code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = logging.get_logger(__name__) __snake_case = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = 'deformable_detr' A_ : Any = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=300 , __UpperCAmelCase=1024 , __UpperCAmelCase=6 , __UpperCAmelCase=1024 , __UpperCAmelCase=8 , __UpperCAmelCase=6 , __UpperCAmelCase=1024 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="sine" , __UpperCAmelCase="resnet50" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=False , __UpperCAmelCase=300 , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.25 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = backbone_config.get('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__UpperCAmelCase ) _a = use_timm_backbone _a = backbone_config _a = num_channels _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type _a = backbone _a = use_pretrained_backbone _a = dilation # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha _a = disable_custom_kernels super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def _UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _UpperCAmelCase ( self ) -> int: return self.d_model def _UpperCAmelCase ( self ) -> str: _a = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase__ = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , snake_case__ = " " ): """simple docstring""" lowerCAmelCase : List[Any] = sentence_delimiter def lowercase__ ( self , snake_case__ ): """simple docstring""" return list(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [] for sent_idx, sentence in enumerate(snake_case__ ): chars.extend(self.process_string(snake_case__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase__ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase__ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase__ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase__ = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' lowerCAmelCase__ = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )["wer"] lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
133
0
"""simple docstring""" SCREAMING_SNAKE_CASE__:List[Any] = """Input must be a string of 8 numbers plus letter""" SCREAMING_SNAKE_CASE__:Any = """TRWAGMYFPDXBNJZSQVHLCKE""" def _lowerCamelCase( a ): if not isinstance(a , a ): __a = F"Expected string as input, found {type(a ).__name__}" raise TypeError(a ) __a = spanish_id.replace("-" , "" ).upper() if len(a ) != 9: raise ValueError(a ) try: __a = int(spanish_id_clean[0:8] ) __a = spanish_id_clean[8] except ValueError as ex: raise ValueError(a ) from ex if letter.isdigit(): raise ValueError(a ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
261
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase( a , a , a , a="attention" ): __a = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def _lowerCamelCase( a , a , a , a=False ): if split_mlp_wi: __a = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] __a = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] __a = (wi_a, wi_a) else: __a = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] __a = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def _lowerCamelCase( a , a , a , a ): return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def _lowerCamelCase( a , *, a , a ): __a = traverse_util.flatten_dict(variables["target"] ) __a = {"/".join(a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __a = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , a ) __a = collections.OrderedDict() # Shared embeddings. __a = old["token_embedder/embedding"] # Encoder. for i in range(a ): # Block i, layer 0 (Self Attention). __a = tax_layer_norm_lookup(a , a , "encoder" , "pre_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "encoder" , "attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 1 (MLP). __a = tax_layer_norm_lookup(a , a , "encoder" , "pre_mlp_layer_norm" ) __a , __a = tax_mlp_lookup(a , a , "encoder" , a ) __a = layer_norm if split_mlp_wi: __a = wi[0].T __a = wi[1].T else: __a = wi.T __a = wo.T __a = old[ "encoder/relpos_bias/rel_embedding" ].T __a = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(a ): # Block i, layer 0 (Self Attention). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_self_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "decoder" , "self_attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 1 (Cross Attention). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_cross_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "decoder" , "encoder_decoder_attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 2 (MLP). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_mlp_layer_norm" ) __a , __a = tax_mlp_lookup(a , a , "decoder" , a ) __a = layer_norm if split_mlp_wi: __a = wi[0].T __a = wi[1].T else: __a = wi.T __a = wo.T __a = old["decoder/decoder_norm/scale"] __a = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __a = old["decoder/logits_dense/kernel"].T return new def _lowerCamelCase( a , a ): __a = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __a = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __a = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __a = state_dict["shared.weight"] return state_dict def _lowerCamelCase( a , a , a , a ): __a = checkpoints.load_tax_checkpoint(a ) __a = convert_tax_to_pytorch(a , num_layers=config.num_layers , is_encoder_only=a ) __a = make_state_dict(a , a ) model.load_state_dict(a , strict=a ) def _lowerCamelCase( a , a , a , a = False ): __a = TaConfig.from_json_file(a ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __a = TaEncoderModel(a ) else: __a = TaForConditionalGeneration(a ) # Load weights from tf checkpoint load_tax_weights_in_ta(a , a , a , a ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(a ) # Verify that we can load the checkpoint. model.from_pretrained(a ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Tuple = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) SCREAMING_SNAKE_CASE__:Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
261
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Dict = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) return model @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) return CLIPTextModel(__lowerCAmelCase ) @property def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" def extract(*__lowerCamelCase ,**__lowerCamelCase ): class lowerCamelCase__ : '''simple docstring''' def __init__(self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = torch.ones([0] ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : List[str] = self.dummy_cond_unet lowerCAmelCase__ : List[str] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=__lowerCAmelCase ,set_alpha_to_one=__lowerCAmelCase ,) lowerCAmelCase__ : Optional[int] = self.dummy_vae lowerCAmelCase__ : Optional[Any] = self.dummy_text_encoder lowerCAmelCase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ : str = StableDiffusionPipeline( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,safety_checker=__lowerCAmelCase ,feature_extractor=self.dummy_extractor ,) lowerCAmelCase__ : Tuple = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ : Tuple = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowerCAmelCase__ : Tuple = sd_pipe([prompt] ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ) lowerCAmelCase__ : int = output.images lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowerCAmelCase__ : Tuple = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,return_dict=__lowerCAmelCase ,)[0] lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Union[str, Any] = self.dummy_cond_unet lowerCAmelCase__ : int = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowerCAmelCase__ : List[str] = self.dummy_vae lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ : Dict = StableDiffusionPipeline( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,safety_checker=__lowerCAmelCase ,feature_extractor=self.dummy_extractor ,) lowerCAmelCase__ : Dict = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase__ : Optional[int] = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ : Optional[int] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowerCAmelCase__ : int = sd_pipe([prompt] ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ) lowerCAmelCase__ : Dict = output.images lowerCAmelCase__ : Optional[int] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowerCAmelCase__ : List[str] = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='''np''' ,return_dict=__lowerCAmelCase ,)[0] lowerCAmelCase__ : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Dict = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : str = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' ,safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase ,__lowerCAmelCase ) assert isinstance(pipe.scheduler ,__lowerCAmelCase ) assert pipe.safety_checker is None lowerCAmelCase__ : int = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase__ : Dict = pipe('''example prompt''' ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''' ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = self.dummy_cond_unet lowerCAmelCase__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.dummy_vae lowerCAmelCase__ : Optional[int] = self.dummy_text_encoder lowerCAmelCase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowerCAmelCase__ : Optional[int] = unet.half() lowerCAmelCase__ : Union[str, Any] = vae.half() lowerCAmelCase__ : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase__ : str = StableDiffusionPipeline( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,safety_checker=__lowerCAmelCase ,feature_extractor=self.dummy_extractor ,) lowerCAmelCase__ : Dict = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase__ : List[str] = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ : Tuple = sd_pipe([prompt] ,num_inference_steps=2 ,output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ,safety_checker=__lowerCAmelCase ) lowerCAmelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase__ : int = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase__ : Union[str, Any] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowerCAmelCase__ : Dict = 40_03_66_03_46 lowerCAmelCase__ : Tuple = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase__ : str = torch.manual_seed(__lowerCAmelCase ) lowerCAmelCase__ : Optional[int] = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=__lowerCAmelCase ,num_inference_steps=50 ,output_type='''np''' ,width=5_12 ,height=5_12 ,sld_guidance_scale=0 ,) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) lowerCAmelCase__ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) lowerCAmelCase__ : List[str] = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=__lowerCAmelCase ,num_inference_steps=50 ,output_type='''np''' ,width=5_12 ,height=5_12 ,sld_guidance_scale=20_00 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) lowerCAmelCase__ : str = output.images lowerCAmelCase__ : int = image[0, -3:, -3:, -1] lowerCAmelCase__ : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ,safety_checker=__lowerCAmelCase ) lowerCAmelCase__ : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase__ : Tuple = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase__ : int = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowerCAmelCase__ : Any = 27_34_97_17_55 lowerCAmelCase__ : Dict = 7 lowerCAmelCase__ : int = torch.manual_seed(__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=__lowerCAmelCase ,num_inference_steps=50 ,output_type='''np''' ,width=5_12 ,height=5_12 ,sld_guidance_scale=0 ,) lowerCAmelCase__ : int = output.images lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : List[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(__lowerCAmelCase ) lowerCAmelCase__ : Union[str, Any] = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=__lowerCAmelCase ,num_inference_steps=50 ,output_type='''np''' ,width=5_12 ,height=5_12 ,sld_guidance_scale=20_00 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowerCAmelCase__ : List[Any] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase__ : str = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowerCAmelCase__ : Any = 10_44_35_52_34 lowerCAmelCase__ : Dict = 12 lowerCAmelCase__ : Dict = torch.manual_seed(__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=__lowerCAmelCase ,num_inference_steps=50 ,output_type='''np''' ,width=5_12 ,height=5_12 ,sld_guidance_scale=0 ,) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 lowerCAmelCase__ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = sd_pipe( [prompt] ,generator=__lowerCAmelCase ,guidance_scale=__lowerCAmelCase ,num_inference_steps=50 ,output_type='''np''' ,width=5_12 ,height=5_12 ,sld_guidance_scale=20_00 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
360
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase__ ( lowerCamelCase_ : ndarray): '''simple docstring''' return np.dot(lowerCamelCase_ ,lowerCamelCase_) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,*, __lowerCamelCase = np.inf ,__lowerCamelCase = "linear" ,__lowerCamelCase = 0.0 ,) -> None: """simple docstring""" lowerCAmelCase__ : Any = regularization lowerCAmelCase__ : str = gamma if kernel == "linear": lowerCAmelCase__ : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma ,(float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowerCAmelCase__ : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCAmelCase__ : List[str] = f"""Unknown kernel: {kernel}""" raise ValueError(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> float: """simple docstring""" return np.dot(__lowerCamelCase ,__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : str = observations lowerCAmelCase__ : Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCAmelCase__) , ) : List[str] = np.shape(__lowerCamelCase ) def to_minimize(__lowerCamelCase ) -> float: lowerCAmelCase__ : List[str] = 0 ((lowerCAmelCase__) , ) : str = np.shape(__lowerCamelCase ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] ,observations[j] ) ) return 1 / 2 * s - sum(__lowerCamelCase ) lowerCAmelCase__ : List[str] = LinearConstraint(__lowerCamelCase ,0 ,0 ) lowerCAmelCase__ : List[str] = Bounds(0 ,self.regularization ) lowerCAmelCase__ : int = minimize( __lowerCamelCase ,np.ones(__lowerCamelCase ) ,bounds=__lowerCamelCase ,constraints=[ly_contraint] ).x lowerCAmelCase__ : List[Any] = l_star # calculating mean offset of separation plane to points lowerCAmelCase__ : Optional[Any] = 0 for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] ,observations[j] ) lowerCAmelCase__ : Dict = s / n def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : str = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] ,__lowerCamelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
94
0
import os import jsonlines import numpy as np from tqdm import tqdm __A =2_0_4_8 __A =4_0_9_6 __A =4_2 __A =os.environ.pop('''PROCESS_TRAIN''', '''false''') __A ={'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def lowerCamelCase_ ( lowerCamelCase__ ): def choose_first(lowerCamelCase__ , lowerCamelCase__=False ): assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) == 1: lowerCamelCase_ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowerCamelCase_ = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a lowerCamelCase_ = {"id": example["id"]} lowerCamelCase_ = example["annotations"] lowerCamelCase_ = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: lowerCamelCase_ = ["yes"] if 1 in yes_no_answer else ["no"] lowerCamelCase_ = lowerCamelCase_ = [] lowerCamelCase_ = lowerCamelCase_ = [] lowerCamelCase_ = ["<cls>"] else: lowerCamelCase_ = ["short"] lowerCamelCase_ = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available lowerCamelCase_ = ["long"] lowerCamelCase_ = choose_first(annotation["long_answer"] , is_long_answer=lowerCamelCase__ ) lowerCamelCase_ = [] answer.update(lowerCamelCase__ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: lowerCamelCase_ = True else: lowerCamelCase_ = False lowerCamelCase_ = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , lowerCamelCase__ ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ = _get_single_answer(lowerCamelCase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCamelCase_ = example["document"]["tokens"] lowerCamelCase_ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowerCamelCase__ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowerCamelCase_ = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowerCamelCase_ = example["document"]["tokens"] lowerCamelCase_ = answer["start_token"] lowerCamelCase_ = answer["end_token"] lowerCamelCase_ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowerCamelCase_ = " ".join(context[start_token:end_token] ) # checking above code if assertion: lowerCamelCase_ = doc["is_html"][answer["start_token"] : answer["end_token"]] lowerCamelCase_ = doc["token"][answer["start_token"] : answer["end_token"]] lowerCamelCase_ = " ".join([old[i] for i in range(len(lowerCamelCase__ ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , lowerCamelCase__ , end="\n" ) print("Old:" , lowerCamelCase__ , end="\n\n" ) return { "context": " ".join(lowerCamelCase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=2_0_4_8 , lowerCamelCase__=4_0_9_6 , lowerCamelCase__=True ): # overlap will be of doc_stride - q_len lowerCamelCase_ = get_context_and_ans(lowerCamelCase__ , assertion=lowerCamelCase__ ) lowerCamelCase_ = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowerCamelCase_ = tokenizer(example["question"]["text"] , out["context"] ).input_ids lowerCamelCase_ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = input_ids[:q_len] lowerCamelCase_ = range(lowerCamelCase__ , len(lowerCamelCase__ ) , max_length - doc_stride ) for i in doc_start_indices: lowerCamelCase_ = i + max_length - q_len lowerCamelCase_ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowerCamelCase__ ), "end_token": [-1_0_0] * len(lowerCamelCase__ ), "category": category, }, } lowerCamelCase_ = out["context"].split() lowerCamelCase_ = splitted_context[answer["end_token"]] lowerCamelCase_ = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=lowerCamelCase__ , ).input_ids ) lowerCamelCase_ = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=lowerCamelCase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowerCamelCase_ = len(tokenizer(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowerCamelCase_ = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive lowerCamelCase_ = answer["start_token"] lowerCamelCase_ = answer["end_token"] if assertion: lowerCamelCase_ = tokenizer.decode(lowerCamelCase__ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , lowerCamelCase__ , end="\n\n" ) if len(lowerCamelCase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowerCamelCase_ = input_ids[:q_len] lowerCamelCase_ = range(lowerCamelCase__ , len(lowerCamelCase__ ) , max_length - doc_stride ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] # null, yes, no, long, short for i in doc_start_indices: lowerCamelCase_ = i + max_length - q_len lowerCamelCase_ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowerCamelCase_ = start_token - i + q_len lowerCamelCase_ = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: lowerCamelCase_ = -1_0_0 lowerCamelCase_ = -1_0_0 answers_category.append("null" ) lowerCamelCase_ = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase__ ) answers_end_token.append(lowerCamelCase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(lowerCamelCase__ ) ) print("Old:" , tokenizer.decode(lowerCamelCase__ ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=2_0_4_8 , lowerCamelCase__=4_0_9_6 , lowerCamelCase__=False ): lowerCamelCase_ = get_strided_contexts_and_ans( lowerCamelCase__ , lowerCamelCase__ , doc_stride=lowerCamelCase__ , max_length=lowerCamelCase__ , assertion=lowerCamelCase__ , ) return example def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): with jsonlines.open(lowerCamelCase__ , "a" ) as writer: for example in tqdm(lowerCamelCase__ , total=len(lowerCamelCase__ ) , desc="Saving samples ... " ): lowerCamelCase_ = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __A =load_dataset('''natural_questions''') __A =BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') __A =data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] __A ={ '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } __A =data.map(prepare_inputs, fn_kwargs=fn_kwargs) __A =data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) __A ='''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
