in_sigmas[0].item() A__ = 7.0 # 7.0 is the value used in the paper A__ = np.linspace(0,1,__lowerCamelCase ) A__ = sigma_min ** (1 / rho) A__ = sigma_max ** (1 / rho) A__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self ): return self.dt is None def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = True,): A__ = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A__ = self.sigmas[step_index] A__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A__ = self.sigmas[step_index - 1] A__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A__ = 0 A__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A__ = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A__ = sigma_next - sigma_hat # store for 2nd order step A__ = derivative A__ = dt A__ = sample else: # 2. 2nd order / Heun's method A__ = (sample - pred_original_sample) / sigma_next A__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A__ = self.dt A__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A__ = None A__ = None A__ = None A__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): # Make sure sigmas and timesteps have the same device and dtype as original_samples A__ = self.sigmas.to(device=original_samples.device,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 A__ = self.timesteps.to(original_samples.device,dtype=torch.floataa ) A__ = timesteps.to(original_samples.device,dtype=torch.floataa ) else: A__ = self.timesteps.to(original_samples.device ) A__ = timesteps.to(original_samples.device ) A__ = [self.index_for_timestep(__lowerCamelCase,__lowerCamelCase ) for t in timesteps] A__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A__ = sigma.unsqueeze(-1 ) A__ = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
193
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _snake_case ( snake_case , snake_case ): UpperCamelCase__ = 1 @register_to_config def __init__( self , _a=2_000 , _a=0.1 , _a=20 , _a=1e-3 ): __magic_name__ : Dict = None __magic_name__ : Tuple = None __magic_name__ : Tuple = None def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Tuple = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Union[str, Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : Optional[Any] = std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[Any] = std.unsqueeze(-1 ) __magic_name__ : List[str] = -score / std # compute __magic_name__ : str = -1.0 / len(self.timesteps ) __magic_name__ : List[str] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Tuple = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : List[str] = beta_t.unsqueeze(-1 ) __magic_name__ : Dict = -0.5 * beta_t * x __magic_name__ : Dict = torch.sqrt(_a ) __magic_name__ : List[Any] = drift - diffusion**2 * score __magic_name__ : List[str] = x + drift * dt # add noise __magic_name__ : int = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) __magic_name__ : List[str] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): return self.config.num_train_timesteps
41
import re import string import numpy as np import datasets snake_case : Any = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" snake_case : Optional[Any] = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" snake_case : Union[str, Any] = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=None , _a=False , _a=False , _a=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ : Any = np.array([re.sub(_a , "" , _a ) for x in predictions] ) __magic_name__ : Tuple = np.array([re.sub(_a , "" , _a ) for x in references] ) else: __magic_name__ : Union[str, Any] = np.asarray(_a ) __magic_name__ : List[Any] = np.asarray(_a ) if ignore_case: __magic_name__ : List[Any] = np.char.lower(_a ) __magic_name__ : Optional[int] = np.char.lower(_a ) if ignore_punctuation: __magic_name__ : Optional[Any] = string.punctuation.maketrans("" , "" , string.punctuation ) __magic_name__ : int = np.char.translate(_a , table=_a ) __magic_name__ : Optional[Any] = np.char.translate(_a , table=_a ) if ignore_numbers: __magic_name__ : Optional[Any] = string.digits.maketrans("" , "" , string.digits ) __magic_name__ : Any = np.char.translate(_a , table=_a ) __magic_name__ : List[str] = np.char.translate(_a , table=_a ) __magic_name__ : Dict = predictions == references return {"exact_match": np.mean(_a ) * 100}
41
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] lowerCAmelCase__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _A ( A__ ): """simple docstring""" __lowercase = torch.load(__lowerCamelCase , map_location='''cpu''' ) return sd def _A ( A__ , A__ , A__=rename_keys_prefix ): """simple docstring""" __lowercase = OrderedDict() __lowercase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowercase = key for name_pair in rename_keys_prefix: __lowercase = new_key.replace(name_pair[0] , name_pair[1] ) __lowercase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowercase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def _A ( A__ , A__ ): """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowercase = '''pretraining''' if "vcr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 512} __lowercase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} __lowercase = '''vqa_advanced''' elif "vqa" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} __lowercase = '''vqa''' elif "nlvr" in checkpoint_path: __lowercase = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } __lowercase = '''nlvr''' __lowercase = VisualBertConfig(**__lowerCamelCase ) # Load State Dict __lowercase = load_state_dict(__lowerCamelCase ) __lowercase = get_new_dict(__lowerCamelCase , __lowerCamelCase ) if model_type == "pretraining": __lowercase = VisualBertForPreTraining(__lowerCamelCase ) elif model_type == "vqa": __lowercase = VisualBertForQuestionAnswering(__lowerCamelCase ) elif model_type == "nlvr": __lowercase = VisualBertForVisualReasoning(__lowerCamelCase ) elif model_type == "multichoice": __lowercase = VisualBertForMultipleChoice(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # Save Checkpoints Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
104
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' import argparse from collections import defaultdict import yaml __snake_case : Any = 'docs/source/en/_toctree.yml' def __lowerCamelCase ( __snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" A__ : str =defaultdict(__snake_case ) for doc in model_doc: counts[doc["local"]] += 1 A__ : str =[key for key, value in counts.items() if value > 1] A__ : Union[str, Any] =[] for duplicate_key in duplicates: A__ : Union[str, Any] =list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__snake_case ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__snake_case, key=lambda __snake_case : s["title"].lower() ) def __lowerCamelCase ( __snake_case : Any=False ) -> Tuple: """simple docstring""" with open(__snake_case, encoding="""utf-8""" ) as f: A__ : Dict =yaml.safe_load(f.read() ) # Get to the API doc A__ : List[Any] =0 while content[api_idx]["title"] != "API": api_idx += 1 A__ : str =content[api_idx]["""sections"""] # Then to the model doc A__ : Any =0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ : Any =api_doc[model_idx]["""sections"""] A__ : List[Any] =[(idx, section) for idx, section in enumerate(__snake_case ) if """sections""" in section] A__ : Union[str, Any] =False for idx, modality_doc in modalities_docs: A__ : Tuple =modality_doc["""sections"""] A__ : str =clean_model_doc_toc(__snake_case ) if old_modality_doc != new_modality_doc: A__ : int =True if overwrite: A__ : List[Any] =new_modality_doc if diff: if overwrite: A__ : List[str] =model_doc A__ : str =api_doc with open(__snake_case, """w""", encoding="""utf-8""" ) as f: f.write(yaml.dump(__snake_case, allow_unicode=__snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __snake_case : Dict = parser.parse_args() check_model_doc(args.fix_and_overwrite)
136
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = (CMStochasticIterativeScheduler,) __snake_case = 10 def lowercase__ ( self : List[str] , **lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : int ={ """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCAmelCase_ ) return config def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Dict =10 A__ : str =self.get_scheduler_config() A__ : Any =self.scheduler_classes[0](**lowerCAmelCase_ ) scheduler.set_timesteps(lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps[0] A__ : Union[str, Any] =scheduler.timesteps[1] A__ : Optional[int] =self.dummy_sample A__ : Union[str, Any] =0.1 * sample A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample A__ : int =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Any =scheduler_class(**lowerCAmelCase_ ) A__ : int =1 scheduler.set_timesteps(lowerCAmelCase_ ) A__ : Any =scheduler.timesteps A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[Any] =self.dummy_model() A__ : Optional[int] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCAmelCase_ ): # 1. scale model input A__ : Optional[Any] =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : Union[str, Any] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Tuple =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Dict =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : Optional[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =self.scheduler_classes[0] A__ : Dict =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[1_06, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) A__ : List[Any] =scheduler.timesteps A__ : Optional[Any] =torch.manual_seed(0 ) A__ : int =self.dummy_model() A__ : int =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A__ : Any =scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict noise residual A__ : List[str] =model(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. predict previous sample x_t-1 A__ : Dict =scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample A__ : Union[str, Any] =pred_prev_sample A__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase_ ) ) A__ : List[Any] =torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Union[str, Any] =self.get_scheduler_config() A__ : List[Any] =scheduler_class(**lowerCAmelCase_ ) A__ : Tuple =[39, 30, 12, 15, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.scheduler_classes[0] A__ : List[str] =self.get_scheduler_config() A__ : Tuple =scheduler_class(**lowerCAmelCase_ ) A__ : Dict =[39, 30, 12, 1, 0] A__ : int =len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.scheduler_classes[0] A__ : Any =self.get_scheduler_config() A__ : Optional[int] =scheduler_class(**lowerCAmelCase_ ) A__ : List[str] =[scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
136
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[Any] = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): A_ : List[str] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): if magnitude == 0: A_ : Union[str, Any] = column continue A_ : Dict = column / magnitude # Subtract to cancel term A_ : Union[str, Any] = current_set[0] A_ : Tuple = [first_row] A_ : int = current_set[1::] for row in current_set: A_ : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE ) continue for column_index in range(len(SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: A_ : Optional[Any] = final_set[0] A_ : Any = [] A_ : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A_ : Optional[Any] = simplify(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , SCREAMING_SNAKE_CASE ) A_ : List[Any] = resultant return final_set def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) A_ : str = len(SCREAMING_SNAKE_CASE ) + 1 if any(len(SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] A_ : Dict = equations.copy() if any(0 in row for row in data_set ): A_ : Tuple = data_set.copy() A_ : Optional[Any] = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE ): if 0 not in row: A_ : str = data_set.pop(SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , SCREAMING_SNAKE_CASE ) A_ : int = data_set.copy() A_ : Dict = simplify(SCREAMING_SNAKE_CASE ) A_ : Dict = simplified[::-1] A_ : list = [] for row in simplified: A_ : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A_ : Optional[Any] = row.copy()[: len(SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue A_ : int = temp_row[1::] A_ : int = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
186
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } A_ = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = GPTaTokenizer def __init__( self: Any, a_: Optional[Any]=None, a_: Tuple=None, a_: Optional[int]=None, a_: Dict="<|endoftext|>", a_: Tuple="<|endoftext|>", a_: Optional[Any]="<|endoftext|>", a_: List[str]=False, **a_: Any, ): '''simple docstring''' super().__init__( a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, ) _snake_case : List[Any] = kwargs.pop("""add_bos_token""", a_ ) _snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space: _snake_case : Any = getattr(a_, pre_tok_state.pop("""type""" ) ) _snake_case : Union[str, Any] = add_prefix_space _snake_case : Optional[int] = pre_tok_class(**a_ ) _snake_case : Any = add_prefix_space def UpperCamelCase_ ( self: Tuple, *a_: List[str], **a_: Tuple ): '''simple docstring''' _snake_case : Optional[Any] = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], *a_: Optional[Any], **a_: Dict ): '''simple docstring''' _snake_case : Dict = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: List[Any], a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : Any = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ ) def UpperCamelCase_ ( self: int, a_: "Conversation" ): '''simple docstring''' _snake_case : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a_, add_special_tokens=a_ ) + [self.eos_token_id] ) if len(a_ ) > self.model_max_length: _snake_case : List[Any] = input_ids[-self.model_max_length :] return input_ids
64
'''simple docstring''' import math class __SCREAMING_SNAKE_CASE : """simple docstring""" def UpperCamelCase__ ( self : List[str] , __a : list[list[float]] , __a : list[int] ): _a = 0.0 _a = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase__ ( self : List[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ): for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowerCamelCase ( ) -> None: # Training Examples ( m, n ) _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowercase , lowercase ) # Update the winning vector _a = self_organizing_map.update(lowercase , lowercase , lowercase , lowercase ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowercase , lowercase ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=5 ) -> str: '''simple docstring''' assert masked_input.count('<mask>' ) == 1 _a = torch.tensor(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ).unsqueeze(0 ) # Batch size 1 _a = model(lowerCAmelCase__ )[0] # The last hidden-state is the first element of the output tuple _a = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _a = logits[0, masked_index, :] _a = logits.softmax(dim=0 ) _a , _a = prob.topk(k=lowerCAmelCase__ , dim=0 ) _a = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCAmelCase__ ) )] ) _a = tokenizer.mask_token _a = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): _a = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(lowerCAmelCase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(lowerCAmelCase__ ) , lowerCAmelCase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCAmelCase__ , lowerCAmelCase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a_ : str = CamembertTokenizer.from_pretrained("camembert-base") a_ : List[str] = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() a_ : int = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
104
'''simple docstring''' def _A (lowerCAmelCase__ :list ) -> float: '''simple docstring''' _a = 0 while len(lowerCAmelCase__ ) > 1: _a = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a = files.index(min(lowerCAmelCase__ ) ) temp += files[min_index] files.pop(lowerCAmelCase__ ) files.append(lowerCAmelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
104
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase__ = 637_8137.0 UpperCAmelCase__ = 635_6752.31_4245 UpperCAmelCase__ = 637_8137 def A ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> Dict: '''simple docstring''' _UpperCAmelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) ) _UpperCAmelCase = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase = haversine_distance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase = (b_lata + b_lata) / 2 _UpperCAmelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase = (sin(_lowerCAmelCase ) ** 2) * (cos(_lowerCAmelCase ) ** 2) _UpperCAmelCase = cos(sigma / 2 ) ** 2 _UpperCAmelCase = (sigma - sin(_lowerCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase = (cos(_lowerCAmelCase ) ** 2) * (sin(_lowerCAmelCase ) ** 2) _UpperCAmelCase = sin(sigma / 2 ) ** 2 _UpperCAmelCase = (sigma + sin(_lowerCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
339
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( __lowercase ): '''simple docstring''' UpperCamelCase = ["image_processor", "tokenizer"] UpperCamelCase = "ViltImageProcessor" UpperCamelCase = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) UpperCAmelCase_ = kwargs.pop("feature_extractor" ) UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) UpperCAmelCase_ = self.image_processor def __call__( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] = None , _UpperCAmelCase : List[Any] = True , _UpperCAmelCase : List[Any] = False , _UpperCAmelCase : Any = None , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Dict = 0 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : str = None , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : Optional[int] = False , _UpperCAmelCase : Any = False , _UpperCAmelCase : List[str] = False , _UpperCAmelCase : Dict = False , _UpperCAmelCase : Tuple = True , _UpperCAmelCase : List[str] = None , **_UpperCAmelCase : Union[str, Any] , ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask UpperCAmelCase_ = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def lowercase__ ( self : Optional[int] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_a , **_a ) def lowercase__ ( self : Union[str, Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : int ) -> str: '''simple docstring''' return self.tokenizer.decode(*_a , **_a ) @property def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
365
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase__ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=False , _UpperCAmelCase : str=10 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[int]=32 * 8 , _UpperCAmelCase : str=32 * 8 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=64 , ) -> str: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = is_training UpperCAmelCase_ = use_auxiliary_loss UpperCAmelCase_ = num_queries UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_size UpperCAmelCase_ = max_size UpperCAmelCase_ = num_labels UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = hidden_dim def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCAmelCase_ = self.num_queries UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = [1, 1, 1, 1] UpperCAmelCase_ = self.num_channels UpperCAmelCase_ = 64 UpperCAmelCase_ = 128 UpperCAmelCase_ = self.hidden_dim UpperCAmelCase_ = self.hidden_dim UpperCAmelCase_ = self.hidden_dim return config def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = output.encoder_hidden_states UpperCAmelCase_ = output.pixel_decoder_hidden_states UpperCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def lowercase__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=False ) -> str: '''simple docstring''' with torch.no_grad(): UpperCAmelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCAmelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MaskaFormerModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = (self.model_tester.min_size,) * 2 UpperCAmelCase_ = { "pixel_values": torch.randn((2, 3, *size) , device=_UpperCAmelCase ), "mask_labels": torch.randn((2, 10, *size) , device=_UpperCAmelCase ), "class_labels": torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCAmelCase_ = self.model_tester.get_config() UpperCAmelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase = 1e-4 def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] UpperCAmelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCAmelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) UpperCAmelCase_ = inputs["pixel_values"].to(_UpperCAmelCase ) UpperCAmelCase_ = [el.to(_UpperCAmelCase ) for el in inputs["mask_labels"]] UpperCAmelCase_ = [el.to(_UpperCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
241
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a_ : int = logging.get_logger(__name__) a_ : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ : Tuple = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a_ : Optional[int] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } a_ : Any = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _snake_case ( A__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_INIT_CONFIGURATION _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Tuple = BertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> Tuple: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , a) != do_lower_case or normalizer_state.get('strip_accents' , a) != strip_accents or normalizer_state.get('handle_chinese_chars' , a) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(a , normalizer_state.pop('type')) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**a) SCREAMING_SNAKE_CASE = do_lower_case def SCREAMING_SNAKE_CASE__ ( self , a , a=None) -> Dict: SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a) return tuple(a)
137
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ : Optional[int] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , ): import pyspark def generate_fn(): SCREAMING_SNAKE_CASE = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id')) for partition_id in partition_order: SCREAMING_SNAKE_CASE = df_with_partition_id.select('*').where(F'''part_id = {partition_id}''').drop('part_id') SCREAMING_SNAKE_CASE = partition_df.collect() SCREAMING_SNAKE_CASE = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self , a , a=None , ) -> Tuple: SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = partition_order or range(self.df.rdd.getNumPartitions()) SCREAMING_SNAKE_CASE = _generate_iterable_examples(self.df , self.partition_order) def __iter__( self) -> Dict: yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE__ ( self , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = list(range(self.df.rdd.getNumPartitions())) generator.shuffle(a) return SparkExamplesIterable(self.df , partition_order=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = self.split_shard_indices_by_worker(a , a) return SparkExamplesIterable(self.df , partition_order=a) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return len(self.partition_order) class _snake_case ( datasets.DatasetBuilder ): _lowercase : int = SparkConfig def __init__( self , a , a = None , a = None , **a , ) -> List[str]: import pyspark SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = working_dir super().__init__( cache_dir=a , config_name=str(self.df.semanticHash()) , **a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # Returns the path of the created file. def create_cache_and_write_probe(a): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a) SCREAMING_SNAKE_CASE = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a , 'a') return [probe_file] if self._spark.conf.get('spark.master' , '').startswith('local'): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE = ( self._spark.sparkContext.parallelize(range(1) , 1).mapPartitions(a).collect() ) if os.path.isfile(probe[0]): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir') def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: import pyspark def get_arrow_batch_size(a): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]}) SCREAMING_SNAKE_CASE = self.df.count() SCREAMING_SNAKE_CASE = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE = ( self.df.limit(a) .repartition(1) .mapInArrow(a , 'batch_bytes: long') .agg(pyspark.sql.functions.sum('batch_bytes').alias('sample_bytes')) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE = min(a , int(approx_total_size / max_shard_size)) SCREAMING_SNAKE_CASE = self.df.repartition(a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark SCREAMING_SNAKE_CASE = ParquetWriter if file_format == 'parquet' else ArrowWriter SCREAMING_SNAKE_CASE = os.path.join(self._working_dir , os.path.basename(a)) if self._working_dir else fpath SCREAMING_SNAKE_CASE = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE = self.config.features SCREAMING_SNAKE_CASE = self._writer_batch_size SCREAMING_SNAKE_CASE = self._fs.storage_options def write_arrow(a): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE = next(a , a) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = writer_class( features=a , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([first_batch]) writer.write_table(a) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 SCREAMING_SNAKE_CASE = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([batch]) writer.write_table(a) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a)): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(a) , os.path.basename(a)) shutil.move(a , a) SCREAMING_SNAKE_CASE = ( self.df.mapInArrow(a , 'task_id: long, num_examples: long, num_bytes: long') .groupBy('task_id') .agg( pyspark.sql.functions.sum('num_examples').alias('total_num_examples') , pyspark.sql.functions.sum('num_bytes').alias('total_num_bytes') , pyspark.sql.functions.count('num_bytes').alias('num_shards') , pyspark.sql.functions.collect_list('num_examples').alias('shard_lengths') , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE__ ( self , a , a = "arrow" , a = None , a = None , **a , ) -> List[Any]: self._validate_cache_dir() SCREAMING_SNAKE_CASE = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE) self._repartition_df_if_needed(a) SCREAMING_SNAKE_CASE = not is_remote_filesystem(self._fs) SCREAMING_SNAKE_CASE = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE = '-TTTTT-SSSSS-of-NNNNN' SCREAMING_SNAKE_CASE = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' SCREAMING_SNAKE_CASE = path_join(self._output_dir , a) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for task_id, content in self._prepare_split_single(a , a , a): ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards)) all_shard_lengths.extend(a) SCREAMING_SNAKE_CASE = total_num_examples SCREAMING_SNAKE_CASE = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''') if total_shards > 1: SCREAMING_SNAKE_CASE = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a , a , a , ): rename( a , fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''').replace('NNNNN' , f'''{total_shards:05d}''') , ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for i in range(len(a)): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = task_id_and_num_shards[i] for shard_id in range(a): args.append([task_id, shard_id, global_shard_id]) global_shard_id += 1 self._spark.sparkContext.parallelize(a , len(a)).map(lambda a: _rename_shard(*a)).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace(a , '') , ) def SCREAMING_SNAKE_CASE__ ( self , a , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df)
137
1
'''simple docstring''' def _A ( A__ = 50 ): """simple docstring""" __lowercase = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'{solution() = }')
52
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : str ,lowercase__ : List[str]=1_3 ,lowercase__ : str=7 ,lowercase__ : Tuple=True ,lowercase__ : Dict=True ,lowercase__ : str=True ,lowercase__ : Optional[Any]=True ,lowercase__ : List[str]=9_9 ,lowercase__ : int=[1, 1, 2] ,lowercase__ : int=1 ,lowercase__ : Tuple=3_2 ,lowercase__ : Union[str, Any]=4 ,lowercase__ : Tuple=8 ,lowercase__ : Any=3_7 ,lowercase__ : Union[str, Any]="gelu_new" ,lowercase__ : Tuple=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Union[str, Any]=5_1_2 ,lowercase__ : Dict=3 ,lowercase__ : Union[str, Any]=0.0_2 ,lowercase__ : Any=3 ,lowercase__ : Tuple=4 ,lowercase__ : Dict=None ,lowercase__ : List[Any]=False ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : str ,): __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,): __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,): __lowercase = TFFunnelForPreTraining(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,): __lowercase = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Tuple ,lowercase__ : List[str] ,): __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : Tuple ,): __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : Any ,): __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,): __lowercase = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : int = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFFunnelModelTester(self ,base=lowercase__ ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
52
1
lowerCAmelCase__ = 0 # The first color of the flag. lowerCAmelCase__ = 1 # The second color of the flag. lowerCAmelCase__ = 2 # The third color of the flag. lowerCAmelCase__ = (red, white, blue) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list ) -> list: '''simple docstring''' if not sequence: return [] if len(SCREAMING_SNAKE_CASE_ ) == 1: return list(SCREAMING_SNAKE_CASE_ ) A__ = 0 A__ = len(SCREAMING_SNAKE_CASE_ ) - 1 A__ = 0 while mid <= high: if sequence[mid] == colors[0]: A__ , A__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: A__ , A__ = sequence[high], sequence[mid] high -= 1 else: A__ = F'The elements inside the sequence must contains only {colors} values' raise ValueError(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(""",""")] print(f"""{dutch_national_flag_sort(unsorted)}""")
68
"""simple docstring""" _a : Tuple= 8.3_1_4_4_5_9_8 def __UpperCAmelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _a : Any= 300 _a : Optional[Any]= 28 _a : Optional[int]= rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
172
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __lowercase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _lowercase ( datasets.BuilderConfig ): """simple docstring""" lowercase__ = None def lowerCAmelCase (__UpperCamelCase : "pyspark.sql.DataFrame" , __UpperCamelCase : List[int] , ): """simple docstring""" import pyspark def generate_fn(): __UpperCamelCase =df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: __UpperCamelCase =df_with_partition_id.select('''*''' ).where(F"""part_id = {partition_id}""" ).drop('''part_id''' ) __UpperCamelCase =partition_df.collect() __UpperCamelCase =0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _lowercase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : "pyspark.sql.DataFrame" , UpperCamelCase__ : Optional[int]=None , ) -> int: '''simple docstring''' __UpperCamelCase =df __UpperCamelCase =partition_order or range(self.df.rdd.getNumPartitions() ) __UpperCamelCase =_generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Any ) -> Optional[int]: '''simple docstring''' yield from self.generate_examples_fn() def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : np.random.Generator ) -> "SparkExamplesIterable": '''simple docstring''' __UpperCamelCase =list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase__ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> "SparkExamplesIterable": '''simple docstring''' __UpperCamelCase =self.split_shard_indices_by_worker(UpperCamelCase__ , UpperCamelCase__ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase__ ) @property def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' return len(self.partition_order ) class _lowercase ( datasets.DatasetBuilder ): """simple docstring""" lowercase__ = SparkConfig def __init__( self : List[str] , UpperCamelCase__ : "pyspark.sql.DataFrame" , UpperCamelCase__ : str = None , UpperCamelCase__ : str = None , **UpperCamelCase__ : List[str] , ) -> Any: '''simple docstring''' import pyspark __UpperCamelCase =pyspark.sql.SparkSession.builder.getOrCreate() __UpperCamelCase =df __UpperCamelCase =working_dir super().__init__( cache_dir=UpperCamelCase__ , config_name=str(self.df.semanticHash() ) , **UpperCamelCase__ , ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' def create_cache_and_write_probe(UpperCamelCase__ : Any ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase__ ) __UpperCamelCase =os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase__ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __UpperCamelCase =( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : datasets.download.download_manager.DownloadManager ) -> List[str]: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : Any ) -> Any: '''simple docstring''' import pyspark def get_arrow_batch_size(UpperCamelCase__ : Tuple ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) __UpperCamelCase =self.df.count() __UpperCamelCase =df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __UpperCamelCase =( self.df.limit(UpperCamelCase__ ) .repartition(1 ) .mapInArrow(UpperCamelCase__ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __UpperCamelCase =approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __UpperCamelCase =min(UpperCamelCase__ , int(approx_total_size / max_shard_size ) ) __UpperCamelCase =self.df.repartition(UpperCamelCase__ ) def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: '''simple docstring''' import pyspark __UpperCamelCase =ParquetWriter if file_format == '''parquet''' else ArrowWriter __UpperCamelCase =os.path.join(self._working_dir , os.path.basename(UpperCamelCase__ ) ) if self._working_dir else fpath __UpperCamelCase =file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __UpperCamelCase =self.config.features __UpperCamelCase =self._writer_batch_size __UpperCamelCase =self._fs.storage_options def write_arrow(UpperCamelCase__ : Any ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __UpperCamelCase =pyspark.TaskContext().taskAttemptId() __UpperCamelCase =next(UpperCamelCase__ , UpperCamelCase__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) __UpperCamelCase =0 __UpperCamelCase =writer_class( features=UpperCamelCase__ , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=UpperCamelCase__ , storage_options=UpperCamelCase__ , embed_local_files=UpperCamelCase__ , ) __UpperCamelCase =pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __UpperCamelCase , __UpperCamelCase =writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 __UpperCamelCase =writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=UpperCamelCase__ , storage_options=UpperCamelCase__ , embed_local_files=UpperCamelCase__ , ) __UpperCamelCase =pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase__ ) if writer._num_bytes > 0: __UpperCamelCase , __UpperCamelCase =writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase__ ) ): __UpperCamelCase =os.path.join(os.path.dirname(UpperCamelCase__ ) , os.path.basename(UpperCamelCase__ ) ) shutil.move(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =( self.df.mapInArrow(UpperCamelCase__ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : "datasets.SplitGenerator" , UpperCamelCase__ : str = "arrow" , UpperCamelCase__ : Optional[Union[str, int]] = None , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : List[str] , ) -> Union[str, Any]: '''simple docstring''' self._validate_cache_dir() __UpperCamelCase =convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase__ ) __UpperCamelCase =not is_remote_filesystem(self._fs ) __UpperCamelCase =os.path.join if is_local else posixpath.join __UpperCamelCase ='''-TTTTT-SSSSS-of-NNNNN''' __UpperCamelCase =f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __UpperCamelCase =path_join(self._output_dir , UpperCamelCase__ ) __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =[] __UpperCamelCase =[] for task_id, content in self._prepare_split_single(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase__ ) __UpperCamelCase =total_num_examples __UpperCamelCase =total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: __UpperCamelCase =all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __UpperCamelCase =self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , ): rename( UpperCamelCase__ , fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , f"""{global_shard_id:05d}""" ).replace('''NNNNN''' , f"""{total_shards:05d}""" ) , ) __UpperCamelCase =[] __UpperCamelCase =0 for i in range(len(UpperCamelCase__ ) ): __UpperCamelCase , __UpperCamelCase =task_id_and_num_shards[i] for shard_id in range(UpperCamelCase__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase__ , len(UpperCamelCase__ ) ).map(lambda UpperCamelCase__ : _rename_shard(*UpperCamelCase__ ) ).collect() else: # don't use any pattern __UpperCamelCase =0 __UpperCamelCase =task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace(UpperCamelCase__ , '''''' ) , ) def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: '''simple docstring''' return SparkExamplesIterable(self.df )
85
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowercase ( __a ): """simple docstring""" lowercase__ = 42 class _lowercase ( __a , __a ): """simple docstring""" @register_to_config def __init__( self : List[Any] , UpperCamelCase__ : int = 32 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 20 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : str=77 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "silu" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = "linear" , UpperCamelCase__ : Optional[str] = "prd" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , ) -> Any: '''simple docstring''' super().__init__() __UpperCamelCase =num_attention_heads __UpperCamelCase =attention_head_dim __UpperCamelCase =num_attention_heads * attention_head_dim __UpperCamelCase =additional_embeddings __UpperCamelCase =time_embed_dim or inner_dim __UpperCamelCase =embedding_proj_dim or embedding_dim __UpperCamelCase =clip_embed_dim or embedding_dim __UpperCamelCase =Timesteps(UpperCamelCase__ , UpperCamelCase__ , 0 ) __UpperCamelCase =TimestepEmbedding(UpperCamelCase__ , UpperCamelCase__ , out_dim=UpperCamelCase__ , act_fn=UpperCamelCase__ ) __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) if embedding_proj_norm_type is None: __UpperCamelCase =None elif embedding_proj_norm_type == "layer": __UpperCamelCase =nn.LayerNorm(UpperCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) if encoder_hid_proj_type is None: __UpperCamelCase =None elif encoder_hid_proj_type == "linear": __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __UpperCamelCase =nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase__ ) ) if added_emb_type == "prd": __UpperCamelCase =nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase__ ) ) elif added_emb_type is None: __UpperCamelCase =None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __UpperCamelCase =nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn='''gelu''' , attention_bias=UpperCamelCase__ , ) for d in range(UpperCamelCase__ ) ] ) if norm_in_type == "layer": __UpperCamelCase =nn.LayerNorm(UpperCamelCase__ ) elif norm_in_type is None: __UpperCamelCase =None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __UpperCamelCase =nn.LayerNorm(UpperCamelCase__ ) __UpperCamelCase =nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __UpperCamelCase =causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , UpperCamelCase__ , persistent=UpperCamelCase__ ) __UpperCamelCase =nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) __UpperCamelCase =nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase_ ( self : Any ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __UpperCamelCase ={} def fn_recursive_add_processors(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase__ , '''set_processor''' ): __UpperCamelCase =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase__ , UpperCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return processors def UpperCAmelCase_ ( self : int , UpperCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =len(self.attn_processors.keys() ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase__ : str , UpperCamelCase__ : torch.nn.Module , UpperCamelCase__ : int ): if hasattr(UpperCamelCase__ , '''set_processor''' ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.set_processor(UpperCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase__ , UpperCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[torch.Tensor, float, int] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.BoolTensor] = None , UpperCamelCase__ : bool = True , ) -> Tuple: '''simple docstring''' __UpperCamelCase =hidden_states.shape[0] __UpperCamelCase =timestep if not torch.is_tensor(UpperCamelCase__ ): __UpperCamelCase =torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase__ ) and len(timesteps.shape ) == 0: __UpperCamelCase =timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase =timesteps * torch.ones(UpperCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __UpperCamelCase =self.time_proj(UpperCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCamelCase =timesteps_projected.to(dtype=self.dtype ) __UpperCamelCase =self.time_embedding(UpperCamelCase__ ) if self.embedding_proj_norm is not None: __UpperCamelCase =self.embedding_proj_norm(UpperCamelCase__ ) __UpperCamelCase =self.embedding_proj(UpperCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCamelCase =self.encoder_hidden_states_proj(UpperCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCamelCase =self.proj_in(UpperCamelCase__ ) __UpperCamelCase =self.positional_embedding.to(hidden_states.dtype ) __UpperCamelCase =[] __UpperCamelCase =0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCamelCase =proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCamelCase =hidden_states[:, None, :] __UpperCamelCase =additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCamelCase =self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase__ , -1 , -1 ) additional_embeds.append(UpperCamelCase__ ) __UpperCamelCase =torch.cat( UpperCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCamelCase =additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCamelCase =F.pad( UpperCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCamelCase =hidden_states + positional_embeddings if attention_mask is not None: __UpperCamelCase =(1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __UpperCamelCase =F.pad(UpperCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __UpperCamelCase =(attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCamelCase =attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCamelCase =self.norm_in(UpperCamelCase__ ) for block in self.transformer_blocks: __UpperCamelCase =block(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) __UpperCamelCase =self.norm_out(UpperCamelCase__ ) if self.prd_embedding is not None: __UpperCamelCase =hidden_states[:, -1] else: __UpperCamelCase =hidden_states[:, additional_embeddings_len:] __UpperCamelCase =self.proj_to_clip_embeddings(UpperCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =(prior_latents * self.clip_std) + self.clip_mean return prior_latents
85
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[List[ImageInput]]: if isinstance(lowercase ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : Any = size if size is not None else {"""shortest_edge""": 2_5_6} snake_case : Dict = get_size_dict(A , default_to_square=A ) snake_case : str = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : Tuple = size snake_case : List[Any] = do_center_crop snake_case : Tuple = crop_size snake_case : Tuple = resample snake_case : List[Any] = do_rescale snake_case : int = rescale_factor snake_case : List[Any] = offset snake_case : Any = do_normalize snake_case : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: snake_case : Optional[Any] = get_size_dict(A , default_to_square=A ) if "shortest_edge" in size: snake_case : Tuple = get_resize_output_image_size(A , size["""shortest_edge"""] , default_to_square=A ) elif "height" in size and "width" in size: snake_case : Tuple = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(A , size=A , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Optional[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = True , A = None , **A , ) -> int: snake_case : List[str] = image.astype(np.floataa ) if offset: snake_case : Optional[Any] = image - (scale / 2) return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. snake_case : str = to_numpy_array(A ) if do_resize: snake_case : Any = self.resize(image=A , size=A , resample=A ) if do_center_crop: snake_case : List[Any] = self.center_crop(A , size=A ) if do_rescale: snake_case : Any = self.rescale(image=A , scale=A , offset=A ) if do_normalize: snake_case : Dict = self.normalize(image=A , mean=A , std=A ) snake_case : Optional[int] = to_channel_dimension_format(A , A ) return image def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case : int = resample if resample is not None else self.resample snake_case : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : int = do_rescale if do_rescale is not None else self.do_rescale snake_case : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Tuple = offset if offset is not None else self.offset snake_case : Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case : Dict = image_mean if image_mean is not None else self.image_mean snake_case : str = image_std if image_std is not None else self.image_std snake_case : int = size if size is not None else self.size snake_case : Union[str, Any] = get_size_dict(A , default_to_square=A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : Union[str, Any] = get_size_dict(A , param_name="""crop_size""" ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) snake_case : Any = make_batched(A ) snake_case : Union[str, Any] = [ [ self._preprocess_image( image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , offset=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , ) for img in video ] for video in videos ] snake_case : List[str] = {"""pixel_values""": videos} return BatchFeature(data=A , tensor_type=A )
124
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Dict: snake_case : Any = parent snake_case : List[Any] = batch_size snake_case : List[Any] = seq_length snake_case : Dict = is_training snake_case : List[str] = use_input_mask snake_case : List[str] = use_token_type_ids snake_case : Dict = use_labels snake_case : Optional[int] = vocab_size snake_case : Optional[int] = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : List[Any] = hidden_act snake_case : int = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : List[Any] = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : List[str] = num_choices snake_case : Optional[int] = scope def UpperCAmelCase ( self ) -> int: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Union[str, Any] = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Tuple = None if self.use_token_type_ids: snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Optional[int] = None snake_case : str = None snake_case : List[Any] = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> Any: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> List[str]: snake_case : Tuple = NystromformerModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A ) snake_case : List[str] = model(A , token_type_ids=A ) snake_case : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : List[Any] = NystromformerForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Optional[Any]: snake_case : List[Any] = NystromformerForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Tuple: snake_case : Optional[int] = self.num_labels snake_case : Union[str, Any] = NystromformerForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> int: snake_case : Union[str, Any] = self.num_labels snake_case : Union[str, Any] = NystromformerForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : int = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = self.num_choices snake_case : Union[str, Any] = NystromformerForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Any = config_and_inputs snake_case : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> str: snake_case : Dict = NystromformerModelTester(self ) snake_case : str = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> Any: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = NystromformerModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case : Optional[int] = model(A )[0] snake_case : List[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : Union[str, Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Union[str, Any] = """the [MASK] of Belgium is Brussels""" snake_case : Any = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Union[str, Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = tokenizer(A , return_tensors="""pt""" ) with torch.no_grad(): snake_case : Optional[int] = model(encoding.input_ids ).logits snake_case : str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A ) , """capital""" )
124