19
from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE ( snake_case_ ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: raise NotImplementedError()
19
1
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __snake_case( _lowerCAmelCase=32 , _lowerCAmelCase=10 , _lowerCAmelCase=100 , _lowerCAmelCase=1_026 , _lowerCAmelCase=True , _lowerCAmelCase="data/tokenized_stories_train_wikitext103.jbl" , _lowerCAmelCase="igf_context_pairs.jbl" , ) -> List[str]: set_seed(3 ) # generate train_data and objective_set snake_case__ , snake_case__ : int = generate_datasets( _lowerCAmelCase , _lowerCAmelCase , number=_lowerCAmelCase , min_len=1_026 , trim=_lowerCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? snake_case__ : Union[str, Any] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model snake_case__ : Optional[int] = load_gpta("""gpt2""" ).to(_lowerCAmelCase ) print("""computing perplexity on objective set""" ) snake_case__ : List[Any] = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).item() print("""perplexity on objective set:""" , _lowerCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __snake_case( _lowerCAmelCase , _lowerCAmelCase=15 , _lowerCAmelCase=128 , _lowerCAmelCase=100 , _lowerCAmelCase="igf_model.pt" , ) -> Union[str, Any]: set_seed(42 ) # Load pre-trained model snake_case__ : Any = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model snake_case__ : str = SecondaryLearner(_lowerCAmelCase ) # Train secondary learner snake_case__ : List[Any] = train_secondary_learner( _lowerCAmelCase , _lowerCAmelCase , max_epochs=_lowerCAmelCase , batch_size=_lowerCAmelCase , eval_freq=100 , igf_model_path=_lowerCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=32 , _lowerCAmelCase=1_000 , _lowerCAmelCase=16 , _lowerCAmelCase=1.0 , _lowerCAmelCase=recopy_gpta , _lowerCAmelCase=None , _lowerCAmelCase=10 , _lowerCAmelCase="gpt2_finetuned.pt" , ) -> Union[str, Any]: snake_case__ : List[Any] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) snake_case__ : Optional[Any] = RandomSampler(_lowerCAmelCase ) snake_case__ : Any = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase ) snake_case__ : Optional[Any] = max_steps // (len(_lowerCAmelCase )) + 1 snake_case__ : Dict = 0 snake_case__ : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCAmelCase ) snake_case__ , snake_case__ , snake_case__ : Any = recopy_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowerCAmelCase ) secondary_learner.eval() snake_case__ : List[Any] = [] snake_case__ : Optional[int] = 0 snake_case__ : Optional[Any] = [] snake_case__ : Any = [] # Compute the performance of the transformer model at the beginning snake_case__ : Optional[int] = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print("""Test perplexity, step""" , _lowerCAmelCase , """:""" , _lowerCAmelCase ) for epoch in range(int(_lowerCAmelCase ) ): for step, example in enumerate(_lowerCAmelCase ): torch.cuda.empty_cache() snake_case__ : List[str] = random.randint(0 , example.size(2 ) - context_len - 1 ) snake_case__ : Optional[Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() snake_case__ : Optional[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) snake_case__ : Optional[Any] = True if secondary_learner is not None: snake_case__ : Optional[Any] = secondary_learner.forward( torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowerCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: snake_case__ : int = -1 if predicted_q < threshold: snake_case__ : Union[str, Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) snake_case__ : Union[str, Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() snake_case__ : Optional[int] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: snake_case__ : int = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print("""Test perplexity, step""" , _lowerCAmelCase , """:""" , _lowerCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowerCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __snake_case( ) -> Optional[int]: snake_case__ : Tuple = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=_lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=_lowerCAmelCase , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=_lowerCAmelCase , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1_000 , type=_lowerCAmelCase , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=_lowerCAmelCase , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=_lowerCAmelCase , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=_lowerCAmelCase , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=_lowerCAmelCase , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1_026 , type=_lowerCAmelCase , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=_lowerCAmelCase , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=_lowerCAmelCase , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=_lowerCAmelCase , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=_lowerCAmelCase , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner snake_case__ : Optional[int] = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner snake_case__ : int = training_secondary_learner( _lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model snake_case__ : Dict = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model snake_case__ , snake_case__ : Dict = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1_026 , trim=_lowerCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCAmelCase , secondary_learner=_lowerCAmelCase , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
43
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : """simple docstring""" def lowerCamelCase ( self : Optional[Any] , snake_case_ : Optional[int] ): raise NotImplementedError() def lowerCamelCase ( self : Optional[int] ): raise NotImplementedError() class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Tuple , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , **snake_case_ : Tuple ): snake_case__ : Tuple = tokenizer snake_case__ : List[str] = skip_prompt snake_case__ : Optional[int] = decode_kwargs # variables used in the streaming process snake_case__ : Optional[int] = [] snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = True def lowerCamelCase ( self : List[str] , snake_case_ : int ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: snake_case__ : Optional[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: snake_case__ : List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) snake_case__ : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): snake_case__ : int = text[self.print_len :] snake_case__ : Optional[int] = [] snake_case__ : int = 0 # If the last token is a CJK character, we print the characters. elif len(snake_case_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): snake_case__ : str = text[self.print_len :] self.print_len += len(snake_case_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: snake_case__ : Dict = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(snake_case_ ) self.on_finalized_text(snake_case_ ) def lowerCamelCase ( self : int ): # Flush the cache, if it exists if len(self.token_cache ) > 0: snake_case__ : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) snake_case__ : Optional[Any] = text[self.print_len :] snake_case__ : Tuple = [] snake_case__ : int = 0 else: snake_case__ : int = """""" snake_case__ : Union[str, Any] = True self.on_finalized_text(snake_case_ , stream_end=snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : str , snake_case_ : bool = False ): print(snake_case_ , flush=snake_case_ , end="""""" if not stream_end else None ) def lowerCamelCase ( self : int , snake_case_ : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : "AutoTokenizer" , snake_case_ : bool = False , snake_case_ : Optional[float] = None , **snake_case_ : List[Any] ): super().__init__(snake_case_ , snake_case_ , **snake_case_ ) snake_case__ : Dict = Queue() snake_case__ : List[Any] = None snake_case__ : int = timeout def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : bool = False ): self.text_queue.put(snake_case_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[str] ): return self def lowerCamelCase ( self : str ): snake_case__ : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
43