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : def __init__( self : int , snake_case__ : List[str] , snake_case__ : Union[str, Any]=13 , snake_case__ : Optional[int]=32 , snake_case__ : int=3 , snake_case__ : List[str]=4 , snake_case__ : Optional[int]=[10, 20, 30, 40] , snake_case__ : Tuple=[2, 2, 3, 2] , snake_case__ : Dict=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=37 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=10 , snake_case__ : str=0.02 , snake_case__ : str=["stage2", "stage3", "stage4"] , snake_case__ : List[str]=[2, 3, 4] , snake_case__ : List[Any]=None , ): lowerCamelCase_ : Dict =parent lowerCamelCase_ : List[str] =batch_size lowerCamelCase_ : str =image_size lowerCamelCase_ : Tuple =num_channels lowerCamelCase_ : List[str] =num_stages lowerCamelCase_ : Optional[Any] =hidden_sizes lowerCamelCase_ : str =depths lowerCamelCase_ : int =is_training lowerCamelCase_ : Optional[int] =use_labels lowerCamelCase_ : Tuple =intermediate_size lowerCamelCase_ : List[str] =hidden_act lowerCamelCase_ : Union[str, Any] =num_labels lowerCamelCase_ : Union[str, Any] =initializer_range lowerCamelCase_ : Union[str, Any] =out_features lowerCamelCase_ : List[str] =out_indices lowerCamelCase_ : Union[str, Any] =scope def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Union[str, Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : Dict =None if self.use_labels: lowerCamelCase_ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ : Optional[Any] =self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Tuple ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : int ): lowerCamelCase_ : Any =ConvNextVaModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase_ : Union[str, Any] =model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self : Any , snake_case__ : Any , snake_case__ : str , snake_case__ : Optional[Any] ): lowerCamelCase_ : Tuple =ConvNextVaForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase_ : Optional[Any] =model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Dict , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[Any] ): lowerCamelCase_ : int =ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() lowerCamelCase_ : Any =model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase_ : str =None lowerCamelCase_ : Optional[Any] =ConvNextVaBackbone(config=_a ) model.to(_a ) model.eval() lowerCamelCase_ : Dict =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Dict =self.prepare_config_and_inputs() lowerCamelCase_ : Optional[Any] =config_and_inputs lowerCamelCase_ : List[str] ={'pixel_values': pixel_values} return config, inputs_dict def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Dict =self.prepare_config_and_inputs() lowerCamelCase_ : Tuple =config_and_inputs lowerCamelCase_ : Union[str, Any] ={'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class lowercase__ ( lowercase__, lowercase__, unittest.TestCase ): _UpperCAmelCase :Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _UpperCAmelCase :Dict = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :List[Any] = False def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Any =ConvNextVaModelTester(self ) lowerCamelCase_ : Dict =ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def UpperCAmelCase__ ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : List[str] ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def UpperCAmelCase__ ( self : int ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def UpperCAmelCase__ ( self : Dict ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def UpperCAmelCase__ ( self : Tuple ): pass def UpperCAmelCase__ ( self : str ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase_ : List[str] =True if model_class.__name__ in [ *get_values(_a ), *get_values(_a ), ]: continue lowerCamelCase_ : Union[str, Any] =model_class(_a ) model.to(_a ) model.train() lowerCamelCase_ : Any =self._prepare_for_class(_a , _a , return_labels=_a ) lowerCamelCase_ : Optional[int] =model(**_a ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase_ : Optional[Any] =self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase_ : Tuple =False lowerCamelCase_ : int =True if ( model_class.__name__ in [*get_values(_a ), *get_values(_a )] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase_ : List[Any] =model_class(_a ) model.to(_a ) model.gradient_checkpointing_enable() model.train() lowerCamelCase_ : Any =self._prepare_for_class(_a , _a , return_labels=_a ) lowerCamelCase_ : str =model(**_a ).loss loss.backward() def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[int] =model_class(_a ) lowerCamelCase_ : List[str] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Any =[*signature.parameters.keys()] lowerCamelCase_ : Optional[Any] =['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def UpperCAmelCase__ ( self : Any ): def check_hidden_states_output(snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[Any] ): lowerCamelCase_ : Any =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCamelCase_ : int =model(**self._prepare_for_class(_a , _a ) ) lowerCamelCase_ : Any =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ : Tuple =self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Any =True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ : Any =True check_hidden_states_output(_a , _a , _a ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def UpperCAmelCase__ ( self : int ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Optional[int] =ConvNextVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _snake_case ( ) -> Any: lowerCamelCase_ : Union[str, Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Dict ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : str =ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(_a ) lowerCamelCase_ : Any =self.default_image_processor lowerCamelCase_ : Dict =prepare_img() lowerCamelCase_ : Tuple =preprocessor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): lowerCamelCase_ : str =model(**_a ) # verify the logits lowerCamelCase_ : int =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCamelCase_ : int =torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
355
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _snake_case ( lowerCamelCase__ : Any ) -> Union[str, Any]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _snake_case ( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase_ : Optional[Any] =[1, 2, 3] with pytest.raises(lowerCamelCase__ ): with parallel_backend("unsupported backend" ): map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=2 ) with pytest.raises(lowerCamelCase__ ): with parallel_backend("unsupported backend" ): map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def _snake_case ( lowerCamelCase__ : Tuple ) -> Optional[Any]: lowerCamelCase_ : str =[1, 2] lowerCamelCase_ : List[str] ={"a": 1, "b": 2} lowerCamelCase_ : List[str] ={"a": [1, 2], "b": [3, 4]} lowerCamelCase_ : Optional[int] ={"a": {"1": 1}, "b": 2} lowerCamelCase_ : int ={"a": 1, "b": 2, "c": 3, "d": 4} lowerCamelCase_ : Optional[int] =[2, 3] lowerCamelCase_ : List[Any] ={"a": 2, "b": 3} lowerCamelCase_ : int ={"a": [2, 3], "b": [4, 5]} lowerCamelCase_ : str ={"a": {"1": 2}, "b": 3} lowerCamelCase_ : Dict ={"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa
209
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowercase__ : def __init__( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[Any]=13 ,lowerCamelCase__ : Dict=10 ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : List[Any]=2 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Union[str, Any]=32 ,lowerCamelCase__ : Dict=5 ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : Tuple=37 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : Union[str, Any]=10 ,lowerCamelCase__ : Any=0.0_2 ,lowerCamelCase__ : int=0.9 ,lowerCamelCase__ : Optional[int]=None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : Any = patch_size _UpperCamelCase : str = tubelet_size _UpperCamelCase : Dict = num_frames _UpperCamelCase : str = is_training _UpperCamelCase : str = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Any = type_sequence_label_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[str] = mask_ratio _UpperCamelCase : Any = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCamelCase : int = (image_size // patch_size) ** 2 _UpperCamelCase : int = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCamelCase : List[Any] = int(mask_ratio * self.seq_length ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = None if self.use_labels: _UpperCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : List[str] = VideoMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = VideoMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase : Union[str, Any] = torch.ones((self.num_masks,) ) _UpperCamelCase : Any = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCamelCase : Optional[int] = mask.expand(self.batch_size ,-1 ).bool() _UpperCamelCase : List[str] = model(lowerCamelCase__ ,lowerCamelCase__ ) # model only returns predictions for masked patches _UpperCamelCase : Optional[int] = mask.sum().item() _UpperCamelCase : List[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : str = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Union[str, Any] = config_and_inputs _UpperCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase__ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Tuple = VideoMAEModelTester(self ) _UpperCamelCase : str = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Union[str, Any]=False ): '''simple docstring''' _UpperCamelCase : List[str] = copy.deepcopy(lowerCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase : List[Any] = torch.ones((self.model_tester.num_masks,) ) _UpperCamelCase : int = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCamelCase : List[Any] = mask.expand(self.model_tester.batch_size ,-1 ).bool() _UpperCamelCase : int = bool_masked_pos.to(lowerCamelCase__ ) if return_labels: if model_class in [ *get_values(lowerCamelCase__ ), ]: _UpperCamelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase__ ) return inputs_dict def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) _UpperCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : str = VideoMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if not self.has_attentions: pass else: _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = True for model_class in self.all_model_classes: _UpperCamelCase : int = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : str = False _UpperCamelCase : Tuple = True _UpperCamelCase : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : List[Any] = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : Any = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Optional[int] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) _UpperCamelCase : int = len(lowerCamelCase__ ) # Check attention is always last and order is fine _UpperCamelCase : Tuple = True _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(out_len + 1 ,len(lowerCamelCase__ ) ) _UpperCamelCase : List[str] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ): _UpperCamelCase : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Dict = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Optional[int] = outputs.hidden_states _UpperCamelCase : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) _UpperCamelCase : Tuple = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[Any] = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def A__ ( ): _UpperCamelCase : List[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _UpperCamelCase : Any = np.load(UpperCAmelCase_ ) return list(UpperCAmelCase_ ) @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : int = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : int = prepare_video() _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCamelCase__ ) _UpperCamelCase : List[str] = self.default_image_processor _UpperCamelCase : str = prepare_video() _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # add boolean mask, indicating which patches to mask _UpperCamelCase : Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) _UpperCamelCase : Optional[Any] = torch.load(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : Tuple = torch.Size([1, 1408, 1536] ) _UpperCamelCase : Optional[int] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=lowerCamelCase__ ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,lowerCamelCase__ ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCamelCase : List[Any] = torch.tensor([0.5_1_4_2] ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCamelCase : Optional[Any] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=lowerCamelCase__ ).to( lowerCamelCase__ ) with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss ,lowerCamelCase__ ,atol=1E-4 ) )
83
'''simple docstring''' import os from datetime import datetime as dt from github import Github snake_case_ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def A__ ( ): _UpperCamelCase : Tuple = Github(os.environ['GITHUB_TOKEN'] ) _UpperCamelCase : List[Any] = g.get_repo('huggingface/diffusers' ) _UpperCamelCase : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: _UpperCamelCase : Dict = sorted(issue.get_comments() , key=lambda UpperCAmelCase_ : i.created_at , reverse=UpperCAmelCase_ ) _UpperCamelCase : List[str] = comments[0] if len(UpperCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
83
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Optional[Any] = ["""pixel_values"""] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = PIL.Image.BICUBIC , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = 1 / 255 , UpperCAmelCase__ = True , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) A__ = size if size is not None else {"height": 256, "width": 256} A__ = get_size_dict(UpperCAmelCase__ ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = PIL.Image.BICUBIC , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase__ , size=(size["height"], size["width"]) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__=None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ): A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(UpperCAmelCase__ ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" ) A__ = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. A__ = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: A__ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: A__ = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: A__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: A__ = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] A__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
198
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ : List[Any] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCamelCase ( _A : List[Any] , _A : int=None )-> Optional[int]: """simple docstring""" require_version(deps[pkg] , _A )
198
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _lowerCAmelCase ( UpperCamelCase_="ro" , UpperCamelCase_="en" , UpperCamelCase_="wmt16" , UpperCamelCase_=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __SCREAMING_SNAKE_CASE = f"{src_lang}-{tgt_lang}" print(f"Converting {dataset}-{pair}" ) __SCREAMING_SNAKE_CASE = datasets.load_dataset(UpperCamelCase_ , UpperCamelCase_ ) if save_dir is None: __SCREAMING_SNAKE_CASE = f"{dataset}-{pair}" __SCREAMING_SNAKE_CASE = Path(UpperCamelCase_ ) save_dir.mkdir(exist_ok=UpperCamelCase_ ) for split in ds.keys(): print(f"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __SCREAMING_SNAKE_CASE = """val""" if split == """validation""" else split __SCREAMING_SNAKE_CASE = save_dir.joinpath(f"{fn}.source" ) __SCREAMING_SNAKE_CASE = save_dir.joinpath(f"{fn}.target" ) __SCREAMING_SNAKE_CASE = src_path.open("""w+""" ) __SCREAMING_SNAKE_CASE = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __SCREAMING_SNAKE_CASE = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
100
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Dict , snake_case__ : Any=13 , snake_case__ : Any=32 , snake_case__ : Optional[Any]=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : List[Any]=16 , snake_case__ : int=[1, 2, 1] , snake_case__ : Dict=[2, 2, 4] , snake_case__ : Dict=2 , snake_case__ : Tuple=2.0 , snake_case__ : Optional[int]=True , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Any=0.0 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int="gelu" , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=True , snake_case__ : List[str]=0.02 , snake_case__ : int=1e-5 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=None , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=10 , snake_case__ : Optional[Any]=8 , snake_case__ : Any=["stage1", "stage2", "stage3"] , snake_case__ : Tuple=[1, 2, 3] , ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = parent snake_case : Optional[int] = batch_size snake_case : Union[str, Any] = image_size snake_case : Dict = patch_size snake_case : Optional[Any] = num_channels snake_case : Union[str, Any] = embed_dim snake_case : int = depths snake_case : List[str] = num_heads snake_case : Union[str, Any] = window_size snake_case : Union[str, Any] = mlp_ratio snake_case : List[Any] = qkv_bias snake_case : List[Any] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Union[str, Any] = drop_path_rate snake_case : int = hidden_act snake_case : Optional[int] = use_absolute_embeddings snake_case : int = patch_norm snake_case : Union[str, Any] = layer_norm_eps snake_case : Any = initializer_range snake_case : Optional[Any] = is_training snake_case : Tuple = scope snake_case : Optional[int] = use_labels snake_case : Optional[Any] = type_sequence_label_size snake_case : Union[str, Any] = encoder_stride snake_case : Any = out_features snake_case : Tuple = out_indices def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : int = None if self.use_labels: snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = MaskFormerSwinModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : List[Any] = model(snake_case__ ) snake_case : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ) -> str: '''simple docstring''' snake_case : Optional[int] = MaskFormerSwinBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : List[Any] = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(snake_case__ ): snake_case : Tuple = ["stem"] snake_case : List[Any] = MaskFormerSwinBackbone(config=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : List[Any] = config_and_inputs snake_case : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : List[str] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) A__ : str = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} A__ : Optional[Any] = False A__ : List[Any] = False A__ : List[str] = False A__ : List[str] = False A__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : str = MaskFormerSwinModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=snake_case__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' return def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case__ ) @unittest.skip("Swin does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Dict: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case , snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(snake_case__ ) snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[Any] = [*signature.parameters.keys()] snake_case : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : Any = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : int = outputs.hidden_states snake_case : Union[str, Any] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # Swin has a different seq_length snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case : int = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Dict = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Any = 3 snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case : str = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Optional[Any] = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case__ : Union[str, Any] ): snake_case : Any = 0 return t def check_equivalence(snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[int]={} ): with torch.no_grad(): snake_case : Optional[Any] = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ) snake_case : Tuple = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ).to_tuple() def recursive_check(snake_case__ : List[str] , snake_case__ : Optional[Any] ): if isinstance(snake_case__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case__ , snake_case__ ): recursive_check(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case__ , snake_case__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case__ ) , set_nan_tensor_to_zero(snake_case__ ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}. Dict has""" f""" `nan`: {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}.""" ) , ) recursive_check(snake_case__ , snake_case__ ) for model_class in self.all_model_classes: snake_case : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Dict = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : List[Any] = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) snake_case : Any = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : List[str] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) @require_torch class UpperCAmelCase ( unittest.TestCase ,A_ ): A__ : int = (MaskFormerSwinBackbone,) if is_torch_available() else () A__ : int = MaskFormerSwinConfig def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = MaskFormerSwinModelTester(self ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[int] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: snake_case : Optional[int] = backbone_class(snake_case__ ) backbone.to(snake_case__ ) backbone.eval() snake_case : Union[str, Any] = backbone(**snake_case__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True snake_case : Optional[int] = backbone(**snake_case__ , output_hidden_states=snake_case__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) snake_case , snake_case , snake_case : Dict = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: snake_case : Optional[Any] = backbone(**snake_case__ , output_attentions=snake_case__ ) self.assertIsNotNone(outputs.attentions )
59
0
from ..utils import DummyObject, requires_backends class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) def __magic_name__ ( *__a : List[Any] , **__a : int ): '''simple docstring''' requires_backends(__a , ["""torch"""] ) def __magic_name__ ( *__a : int , **__a : Any ): '''simple docstring''' requires_backends(__a , ["""torch"""] ) def __magic_name__ ( *__a : List[str] , **__a : str ): '''simple docstring''' requires_backends(__a , ["""torch"""] ) def __magic_name__ ( *__a : Tuple , **__a : List[Any] ): '''simple docstring''' requires_backends(__a , ["""torch"""] ) def __magic_name__ ( *__a : str , **__a : Any ): '''simple docstring''' requires_backends(__a , ["""torch"""] ) def __magic_name__ ( *__a : List[Any] , **__a : str ): '''simple docstring''' requires_backends(__a , ["""torch"""] ) def __magic_name__ ( *__a : Optional[int] , **__a : Optional[int] ): '''simple docstring''' requires_backends(__a , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) class __A( metaclass=__lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""torch"""] def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase_ (cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ["""torch"""] )
352
import collections import os import re from pathlib import Path lowerCamelCase_ = '''src/transformers''' # Matches is_xxx_available() lowerCamelCase_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCamelCase_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCamelCase_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCamelCase_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase_ = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase_ = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCamelCase_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCamelCase_ = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCamelCase_ = re.compile(r'''^\s*else:''') def __magic_name__ ( __a : List[Any] ): '''simple docstring''' if _re_test_backend.search(__a ) is None: return None UpperCamelCase__ = [b[0] for b in _re_backend.findall(__a )] backends.sort() return "_and_".join(__a ) def __magic_name__ ( __a : Dict ): '''simple docstring''' with open(__a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = 0 while line_index < len(__a ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__a ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCamelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__a ): UpperCamelCase__ = _re_one_line_import_struct.search(__a ).groups()[0] UpperCamelCase__ = re.findall(R"""\[([^\]]+)\]""" , __a ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCamelCase__ = _re_import_struct_key_value.search(__a ) if single_line_import_search is not None: UpperCamelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__a ) > 0] objects.extend(__a ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCamelCase__ = lines[line_index] if _re_import_struct_add_one.search(__a ) is not None: objects.append(_re_import_struct_add_one.search(__a ).groups()[0] ) elif _re_import_struct_add_many.search(__a ) is not None: UpperCamelCase__ = _re_import_struct_add_many.search(__a ).groups()[0].split(""", """ ) UpperCamelCase__ = [obj[1:-1] for obj in imports if len(__a ) > 0] objects.extend(__a ) elif _re_between_brackets.search(__a ) is not None: UpperCamelCase__ = _re_between_brackets.search(__a ).groups()[0].split(""", """ ) UpperCamelCase__ = [obj[1:-1] for obj in imports if len(__a ) > 0] objects.extend(__a ) elif _re_quote_object.search(__a ) is not None: objects.append(_re_quote_object.search(__a ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 UpperCamelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase__ = [] while ( line_index < len(__a ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__a ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCamelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __magic_name__ ( __a : Dict , __a : Dict ): '''simple docstring''' def find_duplicates(__a : Optional[Any] ): return [k for k, v in collections.Counter(__a ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase__ = [] for key in import_dict_objects.keys(): UpperCamelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCamelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase__ = """base imports""" if key == """none""" else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for root, _, files in os.walk(__a ): if "__init__.py" in files: UpperCamelCase__ = os.path.join(__a , """__init__.py""" ) UpperCamelCase__ = parse_init(__a ) if objects is not None: UpperCamelCase__ = analyze_results(*__a ) if len(__a ) > 0: UpperCamelCase__ = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(__a ) ) if len(__a ) > 0: raise ValueError("""\n\n""".join(__a ) ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for path, directories, files in os.walk(__a ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__a ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__a ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCamelCase__ = str((Path(__a ) / folder).relative_to(__a ) ) UpperCamelCase__ = short_path.replace(os.path.sep , """.""" ) submodules.append(__a ) for fname in files: if fname == "__init__.py": continue UpperCamelCase__ = str((Path(__a ) / fname).relative_to(__a ) ) UpperCamelCase__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__a ) return submodules lowerCamelCase_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def __magic_name__ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import UpperCamelCase__ = direct_transformers_import(__a ) UpperCamelCase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__a , """__init__.py""" ) , """r""" ) as f: UpperCamelCase__ = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , __a ) ) ) UpperCamelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__a ) > 0: UpperCamelCase__ = """\n""".join(f"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
178
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Any , _A : str , _A : Optional[Any]=13 , _A : Union[str, Any]=10 , _A : Dict=3 , _A : Union[str, Any]=2 , _A : List[Any]=2 , _A : List[str]=2 , _A : List[str]=True , _A : Dict=True , _A : Tuple=32 , _A : Tuple=5 , _A : Optional[int]=4 , _A : Dict=37 , _A : List[Any]="gelu" , _A : Any=0.1 , _A : Union[str, Any]=0.1 , _A : Dict=10 , _A : int=0.0_2 , _A : int=0.9 , _A : Tuple=None , ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[Any] = num_channels snake_case_ : List[str] = patch_size snake_case_ : Tuple = tubelet_size snake_case_ : List[Any] = num_frames snake_case_ : Optional[Any] = is_training snake_case_ : int = use_labels snake_case_ : Union[str, Any] = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Any = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[str] = mask_ratio snake_case_ : Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case_ : List[Any] = (image_size // patch_size) ** 2 snake_case_ : Optional[int] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case_ : Optional[int] = int(mask_ratio * self.seq_length ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Dict = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case_ : int = None if self.use_labels: snake_case_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Tuple , _A : Dict , _A : Optional[int] , _A : Optional[Any] ) -> Any: """simple docstring""" snake_case_ : List[Any] = VideoMAEModel(config=_A ) model.to(_A ) model.eval() snake_case_ : str = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : int , _A : List[Any] , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : List[str] = VideoMAEForPreTraining(_A ) model.to(_A ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case_ : Dict = torch.ones((self.num_masks,) ) snake_case_ : List[Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case_ : Tuple = mask.expand(self.batch_size , -1 ).bool() snake_case_ : int = model(_A , _A ) # model only returns predictions for masked patches snake_case_ : Optional[int] = mask.sum().item() snake_case_ : List[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ : int = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ : List[str] = config_and_inputs snake_case_ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __magic_name__: Optional[Any] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __magic_name__: List[str] = False __magic_name__: Tuple = False __magic_name__: Dict = False __magic_name__: List[Any] = False def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" snake_case_ : List[str] = VideoMAEModelTester(self ) snake_case_ : str = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] , _A : Any , _A : int=False ) -> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = copy.deepcopy(_A ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case_ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) snake_case_ : Union[str, Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case_ : List[str] = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case_ : Optional[Any] = bool_masked_pos.to(_A ) if return_labels: if model_class in [ *get_values(_A ), ]: snake_case_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" snake_case_ ,snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Tuple = model_class(_A ) snake_case_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[str] = [*signature.parameters.keys()] snake_case_ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) @slow def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Union[str, Any] = VideoMAEModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" if not self.has_attentions: pass else: snake_case_ ,snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = True for model_class in self.all_model_classes: snake_case_ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case_ : Union[str, Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case_ : Any = True snake_case_ : Tuple = False snake_case_ : Optional[Any] = True snake_case_ : Optional[int] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): snake_case_ : Optional[Any] = model(**self._prepare_for_class(_A , _A ) ) snake_case_ : List[str] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ : List[Any] = True snake_case_ : Optional[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): snake_case_ : List[Any] = model(**self._prepare_for_class(_A , _A ) ) snake_case_ : Optional[int] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case_ : Tuple = len(_A ) # Check attention is always last and order is fine snake_case_ : Any = True snake_case_ : int = True snake_case_ : Tuple = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): snake_case_ : int = model(**self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + 1 , len(_A ) ) snake_case_ : Union[str, Any] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" def check_hidden_states_output(_A : Tuple , _A : int , _A : str ): snake_case_ : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): snake_case_ : Any = model(**self._prepare_for_class(_A , _A ) ) snake_case_ : List[Any] = outputs.hidden_states snake_case_ : Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_A ) , _A ) snake_case_ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case_ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case_ ,snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Union[str, Any] = True check_hidden_states_output(_A , _A , _A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : List[str] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) snake_case_ : List[str] = np.load(__a ) return list(__a ) @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" snake_case_ : Any = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( _A ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Optional[int] = prepare_video() snake_case_ : Optional[int] = image_processor(_A , return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): snake_case_ : Union[str, Any] = model(**_A ) # verify the logits snake_case_ : Any = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Optional[int] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" snake_case_ : Union[str, Any] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(_A ) snake_case_ : Optional[Any] = self.default_image_processor snake_case_ : List[str] = prepare_video() snake_case_ : List[Any] = image_processor(_A , return_tensors='pt' ).to(_A ) # add boolean mask, indicating which patches to mask snake_case_ : int = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) snake_case_ : Dict = torch.load(_A ) # forward pass with torch.no_grad(): snake_case_ : int = model(**_A ) # verify the logits snake_case_ : str = torch.Size([1, 1408, 1536] ) snake_case_ : Optional[Any] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=_A ) self.assertEqual(outputs.logits.shape , _A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _A , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case_ : List[str] = torch.tensor([0.5_1_4_2] , device=_A ) self.assertTrue(torch.allclose(outputs.loss , _A , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case_ : Dict = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=_A ).to( _A ) with torch.no_grad(): snake_case_ : List[str] = model(**_A ) snake_case_ : Optional[Any] = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=_A ) self.assertTrue(torch.allclose(outputs.loss , _A , atol=1E-4 ) )
327
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __UpperCamelCase : Dict = logging.get_logger(__name__) class a ( snake_case__ ): snake_case__ = ["""pixel_values"""] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" super().__init__(**_A ) lowerCAmelCase = size if size is not None else {'shortest_edge': 2_56} lowerCAmelCase = get_size_dict(_A , default_to_square=_A ) lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowerCAmelCase = get_size_dict(_A , param_name='crop_size' ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case ): """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(_A , default_to_square=_A ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(_A , param_name='crop_size' ) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(_A ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] lowerCAmelCase = [to_channel_dimension_format(_A , _A ) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_A ): lowerCAmelCase = target_sizes.numpy() lowerCAmelCase = [] for idx in range(len(_A ) ): lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_A ) lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: lowerCAmelCase = logits.argmax(dim=1 ) lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
364
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __UpperCAmelCase ( __a : Any ,__a : Optional[Any] ,__a : Any ,__a : Any ,__a : Union[str, Any] ) -> Optional[int]: """simple docstring""" for attribute in key.split('''.''' ): _a : List[str] = getattr(__a ,__a ) if weight_type is not None: _a : int = getattr(__a ,__a ).shape else: _a : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : Optional[int] = value elif weight_type == "weight_g": _a : List[Any] = value elif weight_type == "weight_v": _a : Optional[Any] = value elif weight_type == "bias": _a : str = value else: _a : int = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __a : Dict ,__a : Any ,__a : Tuple ) -> Optional[int]: """simple docstring""" _a : int = [] _a : int = fairseq_model.state_dict() _a : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : Optional[int] = False if "conv_layers" in name: load_conv_layer( __a ,__a ,__a ,__a ,hf_model.config.feat_extract_norm == '''group''' ,) _a : str = True else: for key, mapped_key in MAPPING.items(): _a : Optional[int] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _a : Union[str, Any] = True if "*" in mapped_key: _a : List[Any] = name.split(__a )[0].split('''.''' )[-2] _a : List[str] = mapped_key.replace('''*''' ,__a ) if "weight_g" in name: _a : int = '''weight_g''' elif "weight_v" in name: _a : Tuple = '''weight_v''' elif "weight" in name: _a : Optional[int] = '''weight''' elif "bias" in name: _a : str = '''bias''' else: _a : Optional[Any] = None set_recursively(__a ,__a ,__a ,__a ,__a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __a : Optional[Any] ,__a : Optional[int] ,__a : str ,__a : int ,__a : str ) -> Tuple: """simple docstring""" _a : int = full_name.split('''conv_layers.''' )[-1] _a : Any = name.split('''.''' ) _a : List[str] = int(items[0] ) _a : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def __UpperCAmelCase ( __a : int ,__a : int ,__a : str=None ,__a : List[Any]=None ,__a : List[str]=True ) -> Tuple: """simple docstring""" if config_path is not None: _a : Optional[Any] = HubertConfig.from_pretrained(__a ) else: _a : List[str] = HubertConfig() if is_finetuned: if dict_path: _a : Dict = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Union[str, Any] = target_dict.pad_index _a : Any = target_dict.bos_index _a : Optional[int] = target_dict.eos_index _a : Optional[Any] = len(target_dict.symbols ) _a : int = os.path.join(__a ,'''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a ,exist_ok=__a ) with open(__a ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices ,__a ) _a : Tuple = WavaVecaCTCTokenizer( __a ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__a ,) _a : Tuple = True if config.feat_extract_norm == '''layer''' else False _a : Tuple = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__a ,return_attention_mask=__a ,) _a : Tuple = WavaVecaProcessor(feature_extractor=__a ,tokenizer=__a ) processor.save_pretrained(__a ) _a : Tuple = HubertForCTC(__a ) else: _a : Optional[int] = HubertModel(__a ) if is_finetuned: _a , _a , _a : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _a , _a , _a : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a : int = model[0].eval() recursively_load_weights(__a ,__a ,__a ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
235
def __UpperCAmelCase ( __a : float ) -> float: """simple docstring""" return 10 - x * x def __UpperCAmelCase ( __a : float ,__a : float ) -> float: """simple docstring""" if equation(__a ) * equation(__a ) >= 0: raise ValueError('''Wrong space!''' ) _a : Dict = a while (b - a) >= 0.01: # Find middle point _a : Any = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: _a : str = c else: _a : Union[str, Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
235
1
class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCamelCase : str = {} def _lowercase ( self ): """simple docstring""" print(self.vertex ) for i in self.vertex: print(__SCREAMING_SNAKE_CASE , ''' -> ''' , ''' -> '''.join([str(__SCREAMING_SNAKE_CASE ) for j in self.vertex[i]] ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(__SCREAMING_SNAKE_CASE ) else: # else make a new vertex UpperCamelCase : Union[str, Any] = [to_vertex] def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = True print(__SCREAMING_SNAKE_CASE , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
360
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , ): """simple docstring""" UpperCamelCase : List[str] = size if size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase : int = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Union[str, Any] = min_resolution UpperCamelCase : Tuple = max_resolution UpperCamelCase : List[str] = do_resize UpperCamelCase : List[str] = size UpperCamelCase : int = apply_ocr def _lowercase ( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = LayoutLMvaImageProcessingTester(self ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''apply_ocr''' ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , __SCREAMING_SNAKE_CASE ) # Test batched UpperCamelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase : Optional[int] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase : Dict = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) UpperCamelCase : List[Any] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) UpperCamelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase : Union[str, Any] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCamelCase : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , __SCREAMING_SNAKE_CASE ) # with apply_OCR = False UpperCamelCase : Optional[Any] = LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
315
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase : str = { # 1536-bit 5: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), 'generator': 2, }, } class _A: """simple docstring""" def __init__( self , _A = 14 ): if group not in primes: raise ValueError('Unsupported Group' ) __A : int = primes[group]['prime'] __A : Optional[int] = primes[group]['generator'] __A : Optional[int] = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCAmelCase_ ( self ): return hex(self.__private_key )[2:] def UpperCAmelCase_ ( self ): __A : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(_A )[2:] def UpperCAmelCase_ ( self , _A ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase_ ( self , _A ): __A : str = int(_A , base=16 ) if not self.is_valid_public_key(_A ): raise ValueError('Invalid public key' ) __A : Optional[Any] = pow(_A , self.__private_key , self.prime ) return shaaaa(str(_A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase_ ( _A , _A ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_A , (prime - 1) // 2 , _A ) == 1 ) @staticmethod def UpperCAmelCase_ ( _A , _A , _A = 14 ): __A : List[str] = int(_A , base=16 ) __A : List[Any] = int(_A , base=16 ) __A : List[Any] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(_A , _A ): raise ValueError('Invalid public key' ) __A : Any = pow(_A , _A , _A ) return shaaaa(str(_A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
280
import cva import numpy as np class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : float , UpperCAmelCase : int ): if k in (0.04, 0.06): A_ = k A_ = window_size else: raise ValueError("invalid k value" ) def __str__( self : Optional[Any] ): return str(self.k ) def __A ( self : int , UpperCAmelCase : str ): A_ = cva.imread(UpperCAmelCase , 0 ) A_ , A_ = img.shape A_ = [] A_ = img.copy() A_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_GRAY2RGB ) A_ , A_ = np.gradient(UpperCAmelCase ) A_ = dx**2 A_ = dy**2 A_ = dx * dy A_ = 0.04 A_ = self.window_size // 2 for y in range(UpperCAmelCase , h - offset ): for x in range(UpperCAmelCase , w - offset ): A_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ = (wxx * wyy) - (wxy**2) A_ = wxx + wyy A_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __a :List[str] = HarrisCorner(0.04, 3) __a , __a :str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
312
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaImgaImgPipeline lowerCAmelCase_ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] lowerCAmelCase_ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowerCAmelCase_ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def _snake_case ( self ): """simple docstring""" return 32 @property def _snake_case ( self ): """simple docstring""" return 32 @property def _snake_case ( self ): """simple docstring""" return self.time_input_dim @property def _snake_case ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _snake_case ( self ): """simple docstring""" return 1_00 @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase_ : Union[str, Any] = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : str = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.dummy_unet lowercase_ : Dict = self.dummy_movq lowercase_ : List[Any] = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase_ : List[Any] = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" lowercase_ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image lowercase_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : int = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowercase_ : Any = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Optional[int] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : str = '''cpu''' lowercase_ : Any = self.get_dummy_components() lowercase_ : Optional[Any] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[Any] = output.images lowercase_ : Tuple = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] lowercase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ : Dict = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowercase_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase_ : Tuple = '''A red cartoon frog, 4k''' lowercase_ : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase_ : str = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ , lowercase_ : Tuple = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase_ : Optional[int] = pipeline( image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) lowercase_ : int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
264
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowercase : Tuple = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = super().to_dict() for k, v in d.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = v.to_dict() return d
264
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''encodec''' def __init__(self : List[Any] , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : List[str]=2_4000 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Dict=128 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : int=[8, 5, 4, 2] , _lowerCAmelCase : Any="weight_norm" , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : str="reflect" , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Tuple=1.0 , _lowerCAmelCase : Tuple=1024 , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=True , **_lowerCAmelCase : List[str] , ): A = target_bandwidths A = sampling_rate A = audio_channels A = normalize A = chunk_length_s A = overlap A = hidden_size A = num_filters A = num_residual_layers A = upsampling_ratios A = norm_type A = kernel_size A = last_kernel_size A = residual_kernel_size A = dilation_growth_rate A = use_causal_conv A = pad_mode A = compress A = num_lstm_layers A = trim_right_ratio A = codebook_size A = codebook_dim if codebook_dim is not None else hidden_size A = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_lowerCAmelCase ) @property def A (self : List[Any] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A (self : Union[str, Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A (self : Any ): A = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A (self : List[str] ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
258
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase : List[Any] = 16 UpperCAmelCase : Tuple = 32 def __lowerCamelCase ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : DatasetDict , lowerCamelCase__ : List[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : int = 16 ): '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase = DatasetDict( { """train""": dataset["""train"""].select(UpperCamelCase__ ), """validation""": dataset["""train"""].select(UpperCamelCase__ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCamelCase__ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase = 16 elif accelerator.mixed_precision != "no": lowerCamelCase = 8 else: lowerCamelCase = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) lowerCamelCase = DataLoader( tokenized_datasets["""test"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = [] # Download the dataset lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) # Create our splits lowerCamelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config['''lr'''] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) # New Code # # Create our folds: lowerCamelCase = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) lowerCamelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCamelCase__ ): lowerCamelCase = get_fold_dataloaders( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler lowerCamelCase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase = model(**UpperCamelCase__ ) lowerCamelCase = outputs.loss lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase = model(**UpperCamelCase__ ) lowerCamelCase = outputs.logits.argmax(dim=-1 ) lowerCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCamelCase__ ) # New Code # # We also run predictions on the test set at the very end lowerCamelCase = [] for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase = model(**UpperCamelCase__ ) lowerCamelCase = outputs.logits lowerCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCamelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCamelCase = torch.cat(UpperCamelCase__ , dim=0 ) lowerCamelCase = torch.stack(UpperCamelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCamelCase = metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ ) accelerator.print("""Average test metrics from all folds:""" , UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=UpperCamelCase__ , default=3 , help="""The number of splits to perform across the dataset""" ) lowerCamelCase = parser.parse_args() lowerCamelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging A : List[Any] = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def __lowerCamelCase ( __a :Union[str, Any] , __a :Tuple , __a :str , __a :Any=None ) -> Dict: """simple docstring""" A__ = XLNetConfig.from_json_file(__a ) A__ = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) A__ = finetuning_task A__ = GLUE_TASKS_NUM_LABELS[finetuning_task] A__ = XLNetForSequenceClassification(__a ) elif "squad" in finetuning_task: A__ = finetuning_task A__ = XLNetForQuestionAnswering(__a ) else: A__ = XLNetLMHeadModel(__a ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__a , __a , __a ) # Save pytorch-model A__ = os.path.join(__a , __a ) A__ = os.path.join(__a , __a ) print(F'Save PyTorch model to {os.path.abspath(__a )}' ) torch.save(model.state_dict() , __a ) print(F'Save configuration file to {os.path.abspath(__a )}' ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) A : str = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
274
def __lowerCamelCase ( __a :str ) -> list: """simple docstring""" A__ = [0] * len(__a ) for i in range(1 , len(__a ) ): # use last results for better performance - dynamic programming A__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: A__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 A__ = j return prefix_result def __lowerCamelCase ( __a :str ) -> int: """simple docstring""" return max(prefix_function(__a ) ) if __name__ == "__main__": import doctest doctest.testmod()
274
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '''▁''' lowerCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} lowerCamelCase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } lowerCamelCase = {'''vinai/bartpho-syllable''': 1024} class _a ( _lowercase): _a : Tuple = VOCAB_FILES_NAMES _a : int = PRETRAINED_VOCAB_FILES_MAP _a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple="<s>" , _SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , _SCREAMING_SNAKE_CASE : List[str]="</s>" , _SCREAMING_SNAKE_CASE : Tuple="<s>" , _SCREAMING_SNAKE_CASE : Optional[Any]="<unk>" , _SCREAMING_SNAKE_CASE : Any="<pad>" , _SCREAMING_SNAKE_CASE : str="<mask>" , _SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> None: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : int = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token lowerCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Optional[int] = vocab_file lowerCAmelCase__ : Optional[Any] = monolingual_vocab_file lowerCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : List[str] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : Tuple = cnt cnt += 1 with open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowerCAmelCase__ : List[Any] = line.strip().split()[0] lowerCAmelCase__ : Optional[int] = len(self.fairseq_tokens_to_ids ) if str(_SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : Optional[int] = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple )-> List[str]: lowerCAmelCase__ : List[Any] = self.__dict__.copy() lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Dict: lowerCAmelCase__ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase__ : List[str] = {} lowerCAmelCase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : List[str] = [self.cls_token_id] lowerCAmelCase__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None , _SCREAMING_SNAKE_CASE : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__( self : List[str] )-> Optional[Any]: return len(self.fairseq_ids_to_tokens ) def UpperCAmelCase__( self : List[str] )-> str: lowerCAmelCase__ : str = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str )-> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Any: return self.fairseq_ids_to_tokens[index] def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Union[str, Any]: lowerCAmelCase__ : Dict = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : str = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowerCAmelCase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(_SCREAMING_SNAKE_CASE )} \n' ) return out_vocab_file, out_monolingual_vocab_file