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCamelCase__ : List[str] = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'RUCAIBox/mvp': 1_024, } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] lowercase_ = MvpTokenizer def __init__( self : Optional[int] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]="replace" , _lowerCAmelCase : int="<s>" , _lowerCAmelCase : Optional[int]="</s>" , _lowerCAmelCase : Tuple="</s>" , _lowerCAmelCase : List[Any]="<s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : Dict="<pad>" , _lowerCAmelCase : Union[str, Any]="<mask>" , _lowerCAmelCase : Any=False , _lowerCAmelCase : str=True , **_lowerCAmelCase : int , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = pre_tok_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE_ = 'post_processor' SCREAMING_SNAKE_CASE_ = getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE_ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE_ = False if state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = True if state.get('trim_offsets' , _lowerCAmelCase ) != trim_offsets: SCREAMING_SNAKE_CASE_ = trim_offsets SCREAMING_SNAKE_CASE_ = True if changes_to_apply: SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value SCREAMING_SNAKE_CASE_ = value def lowerCAmelCase_ ( self : int , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words' , _lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , *_lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words' , _lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict=None ): SCREAMING_SNAKE_CASE_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
225
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__UpperCAmelCase ) ), } , features=__UpperCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> int: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return filename # FILE_CONTENT + files lowerCamelCase__ : List[Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt' SCREAMING_SNAKE_CASE_ = FILE_CONTENT with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Any: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with gzip.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lza.frame.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Any: if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__UpperCAmelCase , 'w' ) as archive: archive.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : str ) -> str: import tarfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[Any]: import lzma SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lzma.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> str: import zipfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with zstd.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.xml' SCREAMING_SNAKE_CASE_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename lowerCamelCase__ : Optional[Any] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCamelCase__ : Dict = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCamelCase__ : Optional[int] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCamelCase__ : List[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCamelCase__ : List[Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: SCREAMING_SNAKE_CASE_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Tuple ) -> str: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__UpperCAmelCase , 'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) SCREAMING_SNAKE_CASE_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__UpperCAmelCase , 'wb' ) as f: SCREAMING_SNAKE_CASE_ = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCAmelCase ) )] for k in DATA[0]} , schema=__UpperCAmelCase ) writer.write_table(__UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA_DICT_OF_LISTS} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) -> List[str]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> List[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Tuple: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> int: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
225
1
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Tuple = len(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = len(matrix[0] ) _UpperCamelCase : List[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ ) for row in range(UpperCAmelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCAmelCase_ ): _UpperCamelCase : int = matrix[col][row] / matrix[row][row] for i in range(UpperCAmelCase_ , UpperCAmelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _UpperCamelCase : Tuple = True for i in range(row + 1 , UpperCAmelCase_ ): if matrix[i][row] != 0: _UpperCamelCase : Optional[Any] = matrix[i], matrix[row] _UpperCamelCase : Optional[int] = False break if reduce: rank -= 1 for i in range(UpperCAmelCase_ ): _UpperCamelCase : str = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _UpperCamelCase : Any = 1_0_2_4 _UpperCamelCase : List[Any] = 4_0_9_6 _UpperCamelCase : List[str] = 2_4 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Union[str, Any] = [5, 1_1, 1_7, 2_3] _UpperCamelCase : Any = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] _UpperCamelCase : Tuple = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase : Optional[int] = 7_6_8 _UpperCamelCase : Optional[Any] = [1, 1, 1, 0.5] _UpperCamelCase : List[Any] = [2_5_6, 5_1_2, 7_6_8, 7_6_8] _UpperCamelCase : Optional[int] = 1_5_0 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Dict = (1, 3_8_4, 3_8_4) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[int] = 'project' if "ade" in checkpoint_url: _UpperCamelCase : Dict = True _UpperCamelCase : Dict = 7_6_8 _UpperCamelCase : Union[str, Any] = [1, 1, 1, 0.5] _UpperCamelCase : Union[str, Any] = 1_5_0 _UpperCamelCase : str = 1_6 _UpperCamelCase : Tuple = 'huggingface/label-files' _UpperCamelCase : Tuple = 'ade20k-id2label.json' _UpperCamelCase : Tuple = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) ) , 'r' ) ) _UpperCamelCase : str = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[str] = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCamelCase : int = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase : List[str] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _UpperCamelCase : int = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _UpperCamelCase : Any = name.replace('patch_embed' , '' ) if "pos_embed" in name: _UpperCamelCase : Tuple = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _UpperCamelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _UpperCamelCase : int = name.replace('proj' , 'projection' ) if "blocks" in name: _UpperCamelCase : List[str] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _UpperCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _UpperCamelCase : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _UpperCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _UpperCamelCase : Dict = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _UpperCamelCase : List[str] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _UpperCamelCase : List[str] = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _UpperCamelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _UpperCamelCase : int = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _UpperCamelCase : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _UpperCamelCase : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase : str = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _UpperCamelCase : Dict = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _UpperCamelCase : int = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _UpperCamelCase : Dict = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase : str = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase : Dict = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _UpperCamelCase : int = name.replace('pretrained' , 'dpt' ) if "bn" in name: _UpperCamelCase : Union[str, Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: _UpperCamelCase : Dict = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _UpperCamelCase : str = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _UpperCamelCase : Any = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _UpperCamelCase : List[Any] = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _UpperCamelCase : Dict = name.replace('..' , '.' ) if "stem.conv" in name: _UpperCamelCase : Tuple = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _UpperCamelCase : Optional[int] = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _UpperCamelCase : List[str] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _UpperCamelCase : Union[str, Any] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase : Dict = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _UpperCamelCase : str = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase : Tuple = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : int = in_proj_bias[: config.hidden_size] _UpperCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def A__ ( ): _UpperCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : List[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : int = get_dpt_config(UpperCAmelCase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase : List[str] = torch.load(UpperCAmelCase_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(UpperCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase : Any = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : int = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model _UpperCamelCase : Union[str, Any] = DPTForSemanticSegmentation(UpperCAmelCase_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # Check outputs on an image _UpperCamelCase : Tuple = 4_8_0 if 'ade' in checkpoint_url else 3_8_4 _UpperCamelCase : Any = DPTImageProcessor(size=UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='pt' ) # forward pass _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ).logits if 'ade' in checkpoint_url else model(**UpperCAmelCase_ ).predicted_depth if show_prediction: _UpperCamelCase : List[str] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=UpperCAmelCase_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) snake_case_ : Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def _snake_case ( _snake_case : Any ) -> str: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char _A = set(_UpperCAmelCase ) return pairs class lowercase_ ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : str="</s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : int="<mask>" , **_UpperCAmelCase : Tuple , ): super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) _A = vocab_file _A = merges_file _A = {} _A = 0 _A = 1 _A = 2 _A = 3 self.add_from_file(_UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: _A = merges_handle.read().split('\n' )[:-1] _A = [tuple(merge.split()[:-1] ) for merge in merges] _A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _A = {} def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self : Dict ): return len(self.encoder ) def lowerCAmelCase_ ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] ): if token in self.cache: return self.cache[token] _A = tuple(_UpperCAmelCase ) _A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) _A = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: _A = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _A = bigram _A = [] _A = 0 while i < len(_UpperCAmelCase ): try: _A = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(_UpperCAmelCase ) _A = new_word if len(_UpperCAmelCase ) == 1: break else: _A = get_pairs(_UpperCAmelCase ) _A = '@@ '.join(_UpperCAmelCase ) _A = word[:-4] _A = word return word def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str] ): _A = [] _A = re.findall(r'\S+\n?' , _UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) ) return split_tokens def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Any ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Dict ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[str, Any] ): _A = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.merges_file , _UpperCAmelCase ) return out_vocab_file, out_merge_file def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _A = f.readlines() for lineTmp in lines: _A = lineTmp.strip() _A = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) _A = line[:idx] _A = len(self.encoder )
315
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a__ : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase_ ( __lowerCamelCase): """simple docstring""" snake_case__ : Dict = ['pixel_values'] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Any , ) -> Dict: super().__init__(**UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ , param_name="crop_size" ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> Dict: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(UpperCamelCase_ , size=size["shortest_edge"] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(UpperCamelCase_ , size=(size["height"], size["width"]) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> Optional[int]: return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : int , ) -> Optional[Any]: return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : Any , ) -> Dict: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCamelCase_ , param_name="size" , default_to_square=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCamelCase_ , param_name="crop_size" , default_to_square=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE = [convert_to_rgb(UpperCamelCase_ ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
357
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : WhisperForConditionalGeneration , UpperCAmelCase__ : WhisperProcessor , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : CLIPTextModel , UpperCAmelCase__ : CLIPTokenizer , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase__ : StableDiffusionSafetyChecker , UpperCAmelCase__ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=UpperCAmelCase__ , speech_processor=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> str: if slice_size == "auto": __SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def __call__( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=1_6_0_0_0 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Dict , ) -> Any: __SCREAMING_SNAKE_CASE = self.speech_processor.feature_extractor( UpperCAmelCase__ , return_tensors="pt" , sampling_rate=UpperCAmelCase__ ).input_features.to(self.device ) __SCREAMING_SNAKE_CASE = self.speech_model.generate(UpperCAmelCase__ , max_length=4_8_0_0_0_0 ) __SCREAMING_SNAKE_CASE = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , normalize=UpperCAmelCase__ )[ 0 ] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 1 elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(UpperCAmelCase__ )}.""" ) # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] __SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text_embeddings.shape __SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""] * batch_size elif type(UpperCAmelCase__ ) is not type(UpperCAmelCase__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase__ )} !=""" F""" {type(UpperCAmelCase__ )}.""" ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(UpperCAmelCase__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device="cpu" , dtype=UpperCAmelCase__ ).to( self.device ) else: __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __SCREAMING_SNAKE_CASE = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE = {} if accepts_eta: __SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 / 0.18_215 * latents __SCREAMING_SNAKE_CASE = self.vae.decode(UpperCAmelCase__ ).sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase__ , nsfw_content_detected=UpperCAmelCase__ )
195
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = '''https://openaipublic.azureedge.net/jukebox/models/''' UpperCamelCase = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: _SCREAMING_SNAKE_CASE = key.replace(""".model.1.bias""" ,""".conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: _SCREAMING_SNAKE_CASE = key.replace(""".model.1.weight""" ,""".conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: _SCREAMING_SNAKE_CASE = key.replace(""".model.3.bias""" ,""".conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: _SCREAMING_SNAKE_CASE = key.replace(""".model.3.weight""" ,""".conv1d_2.weight""" ) if "conditioner_blocks.0." in key: _SCREAMING_SNAKE_CASE = key.replace("""conditioner_blocks.0""" ,"""conditioner_blocks""" ) if "prime_prior" in key: _SCREAMING_SNAKE_CASE = key.replace("""prime_prior""" ,"""encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _SCREAMING_SNAKE_CASE = key.replace(""".emb.""" ,""".""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" ,""".codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" ,"""metadata_embedding.""" ) if "x_emb.emb." in key: _SCREAMING_SNAKE_CASE = key.replace("""0.x_emb.emb""" ,"""embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" ,"""encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" ,""".layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" ,"""_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" ,"""encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" ,"""encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" ,"""fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" ,"""embed_tokens""" ) return key def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = {} import re _SCREAMING_SNAKE_CASE = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) _SCREAMING_SNAKE_CASE = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_encoder_block_conv_in.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) _SCREAMING_SNAKE_CASE = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' _SCREAMING_SNAKE_CASE = re_encoder_block_conv_in.sub(_a ,_a ) elif re_encoder_block_resnet.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_encoder_block_resnet.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) _SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]] _SCREAMING_SNAKE_CASE = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' _SCREAMING_SNAKE_CASE = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' _SCREAMING_SNAKE_CASE = prefix + resnet_block _SCREAMING_SNAKE_CASE = re_encoder_block_resnet.sub(_a ,_a ) elif re_encoder_block_proj_out.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_encoder_block_proj_out.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' _SCREAMING_SNAKE_CASE = re_encoder_block_proj_out.sub(_a ,_a ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_decoder_block_conv_out.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) - 2 _SCREAMING_SNAKE_CASE = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' _SCREAMING_SNAKE_CASE = re_decoder_block_conv_out.sub(_a ,_a ) elif re_decoder_block_resnet.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_decoder_block_resnet.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) - 2 _SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]] _SCREAMING_SNAKE_CASE = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' _SCREAMING_SNAKE_CASE = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' _SCREAMING_SNAKE_CASE = prefix + resnet_block _SCREAMING_SNAKE_CASE = re_decoder_block_resnet.sub(_a ,_a ) elif re_decoder_block_proj_in.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_decoder_block_proj_in.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' _SCREAMING_SNAKE_CASE = re_decoder_block_proj_in.sub(_a ,_a ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_prior_cond_conv_out.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = int(groups[1] ) * 2 + int(groups[2] ) - 2 _SCREAMING_SNAKE_CASE = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' _SCREAMING_SNAKE_CASE = re_prior_cond_conv_out.sub(_a ,_a ) elif re_prior_cond_resnet.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_prior_cond_resnet.