211
def lowerCamelCase_ ( _a ): """simple docstring""" if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
211
1
import argparse import os import re SCREAMING_SNAKE_CASE :Dict = '''src/diffusers''' # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE :Optional[Any] = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE :Union[str, Any] = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE :Any = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE :str = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE :List[Any] = re.compile(R'''\[([^\]]+)\]''') def _lowerCAmelCase ( lowerCAmelCase_ :str )->int: '''simple docstring''' snake_case_ = _re_indent.search(lowerCAmelCase_ ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :Optional[int]="" , lowerCAmelCase_ :Optional[int]=None , lowerCAmelCase_ :List[str]=None )->Optional[int]: '''simple docstring''' snake_case_ = 0 snake_case_ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase_ ): index += 1 snake_case_ = ["\n".join(lines[:index] )] else: snake_case_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case_ = [lines[index]] index += 1 while index < len(lowerCAmelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(lowerCAmelCase_ ) ) if index < len(lowerCAmelCase_ ) - 1: snake_case_ = [lines[index + 1]] index += 1 else: snake_case_ = [] else: blocks.append("\n".join(lowerCAmelCase_ ) ) snake_case_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase_ ) > 0: blocks.append("\n".join(lowerCAmelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase_ ): blocks.append("\n".join(lines[index:] ) ) return blocks def _lowerCAmelCase ( lowerCAmelCase_ :Tuple )->Dict: '''simple docstring''' def _inner(lowerCAmelCase_ :Optional[int] ): return key(lowerCAmelCase_ ).lower().replace("_" , "" ) return _inner def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Tuple=None )->Tuple: '''simple docstring''' def noop(lowerCAmelCase_ :Optional[int] ): return x if key is None: snake_case_ = noop # Constants are all uppercase, they go first. snake_case_ = [obj for obj in objects if key(lowerCAmelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case_ = [obj for obj in objects if key(lowerCAmelCase_ )[0].isupper() and not key(lowerCAmelCase_ ).isupper()] # Functions begin with a lowercase, they go last. snake_case_ = [obj for obj in objects if not key(lowerCAmelCase_ )[0].isupper()] snake_case_ = ignore_underscore(lowerCAmelCase_ ) return sorted(lowerCAmelCase_ , key=lowerCAmelCase_ ) + sorted(lowerCAmelCase_ , key=lowerCAmelCase_ ) + sorted(lowerCAmelCase_ , key=lowerCAmelCase_ ) def _lowerCAmelCase ( lowerCAmelCase_ :str )->List[str]: '''simple docstring''' def _replace(lowerCAmelCase_ :int ): snake_case_ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' snake_case_ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(lowerCAmelCase_ )] ) + "]" snake_case_ = import_statement.split("\n" ) if len(lowerCAmelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case_ = 2 if lines[1].strip() == "[" else 1 snake_case_ = [(i, _re_strip_line.search(lowerCAmelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case_ = sort_objects(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] ) snake_case_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case_ = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case_ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] snake_case_ = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(lowerCAmelCase_ )] ) return "\n".join(lowerCAmelCase_ ) else: # Finally we have to deal with imports fitting on one line snake_case_ = _re_bracket_content.sub(_replace , lowerCAmelCase_ ) return import_statement def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :str=True )->Optional[Any]: '''simple docstring''' with open(lowerCAmelCase_ , "r" ) as f: snake_case_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case_ = split_code_in_indented_blocks( lowerCAmelCase_ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case_ = main_blocks[block_idx] snake_case_ = block.split("\n" ) # Get to the start of the imports. snake_case_ = 0 while line_idx < len(lowerCAmelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case_ = len(lowerCAmelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase_ ): continue # Ignore beginning and last line: they don't contain anything. snake_case_ = "\n".join(block_lines[line_idx:-1] ) snake_case_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case_ = split_code_in_indented_blocks(lowerCAmelCase_ , indent_level=lowerCAmelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case_ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case_ = [(pattern.search(lowerCAmelCase_ ).groups()[0] if pattern.search(lowerCAmelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case_ = [(i, key) for i, key in enumerate(lowerCAmelCase_ ) if key is not None] snake_case_ = [x[0] for x in sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case_ = 0 snake_case_ = [] for i in range(len(lowerCAmelCase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: snake_case_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowerCAmelCase_ ) count += 1 # And we put our main block back together with its first and last line. snake_case_ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase_ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(lowerCAmelCase_ , "w" ) as f: f.write("\n".join(lowerCAmelCase_ ) ) def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Any]=True )->str: '''simple docstring''' snake_case_ = [] for root, _, files in os.walk(lowerCAmelCase_ ): if "__init__.py" in files: snake_case_ = sort_imports(os.path.join(lowerCAmelCase_ , "__init__.py" ) , check_only=lowerCAmelCase_ ) if result: snake_case_ = [os.path.join(lowerCAmelCase_ , "__init__.py" )] if len(lowerCAmelCase_ ) > 0: raise ValueError(F'''Would overwrite {len(lowerCAmelCase_ )} files, run `make style`.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
159
def _lowerCAmelCase ( lowerCAmelCase_ :int | float | str )->tuple[int, int]: '''simple docstring''' try: snake_case_ = float(lowerCAmelCase_ ) except ValueError: raise ValueError("Please enter a valid number" ) snake_case_ = decimal - int(lowerCAmelCase_ ) if fractional_part == 0: return int(lowerCAmelCase_ ), 1 else: snake_case_ = len(str(lowerCAmelCase_ ).split("." )[1] ) snake_case_ = int(decimal * (10**number_of_frac_digits) ) snake_case_ = 10**number_of_frac_digits snake_case_ , snake_case_ = denominator, numerator while True: snake_case_ = dividend % divisor if remainder == 0: break snake_case_ , snake_case_ = divisor, remainder snake_case_ , snake_case_ = numerator / divisor, denominator / divisor return int(lowerCAmelCase_ ), int(lowerCAmelCase_ ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction('67') = }''') print(F'''{decimal_to_fraction('45.0') = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction('6.25') = }''') print(F'''{decimal_to_fraction('78td') = }''')
159
1
def lowerCAmelCase_ ( _snake_case : str , _snake_case : bool = False ) -> Union[str, Any]: '''simple docstring''' if not isinstance(A__ , A__ ): __magic_name__ : Union[str, Any] = F'''Expected string as input, found {type(A__ )}''' raise ValueError(A__ ) if not isinstance(A__ , A__ ): __magic_name__ : str = F'''Expected boolean as use_pascal parameter, found {type(A__ )}''' raise ValueError(A__ ) __magic_name__ : Any = input_str.split("_" ) __magic_name__ : List[Any] = 0 if use_pascal else 1 __magic_name__ : Dict = words[start_index:] __magic_name__ : Any = [word[0].upper() + word[1:] for word in words_to_capitalize] __magic_name__ : List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
357
from typing import Any class _snake_case : def __init__( self , _a ): __magic_name__ : Union[str, Any] = data __magic_name__ : str = None class _snake_case : def __init__( self ): __magic_name__ : List[str] = None def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.head while temp is not None: print(temp.data , end=" " ) __magic_name__ : Optional[int] = temp.next print() def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = Node(_a ) __magic_name__ : List[str] = self.head __magic_name__ : Union[str, Any] = new_node def SCREAMING_SNAKE_CASE ( self , _a , _a ): if node_data_a == node_data_a: return else: __magic_name__ : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : Tuple = node_a.next __magic_name__ : Dict = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : List[Any] = node_a.next if node_a is None or node_a is None: return __magic_name__ , __magic_name__ : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": snake_case : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
41
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: List[str] = {"vocab_file": "sentencepiece.model"} UpperCamelCase__: Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase__: Optional[int] = { "google/rembert": 256, } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[int]=False , __snake_case : Tuple=True , __snake_case : int=True , __snake_case : str="[CLS]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[UNK]" , __snake_case : Optional[Any]="[SEP]" , __snake_case : Union[str, Any]="[PAD]" , __snake_case : Dict="[CLS]" , __snake_case : Optional[Any]="[MASK]" , **__snake_case : List[Any] , ) -> int: super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase : Tuple = do_lower_case UpperCAmelCase : Dict = remove_space UpperCAmelCase : Any = keep_accents UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor() self.sp_model.Load(__snake_case ) @property def A ( self : Union[str, Any] ) -> Optional[int]: return len(self.sp_model ) def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.__dict__.copy() UpperCAmelCase : Dict = None return state def __setstate__( self : Any , __snake_case : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : List[str] = d UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def A ( self : Tuple , __snake_case : Any , __snake_case : Union[str, Any]=False ) -> Union[str, Any]: UpperCAmelCase : int = self.sp_model.EncodeAsPieces(__snake_case ) return pieces def A ( self : str , __snake_case : Union[str, Any] ) -> int: return self.sp_model.PieceToId(__snake_case ) def A ( self : str , __snake_case : str ) -> List[Any]: return self.sp_model.IdToPiece(__snake_case ) def A ( self : int , __snake_case : Any ) -> List[Any]: UpperCAmelCase : Optional[int] = self.sp_model.decode_pieces(__snake_case ) return out_string def A ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
23
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''distilbert''' lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) -> Optional[Any]: A_ : Tuple = vocab_size A_ : List[Any] = max_position_embeddings A_ : int = sinusoidal_pos_embds A_ : int = n_layers A_ : str = n_heads A_ : Optional[int] = dim A_ : int = hidden_dim A_ : Tuple = dropout A_ : List[Any] = attention_dropout A_ : int = activation A_ : Dict = initializer_range A_ : List[Any] = qa_dropout A_ : int = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
344
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } __A = { "gpt2": 10_24, "gpt2-medium": 10_24, "gpt2-large": 10_24, "gpt2-xl": 10_24, "distilgpt2": 10_24, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = GPTaTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> str: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = kwargs.pop('add_bos_token' , lowerCamelCase__ ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
1
def __snake_case ( _UpperCAmelCase = 600851475143 ): try: __a = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __a = 2 __a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __a = i while n % i == 0: __a = n // i i += 1 return int(_UpperCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
49
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __snake_case :List[Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : Dict , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) requires_backends(self , '''vision''') requires_backends(self , '''torch''') if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.') self.check_model_type(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = {} __a = {} __a = {} # preprocess args if "points_per_batch" in kwargs: __a = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __a = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __a = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __a = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __a = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __a = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __a = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __a = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __a = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __a = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __a = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __a = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' return super().__call__(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , num_workers=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=64 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : float = 512 / 1_500 , __SCREAMING_SNAKE_CASE : Optional[int] = 32 , __SCREAMING_SNAKE_CASE : Optional[int] = 1 , ): '''simple docstring''' __a = load_image(__SCREAMING_SNAKE_CASE) __a = self.image_processor.size['''longest_edge'''] __a , __a , __a , __a = self.image_processor.generate_crop_boxes( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''') with self.device_placement(): if self.framework == "pt": __a = self.get_inference_context() with inference_context(): __a = self._ensure_tensor_on_device(__SCREAMING_SNAKE_CASE , device=self.device) __a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''')) __a = image_embeddings __a = grid_points.shape[1] __a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''') for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = grid_points[:, i : i + points_per_batch, :, :] __a = input_labels[:, i : i + points_per_batch] __a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=0.88 , __SCREAMING_SNAKE_CASE : List[Any]=0.95 , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : int=1 , ): '''simple docstring''' __a = model_inputs.pop('''input_boxes''') __a = model_inputs.pop('''is_last''') __a = model_inputs.pop('''original_sizes''').tolist() __a = model_inputs.pop('''reshaped_input_sizes''').tolist() __a = self.model(**__SCREAMING_SNAKE_CASE) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __a = model_outputs['''pred_masks'''] __a = self.image_processor.post_process_masks( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , binarize=__SCREAMING_SNAKE_CASE) __a = model_outputs['''iou_scores'''] __a , __a , __a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : int=0.7 , ): '''simple docstring''' __a = [] __a = [] __a = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''')) all_masks.extend(model_output.pop('''masks''')) all_boxes.append(model_output.pop('''boxes''')) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a = torch.cat(__SCREAMING_SNAKE_CASE) __a , __a , __a , __a = self.image_processor.post_process_for_mask_generation( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = defaultdict(__SCREAMING_SNAKE_CASE) for output in model_outputs: for k, v in output.items(): extra[k].append(__SCREAMING_SNAKE_CASE) __a = {} if output_rle_mask: __a = rle_mask if output_bboxes_mask: __a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
49
1
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( UpperCamelCase__ : Callable , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> np.array: '''simple docstring''' _snake_case = int(np.ceil((x_end - xa) / step_size ) ) _snake_case = np.zeros((n + 1,) ) _snake_case = ya _snake_case = xa for k in range(UpperCamelCase__ ): _snake_case = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] ) _snake_case = y[k] + ( (step_size / 2) * (ode_func(UpperCamelCase__ , y[k] ) + ode_func(x + step_size , UpperCamelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
295
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["keras_nlp"] def __init__(self : Any , *snake_case__ : Any , **snake_case__ : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["keras_nlp"] )
59
from __future__ import annotations import math def lowerCAmelCase_ ( _lowercase : int) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True _lowercase : str =[num for num in range(3, 10_0001, 2) if not is_prime(num)] def lowerCAmelCase_ ( _lowercase : int) -> list[int]: """simple docstring""" if not isinstance(_lowercase , _lowercase): raise ValueError("""n must be an integer""") if n <= 0: raise ValueError("""n must be >= 0""") a__ : int = [] for num in range(len(_lowercase)): a__ : Any = 0 while 2 * i * i <= odd_composites[num]: a__ : Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(_lowercase): break i += 1 else: list_nums.append(odd_composites[num]) if len(_lowercase) == n: return list_nums return [] def lowerCAmelCase_ ( ) -> int: """simple docstring""" return compute_nums(1)[0] if __name__ == "__main__": print(f'{solution() = }')
170
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , **SCREAMING_SNAKE_CASE_ ): super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = {} UpperCamelCase__ = {} UpperCamelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase__ = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: UpperCamelCase__ = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: UpperCamelCase__ = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: UpperCamelCase__ = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase__ = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase__ = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: UpperCamelCase__ = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: UpperCamelCase__ = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: UpperCamelCase__ = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: UpperCamelCase__ = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: UpperCamelCase__ = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: UpperCamelCase__ = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ): return super().__call__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 5_12 / 15_00 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 1 , ): UpperCamelCase__ = load_image(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.image_processor.size["""longest_edge"""] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase__ = self.get_inference_context() with inference_context(): UpperCamelCase__ = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE_ , device=self.device ) UpperCamelCase__ = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) UpperCamelCase__ = image_embeddings UpperCamelCase__ = grid_points.shape[1] UpperCamelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase__ = input_labels[:, i : i + points_per_batch] UpperCamelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.88 , SCREAMING_SNAKE_CASE_=0.95 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , ): UpperCamelCase__ = model_inputs.pop("""input_boxes""" ) UpperCamelCase__ = model_inputs.pop("""is_last""" ) UpperCamelCase__ = model_inputs.pop("""original_sizes""" ).tolist() UpperCamelCase__ = model_inputs.pop("""reshaped_input_sizes""" ).tolist() UpperCamelCase__ = self.model(**SCREAMING_SNAKE_CASE_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase__ = model_outputs["""pred_masks"""] UpperCamelCase__ = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , binarize=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model_outputs["""iou_scores"""] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.7 , ): UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {} if output_rle_mask: UpperCamelCase__ = rle_mask if output_bboxes_mask: UpperCamelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
178
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __magic_name__ ( __a : Any ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __magic_name__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase__ = [1, 2, 3] with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=2 ) with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [1, 2] UpperCamelCase__ = {"""a""": 1, """b""": 2} UpperCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase__ = [2, 3] UpperCamelCase__ = {"""a""": 2, """b""": 3} UpperCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
178
1
'''simple docstring''' from __future__ import annotations import math def _lowercase ( __A ): '''simple docstring''' if num <= 0: __UpperCamelCase = f"{num}: Invalid input, please enter a positive integer." raise ValueError(__A ) __UpperCamelCase = [True] * (num + 1) __UpperCamelCase = [] __UpperCamelCase = 2 __UpperCamelCase = int(math.sqrt(__A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__A ) # Set multiples of start be False for i in range(start * start ,num + 1 ,__A ): if sieve[i] is True: __UpperCamelCase = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(__A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
349
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a__ : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} with open(__A ,"""r""" ) as file: for line_number, line in enumerate(__A ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(__A ,__A ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = """.""".join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if """lm_head""" in full_key else value[0] a__ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase ( __A ,__A ,__A=None ,__A=None ): '''simple docstring''' __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__A )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,__A ) if "weight_g" in name: __UpperCamelCase = """weight_g""" elif "weight_v" in name: __UpperCamelCase = """weight_v""" elif "bias" in name: __UpperCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = """weight""" else: __UpperCamelCase = None if hf_dict is not None: rename_dict(__A ,__A ,__A ,__A ,__A ) else: set_recursively(__A ,__A ,__A ,__A ,__A ) return is_used return is_used def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A ) if not is_used: unused_weights.append(__A ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ): '''simple docstring''' if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(__A ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(__A ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(__A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(__A ,"""vocab.json""" ) if not os.path.isdir(__A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) ) return os.makedirs(__A ,exist_ok=__A ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(__A ,__A ) __UpperCamelCase = WavaVecaCTCTokenizer( __A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,) __UpperCamelCase = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) __UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A ) processor.save_pretrained(__A ) __UpperCamelCase = WavaVecaForCTC(__A ) else: __UpperCamelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase = fairseq.tasks.setup_task(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A ) __UpperCamelCase = model[0].eval() recursively_load_weights(__A ,__A ,not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a__ : Optional[int] = parser.parse_args() a__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a_ : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def a_ ( __snake_case : List[str] , __snake_case : tuple , __snake_case : Path , __snake_case : Any , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def a_ ( __snake_case : str , __snake_case : str , __snake_case : int , __snake_case : bool = False ) -> str: """simple docstring""" lowerCamelCase_ =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase_ ='''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowerCamelCase_ ='''cpu''' lowerCamelCase_ =Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER lowerCamelCase_ =AutoencoderKL.from_pretrained(model_path + '''/vae''' ) lowerCamelCase_ =vae_decoder.config.latent_channels # forward only through the decoder part lowerCamelCase_ =vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": a_ : str = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") a_ : Union[str, Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __lowerCAmelCase : List[str] ={ '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCAmelCase__ : List[str] = False try: lowerCAmelCase__ : str = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class __snake_case : def __init__( self , __UpperCamelCase = None , __UpperCamelCase = [] ) -> int: '''simple docstring''' snake_case__ : List[str] = 0 snake_case__ : List[str] = choices snake_case__ : str = prompt if sys.platform == "win32": snake_case__ : str = '*' else: snake_case__ : Tuple = '➔ ' def __a ( self , __UpperCamelCase , __UpperCamelCase = "" ) -> Optional[int]: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , __UpperCamelCase ) else: forceWrite(self.choices[index] , __UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(__UpperCamelCase ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def __a ( self , __UpperCamelCase , __UpperCamelCase = 1 ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__UpperCamelCase ) move_cursor(__UpperCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def __a ( self ) -> Optional[int]: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def __a ( self ) -> List[Any]: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def __a ( self ) -> List[str]: '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def __a ( self ) -> str: '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__UpperCamelCase )] for number in range(10 )] ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = int(chr(self.current_selection ) ) snake_case__ : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __UpperCamelCase ) else: return else: return def __a ( self , __UpperCamelCase = 0 ) -> str: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) snake_case__ : Optional[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(__UpperCamelCase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: snake_case__ : Union[str, Any] = int(builtins.input() ) except ValueError: snake_case__ : Dict = default_choice else: snake_case__ : List[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(__UpperCamelCase , '\n' ) return choice
143
0
'''simple docstring''' import math def snake_case_ (UpperCamelCase : Union[str, Any] ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ (UpperCamelCase : int = 0.1 ): '''simple docstring''' _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : List[str] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def a ( __a , __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :List[Any] = MobileBertConfig.from_json_file(__a ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase__ :List[str] = MobileBertForPreTraining(__a ) # Load weights from tf checkpoint UpperCamelCase__ :str = load_tf_weights_in_mobilebert(__a , __a , __a ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
97
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' def a ( __a ) -> None: '''simple docstring''' UpperCamelCase__ :List[Any] = tweepy.OAuthHandler(__a , __a ) auth.set_access_token(__a , __a ) UpperCamelCase__ :List[str] = tweepy.API(__a ) # initialize a list to hold all the tweepy Tweets UpperCamelCase__ :Dict = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCamelCase__ :Tuple = api.user_timeline(screen_name=__a , count=200 ) # save most recent tweets alltweets.extend(__a ) # save the id of the oldest tweet less one UpperCamelCase__ :Union[str, Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__a ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCamelCase__ :Union[str, Any] = api.user_timeline( screen_name=__a , count=200 , max_id=__a ) # save most recent tweets alltweets.extend(__a ) # update the id of the oldest tweet less one UpperCamelCase__ :Tuple = alltweets[-1].id - 1 print(f'''...{len(__a )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCamelCase__ :int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: UpperCamelCase__ :Tuple = csv.writer(__a ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
97
1
from __future__ import annotations import math import random from typing import Any class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any]) -> List[Any]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = 0 def __UpperCAmelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" return self.head == self.tail def __UpperCAmelCase ( self : str , lowercase_ : Any) -> Tuple: """simple docstring""" self.data.append(_lowerCAmelCase) _UpperCamelCase = self.tail + 1 def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase = self.data[self.head] _UpperCamelCase = self.head + 1 return ret def __UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" return self.tail - self.head def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" print(self.data) print("**************") print(self.data[self.head : self.tail]) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Any) -> int: """simple docstring""" _UpperCamelCase = data _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 1 def __UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.data def __UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return self.left def __UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" return self.right def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return self.height def __UpperCAmelCase ( self : int , lowercase_ : Any) -> List[Any]: """simple docstring""" _UpperCamelCase = data def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : MyNode | None) -> Optional[int]: """simple docstring""" _UpperCamelCase = node def __UpperCAmelCase ( self : List[Any] , lowercase_ : MyNode | None) -> Optional[int]: """simple docstring""" _UpperCamelCase = node def __UpperCAmelCase ( self : Optional[int] , lowercase_ : int) -> str: """simple docstring""" _UpperCamelCase = height def lowerCAmelCase__ ( a__ ) ->List[str]: '''simple docstring''' if node is None: return 0 return node.get_height() def lowerCAmelCase__ ( a__ , a__ ) ->Optional[Any]: '''simple docstring''' if a > b: return a return b def lowerCAmelCase__ ( a__ ) ->Dict: '''simple docstring''' print("left rotation node:" , node.get_data() ) _UpperCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCAmelCase ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' print("right rotation node:" , node.get_data() ) _UpperCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCAmelCase ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' _UpperCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCAmelCase ) ) return right_rotation(_lowerCAmelCase ) def lowerCAmelCase__ ( a__ ) ->List[Any]: '''simple docstring''' _UpperCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCAmelCase ) ) return left_rotation(_lowerCAmelCase ) def lowerCAmelCase__ ( a__ , a__ ) ->str: '''simple docstring''' if node is None: return MyNode(_lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _UpperCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _UpperCamelCase = right_rotation(_lowerCAmelCase ) else: _UpperCamelCase = lr_rotation(_lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _UpperCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): _UpperCamelCase = rl_rotation(_lowerCAmelCase ) else: _UpperCamelCase = left_rotation(_lowerCAmelCase ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) return node def lowerCAmelCase__ ( a__ ) ->Dict: '''simple docstring''' while True: _UpperCamelCase = root.get_right() if right_child is None: break _UpperCamelCase = right_child return root.get_data() def lowerCAmelCase__ ( a__ ) ->List[Any]: '''simple docstring''' while True: _UpperCamelCase = root.get_left() if left_child is None: break _UpperCamelCase = left_child return root.get_data() def lowerCAmelCase__ ( a__ , a__ ) ->List[Any]: '''simple docstring''' _UpperCamelCase = root.get_left() _UpperCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _UpperCamelCase = get_left_most(_lowerCAmelCase ) root.set_data(_lowerCAmelCase ) root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) elif left_child is not None: _UpperCamelCase = left_child elif right_child is not None: _UpperCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) if get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _UpperCamelCase = left_rotation(_lowerCAmelCase ) else: _UpperCamelCase = rl_rotation(_lowerCAmelCase ) elif get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _UpperCamelCase = right_rotation(_lowerCAmelCase ) else: _UpperCamelCase = lr_rotation(_lowerCAmelCase ) _UpperCamelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCAmelCase ) return root class _UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple) -> str: """simple docstring""" _UpperCamelCase = None def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" return get_height(self.root) def __UpperCAmelCase ( self : List[str] , lowercase_ : Any) -> List[str]: """simple docstring""" print("insert:" + str(_lowerCAmelCase)) _UpperCamelCase = insert_node(self.root , _lowerCAmelCase) def __UpperCAmelCase ( self : List[Any] , lowercase_ : Any) -> int: """simple docstring""" print("delete:" + str(_lowerCAmelCase)) if self.root is None: print("Tree is empty!") return _UpperCamelCase = del_node(self.root , _lowerCAmelCase) def __str__( self : int , ) -> Dict: # a level traversale, gives a more intuitive look on the tree """simple docstring""" _UpperCamelCase = "" _UpperCamelCase = MyQueue() q.push(self.root) _UpperCamelCase = self.get_height() if layer == 0: return output _UpperCamelCase = 0 while not q.is_empty(): _UpperCamelCase = q.pop() _UpperCamelCase = " " * int(math.pow(2 , layer - 1)) output += space if node is None: output += "*" q.push(_lowerCAmelCase) q.push(_lowerCAmelCase) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space _UpperCamelCase = cnt + 1 for i in range(100): if cnt == math.pow(2 , _lowerCAmelCase) - 1: _UpperCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCAmelCase__ ( ) ->str: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCamelCase__ = AVLtree() lowerCamelCase__ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
354
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( a__ , a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = MobileBertConfig.from_json_file(a__ ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCamelCase = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint _UpperCamelCase = load_tf_weights_in_mobilebert(a__ , a__ , a__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
63
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] _UpperCamelCase = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Any = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __lowerCAmelCase : str = int(re.match(r'''.*layer_(\d*).*''' , lowercase__ )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def _lowercase ( lowercase__ ): if dtype == torch.bool: return 1 / 8 __lowerCAmelCase : Dict = re.search(r'''[^\d](\d+)$''' , str(lowercase__ ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) __lowerCAmelCase : Dict = int(bit_search.groups()[0] ) return bit_size // 8 def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Construct model if bloom_config_file == "": __lowerCAmelCase : Tuple = BloomConfig() else: __lowerCAmelCase : List[Any] = BloomConfig.from_json_file(lowercase__ ) if shard_model: __lowerCAmelCase : Union[str, Any] = os.listdir(lowercase__ ) __lowerCAmelCase : Optional[int] = sorted(filter(lambda lowercase__ : s.startswith('''layer''' ) and "model_00" in s , lowercase__ ) ) __lowerCAmelCase : str = {'''weight_map''': {}, '''metadata''': {}} __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : int = None __lowerCAmelCase : List[Any] = BloomConfig() for j, file in enumerate(lowercase__ ): print('''Processing file: {}'''.format(lowercase__ ) ) __lowerCAmelCase : Union[str, Any] = None for i in range(lowercase__ ): # load all TP files __lowerCAmelCase : str = file.replace('''model_00''' , f"""model_0{i}""" ) __lowerCAmelCase : Tuple = torch.load(os.path.join(lowercase__ , lowercase__ ) , map_location='''cpu''' ) # Rename keys in the transformers names __lowerCAmelCase : int = list(temp.keys() ) for key in keys: __lowerCAmelCase : List[str] = temp.pop(lowercase__ ) if tensors is None: __lowerCAmelCase : List[Any] = temp else: for key in tensors.keys(): if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCAmelCase : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCAmelCase : int = torch.cat([tensors[key], temp[key]] , dim=lowercase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCAmelCase : int = tensors[key] / pretraining_tp torch.save( lowercase__ , os.path.join( lowercase__ , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(lowercase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __lowerCAmelCase : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __lowerCAmelCase : int = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(lowercase__ ) ).zfill(5 ) ) __lowerCAmelCase : Optional[int] = BloomConfig() __lowerCAmelCase : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __lowerCAmelCase : int = total_size with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(lowercase__ , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: __lowerCAmelCase : int = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + '''\n''' f.write(lowercase__ ) else: __lowerCAmelCase : Dict = BloomModel(lowercase__ ) __lowerCAmelCase : Optional[Any] = os.listdir(lowercase__ ) __lowerCAmelCase : Dict = sorted(filter(lambda lowercase__ : s.startswith('''layer''' ) and "model_00" in s , lowercase__ ) ) __lowerCAmelCase : Union[str, Any] = None for i, file in enumerate(lowercase__ ): __lowerCAmelCase : List[Any] = None for i in range(lowercase__ ): # load all TP files __lowerCAmelCase : Tuple = file.replace('''model_00''' , f"""model_0{i}""" ) __lowerCAmelCase : str = torch.load(os.path.join(lowercase__ , lowercase__ ) , map_location='''cpu''' ) # Rename keys in the transformers names __lowerCAmelCase : Optional[Any] = list(temp.keys() ) for key in keys: __lowerCAmelCase : List[Any] = temp.pop(lowercase__ ) if tensors is None: __lowerCAmelCase : List[Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCAmelCase : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCAmelCase : List[str] = torch.cat([tensors[key], temp[key]] , dim=lowercase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCAmelCase : List[Any] = tensors[key] / pretraining_tp __lowerCAmelCase : Optional[int] = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: __lowerCAmelCase : Dict = set(other_keys.missing_keys ) else: __lowerCAmelCase : List[Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(lowercase__ , exist_ok=lowercase__ ) __lowerCAmelCase : Any = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __lowerCAmelCase : str = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: __lowerCAmelCase : Union[str, Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , lowercase__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) _UpperCamelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
275
def _lowercase ( lowercase__ , lowercase__ ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowercase ( lowercase__ , lowercase__=0 ): return sorted(lowercase__ , key=lambda lowercase__ : x[column] ) def _lowercase ( lowercase__ , lowercase__ , lowercase__=float('''inf''' ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , lowercase__ ): __lowerCAmelCase : List[str] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowerCAmelCase : Tuple = current_dis return min_dis def _lowercase ( lowercase__ , lowercase__ , lowercase__=float('''inf''' ) ): for i in range(min(6 , points_counts - 1 ) , lowercase__ ): for j in range(max(0 , i - 6 ) , lowercase__ ): __lowerCAmelCase : Union[str, Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowerCAmelCase : int = current_dis return min_dis def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): # base case if points_counts <= 3: return dis_between_closest_pair(lowercase__ , lowercase__ ) # recursion __lowerCAmelCase : Optional[Any] = points_counts // 2 __lowerCAmelCase : Optional[Any] = closest_pair_of_points_sqr( lowercase__ , points_sorted_on_y[:mid] , lowercase__ ) __lowerCAmelCase : str = closest_pair_of_points_sqr( lowercase__ , points_sorted_on_y[mid:] , points_counts - mid ) __lowerCAmelCase : Optional[int] = min(lowercase__ , lowercase__ ) __lowerCAmelCase : Tuple = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowercase__ ) __lowerCAmelCase : List[Any] = dis_between_closest_in_strip( lowercase__ , len(lowercase__ ) , lowercase__ ) return min(lowercase__ , lowercase__ ) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = column_based_sort(lowercase__ , column=0 ) __lowerCAmelCase : Any = column_based_sort(lowercase__ , column=1 ) return ( closest_pair_of_points_sqr( lowercase__ , lowercase__ , lowercase__ ) ) ** 0.5 if __name__ == "__main__": _UpperCamelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
275
1
from __future__ import annotations def lowercase_ ( _lowerCamelCase: Union[str, Any] ) -> Dict: '''simple docstring''' __lowerCamelCase : str = str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set("123456789" ) def lowercase_ ( ) -> Optional[int]: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): __lowerCamelCase : List[str] = 100002 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): __lowerCamelCase : Optional[int] = 1002003 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
354
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( a__ , unittest.TestCase ): snake_case__ = DiTPipeline snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case__ = False def lowerCamelCase__ ( self : Tuple ): torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=UpperCAmelCase , ) __lowerCamelCase : List[str] = AutoencoderKL() __lowerCamelCase : List[Any] = DDIMScheduler() __lowerCamelCase : Optional[Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=0 ): if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : List[str] = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : str = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Dict = "cpu" __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : List[Any] = pipe(**UpperCAmelCase ).images __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCamelCase : Optional[int] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def lowerCamelCase__ ( self : Any ): self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __lowerCamelCase : Tuple = ["vase", "umbrella", "white shark", "white wolf"] __lowerCamelCase : Optional[int] = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Dict = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __lowerCamelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __lowerCamelCase : Union[str, Any] = ["vase", "umbrella"] __lowerCamelCase : int = pipe.get_label_ids(UpperCAmelCase ) __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : Dict = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
64
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
174
'''simple docstring''' from collections.abc import Generator def __magic_name__( ): __lowerCAmelCase , __lowerCAmelCase = 0, 1 while True: __lowerCAmelCase , __lowerCAmelCase = b, a + b yield b def __magic_name__( lowerCamelCase = 1_0_0_0): __lowerCAmelCase = 1 __lowerCAmelCase = fibonacci_generator() while len(str(next(lowerCamelCase))) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
174
1
"""simple docstring""" import math def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__SCREAMING_SNAKE_CASE ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase_ ( *snake_case_ ): with open(snake_case_,"""r""" ) as fh: fcntl.flock(snake_case_,fcntl.LOCK_EX ) try: print(*snake_case_ ) finally: fcntl.flock(snake_case_,fcntl.LOCK_UN ) _snake_case = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) _snake_case = torch.device("cuda", local_rank) _snake_case = socket.gethostname() _snake_case = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _snake_case = dist.get_rank() _snake_case = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
26
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[str]: SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 1_28 elif "12-12" in model_name: SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE = 14 SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 16 else: raise ValueError('Model not supported' ) SCREAMING_SNAKE_CASE = 'huggingface/label-files' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = 35 SCREAMING_SNAKE_CASE = 'speech-commands-v2-id2label.json' else: SCREAMING_SNAKE_CASE = 5_27 SCREAMING_SNAKE_CASE = 'audioset-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if "module.v" in name: SCREAMING_SNAKE_CASE = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: SCREAMING_SNAKE_CASE = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: SCREAMING_SNAKE_CASE = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: SCREAMING_SNAKE_CASE = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> Optional[int]: SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict SCREAMING_SNAKE_CASE = model_name_to_url[model_name] SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model SCREAMING_SNAKE_CASE = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE = -4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 SCREAMING_SNAKE_CASE = 4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 SCREAMING_SNAKE_CASE = 10_24 if 'speech-commands' not in model_name else 1_28 SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE = load_dataset('speech_commands' , 'v0.02' , split='validation' ) SCREAMING_SNAKE_CASE = dataset[0]['audio']['array'] else: SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
113
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _UpperCamelCase = datasets.utils.logging.get_logger(__name__) _UpperCamelCase = ["""names""", """prefix"""] _UpperCamelCase = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] _UpperCamelCase = ["""encoding_errors""", """on_bad_lines"""] _UpperCamelCase = ["""date_format"""] @dataclass class lowerCamelCase__ ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE = "," SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "infer" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "." SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = '"' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 10_000 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "strict" SCREAMING_SNAKE_CASE = "error" SCREAMING_SNAKE_CASE = None def _UpperCamelCase ( self ): if self.delimiter is not None: UpperCAmelCase = self.delimiter if self.column_names is not None: UpperCAmelCase = self.column_names @property def _UpperCamelCase ( self ): UpperCAmelCase = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,A ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase__ ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE = CsvConfig def _UpperCamelCase ( self ): return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self ,A ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A ,(str, list, tuple) ): UpperCAmelCase = data_files if isinstance(A ,A ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"""files""": files} )] UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(A ,A ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A ,gen_kwargs={"""files""": files} ) ) return splits def _UpperCamelCase ( self ,A ): if self.config.features is not None: UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(A ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=A ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase = table_cast(A ,A ) return pa_table def _UpperCamelCase ( self ,A ): UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A ) ): UpperCAmelCase = pd.read_csv(A ,iterator=A ,dtype=A ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(A ): UpperCAmelCase = pa.Table.from_pandas(A ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(A )}: {e}''' ) raise
234
"""simple docstring""" _UpperCamelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCAmelCase = year // 100 UpperCAmelCase = (5 * (century % 4) + 2) % 7 UpperCAmelCase = year % 100 UpperCAmelCase = centurian % 12 UpperCAmelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
234
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCamelCase__: int = int(input("Enter number: ").strip()) print(F"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
23
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
0
from manim import * class A_ ( SCREAMING_SNAKE_CASE ): def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Tuple = Rectangle(height=0.5 ,width=0.5) __lowerCamelCase : str = Rectangle(height=0.46 ,width=0.46).set_stroke(width=0) __lowerCamelCase : Optional[int] = [mem.copy() for i in range(6)] __lowerCamelCase : List[Any] = [mem.copy() for i in range(6)] __lowerCamelCase : Tuple = VGroup(*lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0) __lowerCamelCase : Tuple = VGroup(*lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0) __lowerCamelCase : Optional[int] = VGroup(lowerCamelCase_ ,lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0) __lowerCamelCase : Optional[Any] = Text('CPU' ,font_size=2_4) __lowerCamelCase : List[Any] = Group(lowerCamelCase_ ,lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowerCamelCase_) __lowerCamelCase : Tuple = [mem.copy() for i in range(4)] __lowerCamelCase : str = VGroup(*lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0) __lowerCamelCase : Optional[Any] = Text('GPU' ,font_size=2_4) __lowerCamelCase : int = Group(lowerCamelCase_ ,lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_) gpu.move_to([-1, -1, 0]) self.add(lowerCamelCase_) __lowerCamelCase : str = [mem.copy() for i in range(6)] __lowerCamelCase : Optional[int] = VGroup(*lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0) __lowerCamelCase : Any = Text('Model' ,font_size=2_4) __lowerCamelCase : Any = Group(lowerCamelCase_ ,lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_) model.move_to([3, -1.0, 0]) self.add(lowerCamelCase_) __lowerCamelCase : Dict = [] for i, rect in enumerate(lowerCamelCase_): rect.set_stroke(lowerCamelCase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __lowerCamelCase : int = Rectangle(height=0.46 / 4 ,width=0.46 / 3).set_stroke(width=0.0).set_fill(lowerCamelCase_ ,opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) ,buff=0.02 ,direction=lowerCamelCase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] ,direction=lowerCamelCase_ ,buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] ,direction=lowerCamelCase_ ,buff=0.0) self.add(lowerCamelCase_) cpu_targs.append(lowerCamelCase_) __lowerCamelCase : Optional[Any] = [mem.copy() for i in range(6)] __lowerCamelCase : str = VGroup(*lowerCamelCase_).arrange(lowerCamelCase_ ,buff=0) __lowerCamelCase : Tuple = Text('Loaded Checkpoint' ,font_size=2_4) __lowerCamelCase : Any = Group(lowerCamelCase_ ,lowerCamelCase_).arrange(lowerCamelCase_ ,aligned_edge=lowerCamelCase_ ,buff=0.4) checkpoint.move_to([3, 0.5, 0]) __lowerCamelCase : Optional[int] = Square(side_length=2.2) key.move_to([-5, 2, 0]) __lowerCamelCase : List[str] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0]) self.add(lowerCamelCase_ ,lowerCamelCase_) __lowerCamelCase : str = MarkupText( F"<span fgcolor=\'{BLUE}\'>●</span> Checkpoint" ,font_size=1_8 ,) blue_text.next_to(lowerCamelCase_ ,DOWN * 2.4 ,aligned_edge=key_text.get_left()) __lowerCamelCase : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." ,font_size=2_4 ,) step_a.move_to([2, 2, 0]) self.play(Write(lowerCamelCase_) ,Write(lowerCamelCase_)) self.play(Write(lowerCamelCase_ ,run_time=1) ,Create(lowerCamelCase_ ,run_time=1)) __lowerCamelCase : List[Any] = [] __lowerCamelCase : str = [] for i, rect in enumerate(lowerCamelCase_): __lowerCamelCase : str = fill.copy().set_fill(lowerCamelCase_ ,opacity=0.7) target.move_to(lowerCamelCase_) first_animations.append(GrowFromCenter(lowerCamelCase_ ,run_time=1)) __lowerCamelCase : Union[str, Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowerCamelCase_ ,run_time=1.5)) self.play(*lowerCamelCase_) self.play(*lowerCamelCase_) self.wait()