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = int(groups[1] ) * 2 + int(groups[2] ) - 2 _SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]] _SCREAMING_SNAKE_CASE = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' _SCREAMING_SNAKE_CASE = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' _SCREAMING_SNAKE_CASE = prefix + resnet_block _SCREAMING_SNAKE_CASE = re_prior_cond_resnet.sub(_a ,_a ) elif re_prior_cond_proj_in.fullmatch(_a ): _SCREAMING_SNAKE_CASE = re_prior_cond_proj_in.match(_a ) _SCREAMING_SNAKE_CASE = regex_match.groups() _SCREAMING_SNAKE_CASE = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' _SCREAMING_SNAKE_CASE = re_prior_cond_proj_in.sub(_a ,_a ) # keep original key else: _SCREAMING_SNAKE_CASE = original_key _SCREAMING_SNAKE_CASE = replace_key(_a ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: _SCREAMING_SNAKE_CASE = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) _SCREAMING_SNAKE_CASE = original_key _SCREAMING_SNAKE_CASE = original_key _SCREAMING_SNAKE_CASE = value return new_dict @torch.no_grad() def __lowerCamelCase ( snake_case__=None ,snake_case__=None ) -> Any: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): _SCREAMING_SNAKE_CASE = requests.get(F'{PREFIX}{file}' ,allow_redirects=_a ) os.makedirs(F'{pytorch_dump_folder_path}/' ,exist_ok=_a ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ,"""wb""" ).write(r.content ) _SCREAMING_SNAKE_CASE = MODEL_MAPPING[model_name.split("""/""" )[-1]] _SCREAMING_SNAKE_CASE = JukeboxConfig.from_pretrained(_a ) _SCREAMING_SNAKE_CASE = JukeboxModel(_a ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {} for i, dict_name in enumerate(_a ): _SCREAMING_SNAKE_CASE = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"] _SCREAMING_SNAKE_CASE = {} for k in old_dic.keys(): if k.endswith(""".b""" ): _SCREAMING_SNAKE_CASE = old_dic[k] elif k.endswith(""".w""" ): _SCREAMING_SNAKE_CASE = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _SCREAMING_SNAKE_CASE = old_dic[k] else: _SCREAMING_SNAKE_CASE = old_dic[k] _SCREAMING_SNAKE_CASE = "vqvae" if i == 0 else F'priors.{3 - i}' _SCREAMING_SNAKE_CASE = fix_jukebox_keys(_a ,model.state_dict() ,_a ,_a ) weight_dict.append(_a ) _SCREAMING_SNAKE_CASE = weight_dict.pop(0 ) model.vqvae.load_state_dict(_a ) for i in range(len(_a ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_a ).mkdir(exist_ok=_a ) with open(F'{pytorch_dump_folder_path}/mapping.json' ,"""w""" ) as txtfile: json.dump(_a ,_a ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) return weight_dict if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) UpperCamelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : Tuple = tokenizer("Hello there" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : str = model(a , labels=a ).loss SCREAMING_SNAKE_CASE : Any = -tf.math.reduce_mean(a ).numpy() SCREAMING_SNAKE_CASE : Union[str, Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
76
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : Tuple = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): """simple docstring""" _snake_case : Any = ["""pixel_values"""] def __init__( self : str , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : int , ) -> List[Any]: '''simple docstring''' super().__init__(**a__ ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 384} _UpperCamelCase = get_size_dict(a__ , default_to_square=a__ ) _UpperCamelCase = do_resize _UpperCamelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCamelCase = crop_pct if crop_pct is not None else 224 / 256 _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : float , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ) -> Tuple: '''simple docstring''' _UpperCamelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}""" ) _UpperCamelCase = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCamelCase = int(shortest_edge / crop_pct ) _UpperCamelCase = get_resize_output_image_size(a__ , size=a__ , default_to_square=a__ ) _UpperCamelCase = resize(image=a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=a__ , size=(shortest_edge, shortest_edge) , data_format=a__ , **a__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( a__ , size=(shortest_edge, shortest_edge) , resample=a__ , data_format=a__ , **a__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ) -> int: '''simple docstring''' return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : int , ) -> Dict: '''simple docstring''' return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[int] , ) -> Tuple: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(a__ , default_to_square=a__ ) _UpperCamelCase = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(a__ ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=a__ , size=a__ , crop_pct=a__ , resample=a__ ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] _UpperCamelCase = [to_channel_dimension_format(a__ , a__ ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=a__ , tensor_type=a__ )
360
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowercase__ : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : List[Any] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[str] ) -> None: '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
287
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE_: Tuple =get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: SCREAMING_SNAKE_CASE_: Tuple =json.load(f) @require_torch class __A ( unittest.TestCase ): def _lowercase (self : str , __a : Union[str, Any] ): return FSMTTokenizer.from_pretrained(__a ) def _lowercase (self : List[Any] , __a : str ): UpperCAmelCase_ = FSMTForConditionalGeneration.from_pretrained(__a ).to(__a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _lowercase (self : Tuple , __a : str , __a : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase_ = f"""facebook/wmt19-{pair}""" UpperCAmelCase_ = self.get_tokenizer(__a ) UpperCAmelCase_ = self.get_model(__a ) UpperCAmelCase_ = bleu_data[pair]["src"] UpperCAmelCase_ = bleu_data[pair]["tgt"] UpperCAmelCase_ = tokenizer(__a , return_tensors="pt" , truncation=__a , padding="longest" ).to(__a ) UpperCAmelCase_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase_ = tokenizer.batch_decode( __a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) UpperCAmelCase_ = calculate_bleu(__a , __a ) print(__a ) self.assertGreaterEqual(scores["bleu"] , __a )
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A: Optional[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class _lowerCamelCase( _a ): lowercase_ : str = ["""pixel_values"""] def __init__( self, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = PILImageResampling.BILINEAR, lowerCamelCase = True, lowerCamelCase = 1 / 2_55, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> None: """simple docstring""" super().__init__(**lowerCamelCase) _lowercase : Tuple = size if size is not None else {'shortest_edge': 3_84} _lowercase : Union[str, Any] = get_size_dict(lowerCamelCase, default_to_square=lowerCamelCase) _lowercase : Optional[Any] = do_resize _lowercase : str = size # Default value set here for backwards compatibility where the value in config is None _lowercase : List[Any] = crop_pct if crop_pct is not None else 2_24 / 2_56 _lowercase : Tuple = resample _lowercase : List[str] = do_rescale _lowercase : Dict = rescale_factor _lowercase : List[str] = do_normalize _lowercase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = PILImageResampling.BICUBIC, lowerCamelCase = None, **lowerCamelCase, ) -> np.ndarray: """simple docstring""" _lowercase : Dict = get_size_dict(lowerCamelCase, default_to_square=lowerCamelCase) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''') _lowercase : Tuple = size['shortest_edge'] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _lowercase : str = int(shortest_edge / crop_pct) _lowercase : int = get_resize_output_image_size(lowerCamelCase, size=lowerCamelCase, default_to_square=lowerCamelCase) _lowercase : List[str] = resize(image=lowerCamelCase, size=lowerCamelCase, resample=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase, size=(shortest_edge, shortest_edge), data_format=lowerCamelCase, **lowerCamelCase) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase, size=(shortest_edge, shortest_edge), resample=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase, ) -> Any: """simple docstring""" return rescale(lowerCamelCase, scale=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase, ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase, data_format=lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = ChannelDimension.FIRST, **lowerCamelCase, ) -> PIL.Image.Image: """simple docstring""" _lowercase : Tuple = do_resize if do_resize is not None else self.do_resize _lowercase : Any = crop_pct if crop_pct is not None else self.crop_pct _lowercase : List[Any] = resample if resample is not None else self.resample _lowercase : int = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : List[str] = image_mean if image_mean is not None else self.image_mean _lowercase : List[str] = image_std if image_std is not None else self.image_std _lowercase : Dict = size if size is not None else self.size _lowercase : Any = get_size_dict(lowerCamelCase, default_to_square=lowerCamelCase) _lowercase : Dict = make_list_of_images(lowerCamelCase) if not valid_images(lowerCamelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(lowerCamelCase) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=lowerCamelCase, size=lowerCamelCase, crop_pct=lowerCamelCase, resample=lowerCamelCase) for image in images] if do_rescale: _lowercase : Any = [self.rescale(image=lowerCamelCase, scale=lowerCamelCase) for image in images] if do_normalize: _lowercase : Tuple = [self.normalize(image=lowerCamelCase, mean=lowerCamelCase, std=lowerCamelCase) for image in images] _lowercase : List[str] = [to_channel_dimension_format(lowerCamelCase, lowerCamelCase) for image in images] _lowercase : str = {'pixel_values': images} return BatchFeature(data=lowerCamelCase, tensor_type=lowerCamelCase)
84
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE : Tuple = "docs/source/en/_toctree.yml" def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Tuple = defaultdict(lowerCamelCase_ ) _lowercase : int = [] _lowercase : str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCamelCase_ ) _lowercase : Optional[int] = new_doc_list _lowercase : str = [key for key, value in counts.items() if value > 1] _lowercase : Union[str, Any] = [] for duplicate_key in duplicates: _lowercase : Optional[Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCamelCase_ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowercase : Optional[int] = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCamelCase_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCamelCase_ ) # Sort return overview_doc def UpperCamelCase_( lowerCamelCase_=False ) -> Any: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Tuple = content[api_idx]['sections'] # Then to the model doc _lowercase : int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowercase : Optional[int] = api_doc[scheduler_idx]['sections'] _lowercase : List[Any] = clean_doc_toc(lowerCamelCase_ ) _lowercase : Optional[Any] = False if new_scheduler_doc != scheduler_doc: _lowercase : Optional[Any] = True if overwrite: _lowercase : str = new_scheduler_doc if diff: if overwrite: _lowercase : Any = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase_( lowerCamelCase_=False ) -> List[str]: with open(lowerCamelCase_ , encoding='utf-8' ) as f: _lowercase : int = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : str = content[api_idx]['sections'] # Then to the model doc _lowercase : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowercase : Tuple = False _lowercase : Dict = api_doc[pipeline_idx]['sections'] _lowercase : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowercase : Union[str, Any] = pipeline_doc['section'] _lowercase : List[str] = clean_doc_toc(lowerCamelCase_ ) if overwrite: _lowercase : str = new_sub_pipeline_doc new_pipeline_docs.append(lowerCamelCase_ ) # sort overall pipeline doc _lowercase : int = clean_doc_toc(lowerCamelCase_ ) if new_pipeline_docs != pipeline_docs: _lowercase : Tuple = True if overwrite: _lowercase : str = new_pipeline_docs if diff: if overwrite: _lowercase : List[str] = api_doc with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCamelCase_ , allow_unicode=lowerCamelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") SCREAMING_SNAKE_CASE : Any = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
84
1
'''simple docstring''' import argparse import os import re import packaging.version lowercase_ = "examples/" lowercase_ = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } lowercase_ = { "init": "src/transformers/__init__.py", "setup": "setup.py", } lowercase_ = "README.md" def lowerCAmelCase (__A , __A , __A): """simple docstring""" with open(__A , '''r''' , encoding='''utf-8''' , newline='''\n''') as f: _a = f.read() _a , _a = REPLACE_PATTERNS[pattern] _a = replace.replace('''VERSION''' , __A) _a = re_pattern.sub(__A , __A) with open(__A , '''w''' , encoding='''utf-8''' , newline='''\n''') as f: f.write(__A) def lowerCAmelCase (__A): """simple docstring""" for folder, directories, fnames in os.walk(__A): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''') if "legacy" in directories: directories.remove('''legacy''') for fname in fnames: if fname.endswith('''.py'''): update_version_in_file(os.path.join(__A , __A) , __A , pattern='''examples''') def lowerCAmelCase (__A , __A=False): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__A , __A , __A) if not patch: update_version_in_examples(__A) def lowerCAmelCase (): """simple docstring""" _a = '''🤗 Transformers currently provides the following architectures''' _a = '''1. Want to contribute a new model?''' with open(__A , '''r''' , encoding='''utf-8''' , newline='''\n''') as f: _a = f.readlines() # Find the start of the list. _a = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 _a = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith('''1.'''): _a = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__A , '''w''' , encoding='''utf-8''' , newline='''\n''') as f: f.writelines(__A) def lowerCAmelCase (): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''') as f: _a = f.read() _a = REPLACE_PATTERNS['''init'''][0].search(__A).groups()[0] return packaging.version.parse(__A) def lowerCAmelCase (__A=False): """simple docstring""" _a = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''') if default_version.is_devrelease: _a = default_version.base_version elif patch: _a = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _a = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _a = input(F'''Which version are you releasing? [{default_version}]''') if len(__A) == 0: _a = default_version print(F'''Updating version to {version}.''') global_version_update(__A , patch=__A) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''') clean_main_ref_in_model_list() def lowerCAmelCase (): """simple docstring""" _a = get_version() _a = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _a = current_version.base_version # Check with the user we got that right. _a = input(F'''Which version are we developing now? [{dev_version}]''') if len(__A) == 0: _a = dev_version print(F'''Updating version to {version}.''') global_version_update(__A) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''') clean_main_ref_in_model_list() if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") lowercase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
211
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowercase_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" lowercase_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" lowercase_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _a = new_id # turn into Numpy arrays _a = np.array(__A) _a = np.array(__A) if reduce_labels: _a = 255 _a = label - 1 _a = 255 _a = label != ignore_index _a = np.not_equal(__A , __A) _a = pred_label[mask] _a = np.array(__A)[mask] _a = pred_label[pred_label == label] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = np.histogram(__A , bins=__A , range=(0, num_labels - 1))[0] _a = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = False , ): """simple docstring""" _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) _a = np.zeros((num_labels,) , dtype=np.floataa) for result, gt_seg_map in zip(__A , __A): _a , _a , _a , _a = intersect_and_union( __A , __A , __A , __A , __A , __A) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCAmelCase (__A , __A , __A , __A , __A = None , __A = None , __A = False , ): """simple docstring""" _a , _a , _a , _a = total_intersect_and_union( __A , __A , __A , __A , __A , __A) # compute metrics _a = {} _a = total_area_intersect.sum() / total_area_label.sum() _a = total_area_intersect / total_area_union _a = total_area_intersect / total_area_label _a = np.nanmean(__A) _a = np.nanmean(__A) _a = all_acc _a = iou _a = acc if nan_to_num is not None: _a = {metric: np.nan_to_num(__A , nan=__A) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def a__ (self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def a__ (self , A , A , A , A , A = None , A = None , A = False , ) -> List[Any]: """simple docstring""" _a = mean_iou( results=A , gt_seg_maps=A , num_labels=A , ignore_index=A , nan_to_num=A , label_map=A , reduce_labels=A , ) return iou_result
211
1
import datasets UpperCamelCase = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' UpperCamelCase = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' UpperCamelCase = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def a ( self : List[str] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
221
from maths.prime_factors import prime_factors def _A ( lowerCAmelCase_ : int ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCAmelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase_ ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowerCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
221
1
def a ( A__ : list[list] ) -> list[list]: """simple docstring""" _lowercase =current_set.copy() for row_index, row in enumerate(A__ ): _lowercase =row[0] for column_index, column in enumerate(A__ ): if magnitude == 0: _lowercase =column continue _lowercase =column / magnitude # Subtract to cancel term _lowercase =current_set[0] _lowercase =[first_row] _lowercase =current_set[1::] for row in current_set: _lowercase =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A__ ) continue for column_index in range(len(A__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _lowercase =final_set[0] _lowercase =[] _lowercase =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _lowercase =simplify(A__ ) for i in range(len(A__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , A__ ) _lowercase =resultant return final_set def a ( A__ : list[list] ) -> list: """simple docstring""" if len(A__ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) _lowercase =len(A__ ) + 1 if any(len(A__ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(A__ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(A__ ) == 1: return [equations[0][-1] / equations[0][0]] _lowercase =equations.copy() if any(0 in row for row in data_set ): _lowercase =data_set.copy() _lowercase =[] for row_index, row in enumerate(A__ ): if 0 not in row: _lowercase =data_set.pop(A__ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , A__ ) _lowercase =data_set.copy() _lowercase =simplify(A__ ) _lowercase =simplified[::-1] _lowercase =[] for row in simplified: _lowercase =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _lowercase =row.copy()[: len(A__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A__ ) == 0: solutions.append(0 ) continue _lowercase =temp_row[1::] _lowercase =temp_row[::-1] for column_index, column in enumerate(A__ ): current_solution -= column * solutions[column_index] solutions.append(A__ ) _lowercase =[] for item in solutions: final.append(float(round(A__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