361
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py a ="""src/transformers""" a ="""docs/source/en""" a =""".""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: with open(lowerCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Any = f.readlines() # Find the start prompt. __lowerCamelCase : List[str] = 0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 __lowerCamelCase : int = start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | a ="""Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. a =re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") a =re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a =re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. a =direct_transformers_import(TRANSFORMERS_PATH) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: __lowerCamelCase : int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCamelCase__ ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : int = 2 if text == '✅' or text == '❌' else len(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = (width - text_length) // 2 __lowerCamelCase : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def SCREAMING_SNAKE_CASE__ ( ) -> str: __lowerCamelCase : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowerCamelCase : List[str] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __lowerCamelCase : Dict = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : List[str] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase__ ): __lowerCamelCase : List[Any] = None if attr_name.endswith('Tokenizer' ): __lowerCamelCase : Dict = slow_tokenizers __lowerCamelCase : List[Any] = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __lowerCamelCase : Union[str, Any] = fast_tokenizers __lowerCamelCase : str = attr_name[:-1_3] elif _re_tf_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[str] = tf_models __lowerCamelCase : Optional[int] = _re_tf_models.match(lowerCamelCase__ ).groups()[0] elif _re_flax_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[Any] = flax_models __lowerCamelCase : Optional[Any] = _re_flax_models.match(lowerCamelCase__ ).groups()[0] elif _re_pt_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : Optional[int] = pt_models __lowerCamelCase : Any = _re_pt_models.match(lowerCamelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __lowerCamelCase : List[Any] = True break # Try again after removing the last word in the name __lowerCamelCase : str = ''.join(camel_case_split(lowerCamelCase__ )[:-1] ) # Let's build that table! __lowerCamelCase : str = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __lowerCamelCase : Union[str, Any] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __lowerCamelCase : List[Any] = [len(lowerCamelCase__ ) + 2 for c in columns] __lowerCamelCase : int = max([len(lowerCamelCase__ ) for name in model_names] ) + 2 # Build the table per se __lowerCamelCase : Union[str, Any] = '|' + '|'.join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for c, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __lowerCamelCase : List[str] = {True: '✅', False: '❌'} for name in model_names: __lowerCamelCase : Optional[int] = model_name_to_prefix[name] __lowerCamelCase : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for l, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + "|\n" return table def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=False ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = _find_text_in_file( filename=os.path.join(lowerCamelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __lowerCamelCase : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a =parser.parse_args() check_model_table(args.fix_and_overwrite)
113
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): lowerCAmelCase__ = "segformer.encoder." + key if key.startswith("backbone" ): lowerCAmelCase__ = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase__ = key[key.find("patch_embed" ) + len("patch_embed" )] lowerCAmelCase__ = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(UpperCamelCase_ )-1}" ) if "norm" in key: lowerCAmelCase__ = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase__ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] lowerCAmelCase__ = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(UpperCamelCase_ )-1}" ) if "layer_norm1" in key: lowerCAmelCase__ = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: lowerCAmelCase__ = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase__ = key[key.find("block" ) + len("block" )] lowerCAmelCase__ = key.replace(F"block{idx}" , F"block.{int(UpperCamelCase_ )-1}" ) if "attn.q" in key: lowerCAmelCase__ = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: lowerCAmelCase__ = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: lowerCAmelCase__ = key.replace("attn" , "attention.self" ) if "fc1" in key: lowerCAmelCase__ = key.replace("fc1" , "dense1" ) if "fc2" in key: lowerCAmelCase__ = key.replace("fc2" , "dense2" ) if "linear_pred" in key: lowerCAmelCase__ = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: lowerCAmelCase__ = key.replace("linear_fuse.conv" , "linear_fuse" ) lowerCAmelCase__ = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase__ = key[key.find("linear_c" ) + len("linear_c" )] lowerCAmelCase__ = key.replace(F"linear_c{idx}" , F"linear_c.{int(UpperCamelCase_ )-1}" ) if key.startswith("head" ): lowerCAmelCase__ = key.replace("head" , "classifier" ) lowerCAmelCase__ = value return new_state_dict def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase__ = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) lowerCAmelCase__ = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict lowerCAmelCase__ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase__ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase__ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase__ = kv_bias[ config.hidden_sizes[i] : ] def _a ( ) -> Dict: """simple docstring""" lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return image @torch.no_grad() def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" lowerCAmelCase__ = SegformerConfig() lowerCAmelCase__ = False # set attributes based on model_name lowerCAmelCase__ = "huggingface/label-files" if "segformer" in model_name: lowerCAmelCase__ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: lowerCAmelCase__ = 150 lowerCAmelCase__ = "ade20k-id2label.json" lowerCAmelCase__ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase__ = 19 lowerCAmelCase__ = "cityscapes-id2label.json" lowerCAmelCase__ = (1, 19, 128, 128) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: lowerCAmelCase__ = True lowerCAmelCase__ = model_name[4:6] lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = (1, 1_000) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 256 elif size == "b2": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) # prepare image lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=torch.device("cpu" ) ) else: lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=torch.device("cpu" ) )["state_dict"] # rename keys lowerCAmelCase__ = rename_keys(UpperCamelCase_ , encoder_only=UpperCamelCase_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase_ , UpperCamelCase_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase__ = False lowerCAmelCase__ = SegformerForImageClassification(UpperCamelCase_ ) else: lowerCAmelCase__ = SegformerForSemanticSegmentation(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # forward pass lowerCAmelCase__ = model(UpperCamelCase_ ) lowerCAmelCase__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase__ = torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase__ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) a_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = CpmAntTokenizer _UpperCAmelCase : Any = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): super().setUp() SCREAMING_SNAKE_CASE_: List[str] = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] SCREAMING_SNAKE_CASE_: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) @tooslow def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") SCREAMING_SNAKE_CASE_: Union[str, Any] = "今天天气真好!" SCREAMING_SNAKE_CASE_: Optional[Any] = ["今天", "天气", "真", "好", "!"] SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) SCREAMING_SNAKE_CASE_: Optional[Any] = "今天天气真好!" SCREAMING_SNAKE_CASE_: List[Any] = [tokenizer.bos_token] + tokens SCREAMING_SNAKE_CASE_: Dict = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__) , a__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.decode(a__) self.assertEqual(a__ , a__)
364
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = ['''pixel_values'''] def __init__( self : List[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Tuple , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = size if size is not None else {"height": 384, "width": 384} SCREAMING_SNAKE_CASE_: Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = do_resize SCREAMING_SNAKE_CASE_: Dict = size SCREAMING_SNAKE_CASE_: int = resample SCREAMING_SNAKE_CASE_: str = do_rescale SCREAMING_SNAKE_CASE_: str = rescale_factor SCREAMING_SNAKE_CASE_: Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_: Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_: List[str] = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") SCREAMING_SNAKE_CASE_: int = (size["height"], size["width"]) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Optional[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_: str = size if size is not None else self.size SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_: List[Any] = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: List[Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: List[str] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: str = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: List[str] = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase__) return encoded_outputs
127
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : str = {"vocab_file": "sentencepiece.bpe.model"} lowerCamelCase : int = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } lowerCamelCase : str = { "camembert-base": 5_1_2, } lowerCamelCase : List[Any] = "▁" class A__ ( A__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , _a : str , _a : Optional[int]="<s>" , _a : Any="</s>" , _a : Tuple="</s>" , _a : Tuple="<s>" , _a : str="<unk>" , _a : Optional[Any]="<pad>" , _a : Optional[Any]="<mask>" , _a : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , _a : Optional[Dict[str, Any]] = None , **_a : List[str] , ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _SCREAMING_SNAKE_CASE =vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _SCREAMING_SNAKE_CASE ={'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} _SCREAMING_SNAKE_CASE =len(self.fairseq_tokens_to_ids ) _SCREAMING_SNAKE_CASE =len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _SCREAMING_SNAKE_CASE ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] _SCREAMING_SNAKE_CASE =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : Optional[Any] , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def A ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def A ( self : Tuple ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[int] , _a : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_a , out_type=_a ) def A ( self : Optional[int] , _a : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_a ) def A ( self : Tuple , _a : Any ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : List[Any] , _a : List[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =[] else: current_sub_tokens.append(_a ) _SCREAMING_SNAKE_CASE =False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self : str ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.__dict__.copy() _SCREAMING_SNAKE_CASE =None return state def __setstate__( self : Union[str, Any] , _a : Optional[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Any , _a : str , _a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE =os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , 'wb' ) as fi: _SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
47
from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
"""simple docstring""" def _lowercase ( __snake_case = 10 ,__snake_case = 1_000 ,__snake_case = True ) -> int: assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def _lowercase ( __snake_case ,__snake_case ) -> int: return int((number_a + number_a) / 2 ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> None: assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(__snake_case ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) __lowerCAmelCase : List[Any] = lower __lowerCAmelCase : List[Any] = higher __lowerCAmelCase : int = [] while True: __lowerCAmelCase : Optional[int] = get_avg(__snake_case ,__snake_case ) last_numbers.append(__snake_case ) if answer(__snake_case ) == "low": __lowerCAmelCase : int = number elif answer(__snake_case ) == "high": __lowerCAmelCase : Optional[int] = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def _lowercase ( ) -> None: __lowerCAmelCase : Tuple = int(input("Enter lower value : " ).strip() ) __lowerCAmelCase : Dict = int(input("Enter high value : " ).strip() ) __lowerCAmelCase : Tuple = int(input("Enter value to guess : " ).strip() ) guess_the_number(__snake_case ,__snake_case ,__snake_case ) if __name__ == "__main__": main()
58
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_SCREAMING_SNAKE_CASE).to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small") __lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = tokenizer("Hi I am" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = model(input_ids.to(_SCREAMING_SNAKE_CASE) , labels=labels.to(_SCREAMING_SNAKE_CASE)).loss __lowerCAmelCase : Optional[int] = -(labels.shape[-1] * loss.item()) __lowerCAmelCase : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
58
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __SCREAMING_SNAKE_CASE : Tuple = DetaConfig( backbone_config=lowercase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowercase__ , with_box_refine=lowercase__ , two_stage=lowercase__ , ) # set labels __SCREAMING_SNAKE_CASE : Tuple = '''huggingface/label-files''' if "o365" in model_name: __SCREAMING_SNAKE_CASE : Dict = 366 __SCREAMING_SNAKE_CASE : Any = '''object365-id2label.json''' else: __SCREAMING_SNAKE_CASE : List[str] = 91 __SCREAMING_SNAKE_CASE : List[Any] = '''coco-detection-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='''dataset''' ) ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Dict = {int(lowercase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[Any] = idalabel __SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = val def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Any = in_proj_weight[:dim, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[: dim] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = in_proj_bias[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ -dim :, : ] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( lowercase__ , lowercase__ ): # transformer decoder self-attention layers __SCREAMING_SNAKE_CASE : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Any = in_proj_weight[:hidden_size, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[:hidden_size] __SCREAMING_SNAKE_CASE : str = in_proj_weight[ hidden_size : hidden_size * 2, : ] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : int = in_proj_weight[-hidden_size:, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-hidden_size:] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = get_deta_config(lowercase__ ) # load original state dict if model_name == "deta-swin-large": __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __SCREAMING_SNAKE_CASE : Optional[Any] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) __SCREAMING_SNAKE_CASE : Dict = torch.load(lowercase__ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(lowercase__ , param.shape ) # rename keys __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_swin_q_k_v(lowercase__ , config.backbone_config ) read_in_decoder_q_k_v(lowercase__ , lowercase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = val if "input_proj" in key: __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : str = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = val # finally, create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE : List[str] = DetaForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(lowercase__ ) # load image processor __SCREAMING_SNAKE_CASE : Union[str, Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __SCREAMING_SNAKE_CASE : Tuple = prepare_img() __SCREAMING_SNAKE_CASE : Optional[Any] = processor(images=lowercase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[int] = encoding['''pixel_values'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = model(pixel_values.to(lowercase__ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __SCREAMING_SNAKE_CASE : str = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowercase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowercase__ ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : List[str] =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase : List[str] = ["text", "image", "audio"] def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): inputs.append(create_inputs(__SCREAMING_SNAKE_CASE ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def snake_case_ ( __SCREAMING_SNAKE_CASE : List ): """simple docstring""" lowercase_ : Optional[Any] = [] for output in outputs: if isinstance(__SCREAMING_SNAKE_CASE , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(__SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(__SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCAmelCase__ : def _snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , __SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = create_inputs(self.tool.inputs ) lowercase_ : Tuple = self.tool(*__SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Any = [outputs] self.assertListEqual(output_types(__SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def _snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = create_inputs(self.tool.inputs ) lowercase_ : int = self.tool(*__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = [outputs] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(__SCREAMING_SNAKE_CASE , self.tool.outputs ): lowercase_ : Optional[int] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : int = [] for _input, input_type in zip(__SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Optional[Any] = self.tool(*__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = [outputs] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
93
0
from __future__ import annotations from PIL import Image # Define glider example snake_case_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> Dict: __snake_case = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): __snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE_ ) return next_generation def lowerCamelCase__ ( snake_case_ : list[list[int]] , snake_case_ : int ) -> Dict: __snake_case = [] for _ in range(SCREAMING_SNAKE_CASE_ ): # Create output image __snake_case = Image.new('''RGB''' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE_ )) ) __snake_case = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE_ ) ): for y in range(len(cells[0] ) ): __snake_case = 255 - cells[y][x] * 255 __snake_case = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE_ ) __snake_case = new_generation(SCREAMING_SNAKE_CASE_ ) return images if __name__ == "__main__": snake_case_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
364
from __future__ import annotations import collections import pprint from pathlib import Path def lowerCamelCase__ ( snake_case_ : str ) -> str: return "".join(sorted(snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : str ) -> list[str]: return word_by_signature[signature(snake_case_ )] snake_case_ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') snake_case_ = sorted({word.strip().lower() for word in data.splitlines()}) snake_case_ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case_ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
238
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase_ : UpperCAmelCase__ : List[str] = LEDConfig UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Any = "gelu" def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=20, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=4, ) -> Optional[Any]: UpperCamelCase : Optional[Any] = parent UpperCamelCase : Union[str, Any] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : List[Any] = is_training UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : List[str] = intermediate_size UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : List[Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Any = eos_token_id UpperCamelCase : Tuple = pad_token_id UpperCamelCase : Union[str, Any] = bos_token_id UpperCamelCase : Dict = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCamelCase : int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCamelCase : Optional[int] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) UpperCamelCase : Any = tf.concat([input_ids, eos_tensor], axis=1 ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Dict = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, attention_window=self.attention_window, **self.config_updates, ) UpperCamelCase : Any = prepare_led_inputs_dict(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(SCREAMING_SNAKE_CASE_ )[:, :-1], tf.ones_like(SCREAMING_SNAKE_CASE_ )[:, -1:]], axis=-1, ) UpperCamelCase : Optional[Any] = global_attention_mask return config, inputs_dict def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : str = TFLEDModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder() UpperCamelCase : Any = inputs_dict['input_ids'] UpperCamelCase : List[Any] = input_ids[:1, :] UpperCamelCase : Any = inputs_dict['attention_mask'][:1, :] UpperCamelCase : str = 1 # first forward pass UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase : List[str] = ids_tensor((self.batch_size, 3), config.vocab_size ) UpperCamelCase : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and UpperCamelCase : Tuple = tf.concat([input_ids, next_tokens], axis=-1 ) UpperCamelCase : str = tf.concat([attention_mask, next_attn_mask], axis=-1 ) UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice UpperCamelCase : Dict = int(ids_tensor((1,), output_from_past.shape[-1] ) ) UpperCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, rtol=1e-3 ) def UpperCamelCase ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Tuple=None , ) -> Dict: if attention_mask is None: UpperCamelCase : Union[str, Any] = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase__ : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ : Any = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Union[str, Any] = False def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = TFLEDModelTester(self ) UpperCamelCase : Dict = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Tuple: UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[str] = tf.zeros_like(inputs_dict['attention_mask'] ) UpperCamelCase : List[str] = 2 UpperCamelCase : List[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices, 1, inputs_dict['global_attention_mask'], ) UpperCamelCase : List[str] = True UpperCamelCase : List[str] = self.model_tester.seq_length UpperCamelCase : int = self.model_tester.encoder_seq_length def check_decoder_attentions_output(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_length, seq_length], ) def check_encoder_attentions_output(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = [t.numpy() for t in outputs.encoder_attentions] UpperCamelCase : Dict = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), self.model_tester.num_hidden_layers ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_length, seq_length], ) self.assertListEqual( list(global_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices], ) for model_class in self.all_model_classes: UpperCamelCase : List[str] = True UpperCamelCase : Dict = False UpperCamelCase : Optional[int] = False UpperCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Any = len(SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.output_hidden_states, SCREAMING_SNAKE_CASE_ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE_ ) if self.is_encoder_decoder: UpperCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(config.output_hidden_states, SCREAMING_SNAKE_CASE_ ) check_decoder_attentions_output(SCREAMING_SNAKE_CASE_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase : Tuple = True UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = model(self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(config.output_hidden_states, SCREAMING_SNAKE_CASE_ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine UpperCamelCase : List[Any] = True UpperCamelCase : List[Any] = True UpperCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = model(self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(model.config.output_hidden_states, SCREAMING_SNAKE_CASE_ ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE_ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def snake_case_ ( self ) -> Optional[Any]: pass def snake_case_ ( self ) -> Optional[int]: # TODO: Head-masking not yet implement pass def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Optional[int]: return tf.constant(snake_case__ , dtype=tf.intaa ) __UpperCAmelCase = 1e-4 @slow @require_tf class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> str: UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here UpperCamelCase : List[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) UpperCamelCase : Optional[Any] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) UpperCamelCase : str = prepare_led_inputs_dict(model.config, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : int = (1, 1024, 768) self.assertEqual(output.shape, SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]], ) tf.debugging.assert_near(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-3 ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) UpperCamelCase : Dict = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) UpperCamelCase : Optional[int] = prepare_led_inputs_dict(model.config, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Any = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape, SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase : Optional[Any] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]], ) tf.debugging.assert_near(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-3, rtol=1e-3 )
119
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Any=0.999 , snake_case__ : List[Any]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCamelCase : List[Any] = [] for i in range(snake_case__ ): UpperCamelCase : Optional[Any] = i / num_diffusion_timesteps UpperCamelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[Any] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : List[str] = 2 @register_to_config def __init__( self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = 0.0_00_85, SCREAMING_SNAKE_CASE_ = 0.0_12, SCREAMING_SNAKE_CASE_ = "linear", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "linspace", SCREAMING_SNAKE_CASE_ = 0, ) -> List[str]: if trained_betas is not None: UpperCamelCase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase : int = ( torch.linspace(beta_start**0.5, beta_end**0.5, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCamelCase : Optional[int] = 1.0 - self.betas UpperCamelCase : int = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> str: if schedule_timesteps is None: UpperCamelCase : Union[str, Any] = self.timesteps UpperCamelCase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase : Optional[int] = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: UpperCamelCase : str = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep UpperCamelCase : int = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: UpperCamelCase : Optional[int] = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) if self.state_in_first_order: UpperCamelCase : Dict = self.sigmas[step_index] else: UpperCamelCase : int = self.sigmas_interpol[step_index] UpperCamelCase : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> Optional[int]: UpperCamelCase : Dict = num_inference_steps UpperCamelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase : int = np.linspace(0, num_train_timesteps - 1, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Optional[Any] = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Any = (np.arange(SCREAMING_SNAKE_CASE_, 0, -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCamelCase : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = np.interp(SCREAMING_SNAKE_CASE_, np.arange(0, len(SCREAMING_SNAKE_CASE_ ) ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) # interpolate sigmas UpperCamelCase : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() UpperCamelCase : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): # mps does not support float64 UpperCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) else: UpperCamelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) # interpolate timesteps UpperCamelCase : int = self.sigma_to_t(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=timesteps.dtype ) UpperCamelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() UpperCamelCase : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase : Dict = defaultdict(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # get log sigma UpperCamelCase : List[Any] = sigma.log() # get distribution UpperCamelCase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase : Tuple = low_idx + 1 UpperCamelCase : List[str] = self.log_sigmas[low_idx] UpperCamelCase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase : int = (low - log_sigma) / (low - high) UpperCamelCase : Tuple = w.clamp(0, 1 ) # transform interpolation to time range UpperCamelCase : List[str] = (1 - w) * low_idx + w * high_idx UpperCamelCase : Dict = t.view(sigma.shape ) return t @property def snake_case_ ( self ) -> Optional[int]: return self.sample is None def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, ) -> Union[SchedulerOutput, Tuple]: UpperCamelCase : str = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 UpperCamelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase : Tuple = self.sigmas[step_index] UpperCamelCase : Dict = self.sigmas_interpol[step_index + 1] UpperCamelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase : str = self.sigmas[step_index - 1] UpperCamelCase : Dict = self.sigmas_interpol[step_index] UpperCamelCase : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase : Dict = 0 UpperCamelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase : Any = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase : Any = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase : Dict = sigma_next - sigma_hat UpperCamelCase : Any = self.sample UpperCamelCase : str = None UpperCamelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase : Optional[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 UpperCamelCase : List[str] = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase : str = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase : Dict = self.timesteps.to(original_samples.device ) UpperCamelCase : int = timesteps.to(original_samples.device ) UpperCamelCase : str = [self.index_for_timestep(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for t in timesteps] UpperCamelCase : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase : int = sigma.unsqueeze(-1 ) UpperCamelCase : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
119
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase__ ( __snake_case : str , __snake_case : str , __snake_case : Tuple=None , __snake_case : Any=None , __snake_case : Dict=None , __snake_case : str=None , __snake_case : Optional[Any]=None , __snake_case : str=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase_ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase_ : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase_ : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=9_9 , _UpperCamelCase=1_6 , _UpperCamelCase=2 , _UpperCamelCase=4 , _UpperCamelCase=4 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=3_2 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=0.02 , ) -> Dict: UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Tuple = eos_token_id UpperCAmelCase_ : Any = pad_token_id UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Any = initializer_range def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ : Optional[Any] = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) UpperCAmelCase_ : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , ) UpperCAmelCase_ : Optional[Any] = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = 2_0 UpperCAmelCase_ : int = model_class_name(lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = model.encode(inputs_dict['input_ids'] ) UpperCAmelCase_ , UpperCAmelCase_ : str = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCAmelCase_ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCAmelCase_ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) UpperCAmelCase_ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCAmelCase_ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = 2_0 UpperCAmelCase_ : Any = model_class_name(lowerCAmelCase__ ) UpperCAmelCase_ : int = model.encode(inputs_dict['input_ids'] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCAmelCase_ : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : int = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCAmelCase_ : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) UpperCAmelCase_ : Optional[Any] = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) UpperCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : List[Any] = 9_9 def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : Dict = input_ids.shape[0] UpperCAmelCase_ : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._get_config_and_data() UpperCAmelCase_ : Optional[int] = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) UpperCAmelCase_ : Dict = lm_model(input_ids=lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCAmelCase__ ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) UpperCAmelCase_ : str = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ : List[Any] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ : int = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCAmelCase__ ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[str] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) UpperCAmelCase_ : List[Any] = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) UpperCAmelCase_ : Union[str, Any] = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ : Tuple = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase (lowerCamelCase_ , unittest.TestCase , lowerCamelCase_ ): '''simple docstring''' _snake_case : Optional[Any] = True _snake_case : List[Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _snake_case : Union[str, Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Dict = FlaxBlenderbotModelTester(self ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : Any = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(_UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('JIT Enabled' ): UpperCAmelCase_ : List[str] = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase_ : Optional[int] = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = model_class(lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) UpperCAmelCase_ : Dict = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('JIT Enabled' ): UpperCAmelCase_ : List[str] = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase_ : str = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCAmelCase ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ : str = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : int = {'num_beams': 1, 'early_stopping': True, 'min_length': 1_5, 'max_length': 2_5} UpperCAmelCase_ : str = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} UpperCAmelCase_ : List[Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=lowerCAmelCase__ ) UpperCAmelCase_ : Tuple = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) UpperCAmelCase_ : List[str] = ['Sam'] UpperCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ , return_tensors='jax' ) UpperCAmelCase_ : Tuple = model.generate(**lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase_ : List[Any] = 'Sam is a great name. It means "sun" in Gaelic.' UpperCAmelCase_ : str = tokenizer.batch_decode(lowerCAmelCase__ , **lowerCAmelCase__ ) assert generated_txt[0].strip() == tgt_text
366
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Tuple = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 0, 0, 0 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 2 UpperCAmelCase_ : Tuple = ugly_nums[ia] * 3 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 5 for _ in range(1 , __snake_case ): UpperCAmelCase_ : Tuple = min(__snake_case , __snake_case , __snake_case ) ugly_nums.append(__snake_case ) if next_num == next_a: ia += 1 UpperCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ : List[str] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'{ugly_numbers(200) = }')
145
0
def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 0 ) -> list: '''simple docstring''' A__ = length or len(SCREAMING_SNAKE_CASE__ ) A__ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A__ , A__ = list_data[i + 1], list_data[i] A__ = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
7
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = "mobilenet_v2" def __init__( self , __A=3 , __A=224 , __A=1.0 , __A=8 , __A=8 , __A=6 , __A=32 , __A=True , __A=True , __A="relu6" , __A=True , __A=0.8 , __A=0.02 , __A=0.001 , __A=255 , **__A , ): """simple docstring""" super().__init__(**__A ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCamelCase : str = num_channels lowerCamelCase : Any = image_size lowerCamelCase : Union[str, Any] = depth_multiplier lowerCamelCase : Tuple = depth_divisible_by lowerCamelCase : Dict = min_depth lowerCamelCase : Dict = expand_ratio lowerCamelCase : Optional[Any] = output_stride lowerCamelCase : int = first_layer_is_expansion lowerCamelCase : Union[str, Any] = finegrained_output lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Optional[Any] = tf_padding lowerCamelCase : Optional[Any] = classifier_dropout_prob lowerCamelCase : Dict = initializer_range lowerCamelCase : str = layer_norm_eps lowerCamelCase : Optional[Any] = semantic_loss_ignore_index class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = version.parse("1.11" ) @property def _snake_case ( self ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _snake_case ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _snake_case ( self ): """simple docstring""" return 1e-4
283
0
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
356
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A , A ) def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> List[Any]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> Optional[int]: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A ) def __A ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = self.get_image_processor() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""np""" ) lowerCamelCase = processor(images=A , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = processor(text=A ) lowerCamelCase = tokenizer(A , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase = processor.batch_decode(A ) lowerCamelCase = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
0
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a : List[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a : Optional[int] = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ a : str = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def __lowerCamelCase ( _lowercase ) -> str: def remove_articles(_lowercase ): UpperCAmelCase : Tuple = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(_lowerCAmelCase , """ """ , _lowerCAmelCase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): UpperCAmelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Tuple = [any(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_0_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = Counter(_lowerCAmelCase ) UpperCAmelCase : List[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase : Tuple = scount * numref UpperCAmelCase : Union[str, Any] = Counter(_lowerCAmelCase ) UpperCAmelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase : Dict = ccount * numref # KEEP UpperCAmelCase : List[Any] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase : Union[str, Any] = keepgramcounter_rep & rgramcounter UpperCAmelCase : Dict = sgramcounter_rep & rgramcounter UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase : Any = 1 UpperCAmelCase : Any = 1 if len(_lowerCAmelCase ) > 0: UpperCAmelCase : Dict = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase : Union[str, Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase : Any = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase : Any = sgramcounter_rep - cgramcounter_rep UpperCAmelCase : str = delgramcounter_rep - rgramcounter UpperCAmelCase : Any = sgramcounter_rep - rgramcounter UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase : Dict = 1 if len(_lowerCAmelCase ) > 0: UpperCAmelCase : str = deltmpscorea / len(_lowerCAmelCase ) # ADDITION UpperCAmelCase : List[str] = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCAmelCase : List[str] = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) UpperCAmelCase : Dict = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase : Tuple = 1 UpperCAmelCase : Tuple = 1 if len(_lowerCAmelCase ) > 0: UpperCAmelCase : Dict = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase : Tuple = addtmpscore / len(_lowerCAmelCase ) UpperCAmelCase : List[str] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : int = len(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = ssent.split(""" """ ) UpperCAmelCase : Dict = csent.split(""" """ ) UpperCAmelCase : str = [] UpperCAmelCase : Any = [] UpperCAmelCase : Any = [] UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : str = [] UpperCAmelCase : str = [] UpperCAmelCase : Dict = [] UpperCAmelCase : int = [] UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Tuple = [] for rsent in rsents: UpperCAmelCase : List[Any] = rsent.split(""" """ ) UpperCAmelCase : List[str] = [] UpperCAmelCase : int = [] UpperCAmelCase : Tuple = [] ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCAmelCase : Dict = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCAmelCase : Dict = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCAmelCase : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCAmelCase : Union[str, Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCAmelCase : List[str] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCAmelCase : Optional[int] = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0 , len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: UpperCAmelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: UpperCAmelCase : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: UpperCAmelCase : Union[str, Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) (UpperCAmelCase) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) (UpperCAmelCase) : Optional[Any] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) (UpperCAmelCase) : str = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) (UpperCAmelCase) : Optional[int] = SARIngram(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Tuple = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase : str = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = "13a" , _lowercase = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCAmelCase : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase : str = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: UpperCAmelCase : Dict = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": UpperCAmelCase : Union[str, Any] = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase , escape=_lowerCAmelCase ) elif tokenizer == "penn": UpperCAmelCase : str = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase , return_str=_lowerCAmelCase ) else: UpperCAmelCase : Union[str, Any] = sentence if not return_str: UpperCAmelCase : Tuple = normalized_sent.split() return normalized_sent def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) UpperCAmelCase : Optional[Any] = 0 for src, pred, refs in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ) , normalize(_lowerCAmelCase ) , [normalize(_lowerCAmelCase ) for sent in refs] ) UpperCAmelCase : Optional[int] = sari_score / len(_lowerCAmelCase ) return 1_0_0 * sari_score def __lowerCamelCase ( _lowercase , _lowercase , _lowercase="exp" , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , ) -> List[str]: UpperCAmelCase : Optional[Any] = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCAmelCase : Optional[int] = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] UpperCAmelCase : Tuple = sacrebleu.corpus_bleu( _lowerCAmelCase , _lowerCAmelCase , smooth_method=_lowerCAmelCase , smooth_value=_lowerCAmelCase , force=_lowerCAmelCase , lowercase=_lowerCAmelCase , use_effective_order=_lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _lowercase( self , A , A , A ) -> Dict: UpperCAmelCase : Optional[Any] = {} result.update({"""sari""": compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({"""exact""": compute_em(predictions=A_ , references=A_ )} ) return result
265
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : List[Any] = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A_ ( _lowerCAmelCase ) -> dict[str, str]: UpperCamelCase : Optional[Any] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCamelCase : Tuple = remove_duplicates(key.upper() ) UpperCamelCase : int = len(_lowerCAmelCase ) # First fill cipher with key characters UpperCamelCase : int = {alphabet[i]: char for i, char in enumerate(_lowerCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_lowerCAmelCase ) , 26 ): UpperCamelCase : Optional[Any] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase : List[str] = alphabet[i - offset] UpperCamelCase : List[Any] = char return cipher_alphabet def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: return "".join(cipher_map.get(_lowerCAmelCase , _lowerCAmelCase ) for ch in message.upper() ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Union[str, Any] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_lowerCAmelCase , _lowerCAmelCase ) for ch in message.upper() ) def A_ ( ) -> None: UpperCamelCase : int = input("Enter message to encode or decode: " ).strip() UpperCamelCase : str = input("Enter keyword: " ).strip() UpperCamelCase : Union[str, Any] = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: UpperCamelCase : List[str] = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) UpperCamelCase : str = create_cipher_map(_lowerCAmelCase ) print(func(_lowerCAmelCase , _lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
52
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCamelCase__: def __init__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Any=24 , lowerCAmelCase : Dict=16 , lowerCAmelCase : Any=True , lowerCAmelCase : int=True , lowerCAmelCase : str=32 , lowerCAmelCase : List[Any]=5 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : List[str]=37 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : str=10 , lowerCAmelCase : int=0.02 , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Optional[Any]=2 , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = patch_size UpperCAmelCase = max_length UpperCAmelCase = num_mel_bins UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = frequency_stride UpperCAmelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase = frequency_out_dimension * time_out_dimension UpperCAmelCase = num_patches + 2 def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, input_values, labels def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def a__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str )-> Any: """simple docstring""" UpperCAmelCase = ASTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__( self : List[str] )-> int: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_values''': input_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Union[str, Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __magic_name__ : Union[str, Any] = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) __magic_name__ : str = False __magic_name__ : Optional[Any] = False __magic_name__ : int = False __magic_name__ : Tuple = False def a__( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Dict )-> Optional[int]: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def a__( self : Dict )-> Dict: """simple docstring""" UpperCAmelCase = ASTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" pass def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''input_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def a__( self : Optional[Any] )-> Tuple: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = ASTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Tuple )-> List[str]: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def a__( self : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.default_feature_extractor UpperCAmelCase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(_lowerCAmelCase ) UpperCAmelCase = self.default_feature_extractor UpperCAmelCase , UpperCAmelCase = prepare_audio() UpperCAmelCase = audio.squeeze().numpy() UpperCAmelCase = feature_extractor(_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
354
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: __magic_name__ : int __magic_name__ : TreeNode | None = None __magic_name__ : TreeNode | None = None _lowercase : Tuple = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase__ ( A : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A ) != count_coins(A ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(A : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.left ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.right ) UpperCAmelCase = 1 - left_distrib_excess UpperCAmelCase = 1 - right_distrib_excess UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(A ) + abs(A ) ) UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A , A ) return get_distrib(A )[0] if __name__ == "__main__": import doctest doctest.testmod()
91
0