205
from __future__ import annotations def a ( A__ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _lowercase =nums[0] _lowercase =0 for num in nums[1:]: _lowercase , _lowercase =( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
205
1
"""simple docstring""" UpperCAmelCase__ = 256 # Modulus to hash a string UpperCAmelCase__ = 100_0003 def A ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = len(lowerCamelCase_ ) _UpperCAmelCase = len(lowerCamelCase_ ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCamelCase_ ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = """abc1abc12""" _UpperCAmelCase = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _UpperCAmelCase = """alskfjaldsk23adsfabcabc""" assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) and not rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) # Test 2) _UpperCAmelCase = """ABABX""" _UpperCAmelCase = """ABABZABABYABABX""" assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) # Test 3) _UpperCAmelCase = """AAAB""" _UpperCAmelCase = """ABAAAAAB""" assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) # Test 4) _UpperCAmelCase = """abcdabcy""" _UpperCAmelCase = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) # Test 5) _UpperCAmelCase = """Lü""" _UpperCAmelCase = """Lüsai""" assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = """Lue""" assert not rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
358
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = ShapEImgaImgPipeline UpperCamelCase = ['''image'''] UpperCamelCase = ['''image'''] UpperCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" return 32 @property def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self : List[str]) -> List[Any]: """simple docstring""" return 8 @property def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _UpperCAmelCase = CLIPVisionModel(A) return model @property def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" _UpperCAmelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_24 , ) return image_processor @property def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _UpperCAmelCase = PriorTransformer(**A) return model @property def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _UpperCAmelCase = ShapERenderer(**A) return model def _lowerCamelCase ( self : Any) -> Any: """simple docstring""" _UpperCAmelCase = self.dummy_prior _UpperCAmelCase = self.dummy_image_encoder _UpperCAmelCase = self.dummy_image_processor _UpperCAmelCase = self.dummy_renderer _UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=A , clip_sample=A , clip_sample_range=1.0 , ) _UpperCAmelCase = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : List[str] , A : Optional[Any] , A : Tuple=0) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A)).to(A) if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = pipe(**self.get_dummy_inputs(A)) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _lowerCamelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch_device == 'cpu' _UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A , relax_max_difference=A , ) def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 1 _UpperCAmelCase = 2 _UpperCAmelCase = self.get_dummy_inputs(A) for key in inputs.keys(): if key in self.batch_params: _UpperCAmelCase = batch_size * [inputs[key]] _UpperCAmelCase = pipe(**A , num_images_per_prompt=A)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') _UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = pipe( A , generator=A , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A , A)
290
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCamelCase ( lowerCamelCase__ ): def __get__( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowerCamelCase_ ='''__cached_''' + self.fget.__name__ lowerCamelCase_ =getattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if cached is None: lowerCamelCase_ =self.fget(lowerCAmelCase ) setattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) return cached def a_ ( __snake_case : str ) -> List[str]: """simple docstring""" lowerCamelCase_ =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def a_ ( __snake_case : Any ) -> List[str]: """simple docstring""" if is_torch_fx_proxy(__snake_case ): return True if is_torch_available(): import torch if isinstance(__snake_case , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__snake_case , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__snake_case , (jnp.ndarray, Tracer) ): return True return isinstance(__snake_case , np.ndarray ) def a_ ( __snake_case : Dict ) -> List[str]: """simple docstring""" return isinstance(__snake_case , np.ndarray ) def a_ ( __snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" return _is_numpy(__snake_case ) def a_ ( __snake_case : List[str] ) -> Optional[Any]: """simple docstring""" import torch return isinstance(__snake_case , torch.Tensor ) def a_ ( __snake_case : Tuple ) -> List[Any]: """simple docstring""" return False if not is_torch_available() else _is_torch(__snake_case ) def a_ ( __snake_case : Any ) -> int: """simple docstring""" import torch return isinstance(__snake_case , torch.device ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" return False if not is_torch_available() else _is_torch_device(__snake_case ) def a_ ( __snake_case : Dict ) -> List[str]: """simple docstring""" import torch if isinstance(__snake_case , __snake_case ): if hasattr(__snake_case , __snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) else: return False return isinstance(__snake_case , torch.dtype ) def a_ ( __snake_case : str ) -> Any: """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(__snake_case ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" import tensorflow as tf return isinstance(__snake_case , tf.Tensor ) def a_ ( __snake_case : str ) -> Optional[int]: """simple docstring""" return False if not is_tf_available() else _is_tensorflow(__snake_case ) def a_ ( __snake_case : str ) -> Optional[Any]: """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__snake_case , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(__snake_case ) return type(__snake_case ) == tf.Tensor def a_ ( __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(__snake_case ) def a_ ( __snake_case : Optional[int] ) -> List[Any]: """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(__snake_case , jnp.ndarray ) def a_ ( __snake_case : Optional[Any] ) -> Tuple: """simple docstring""" return False if not is_flax_available() else _is_jax(__snake_case ) def a_ ( __snake_case : Any ) -> Union[str, Any]: """simple docstring""" if isinstance(__snake_case , (dict, UserDict) ): return {k: to_py_obj(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return [to_py_obj(__snake_case ) for o in obj] elif is_tf_tensor(__snake_case ): return obj.numpy().tolist() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().tolist() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ).tolist() elif isinstance(__snake_case , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a_ ( __snake_case : Optional[Any] ) -> int: """simple docstring""" if isinstance(__snake_case , (dict, UserDict) ): return {k: to_numpy(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return np.array(__snake_case ) elif is_tf_tensor(__snake_case ): return obj.numpy() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().numpy() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ) else: return obj class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =fields(self ) # Safety and consistency checks if not len(lowerCAmelCase ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) lowerCamelCase_ =getattr(self, class_fields[0].name ) lowerCamelCase_ =all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCAmelCase ): if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =first_field.items() lowerCamelCase_ =True else: try: lowerCamelCase_ =iter(lowerCAmelCase ) lowerCamelCase_ =True except TypeError: lowerCamelCase_ =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCAmelCase ): if ( not isinstance(lowerCAmelCase, (list, tuple) ) or not len(lowerCAmelCase ) == 2 or not isinstance(element[0], lowerCAmelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase_ =first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: lowerCamelCase_ =element[1] elif first_field is not None: lowerCamelCase_ =first_field else: for field in class_fields: lowerCamelCase_ =getattr(self, field.name ) if v is not None: lowerCamelCase_ =v def __delitem__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCAmelCase, lowerCAmelCase ) super().__setattr__(lowerCAmelCase, lowerCAmelCase ) def __setitem__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__setitem__(lowerCAmelCase, lowerCAmelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def lowercase__ ( cls, lowerCAmelCase ): """simple docstring""" raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : str ='longest' lowercase : Tuple ='max_length' lowercase : Dict ='do_not_pad' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : str ='pt' lowercase : Any ='tf' lowercase : str ='np' lowercase : List[Any] ='jax' class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =context_managers lowerCamelCase_ =ExitStack() def __enter__( self ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(lowerCAmelCase ) def __exit__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" self.stack.__exit__(*lowerCAmelCase, **lowerCAmelCase ) def a_ ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =infer_framework(__snake_case ) if framework == "tf": lowerCamelCase_ =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase_ =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase_ =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a_ ( __snake_case : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =model_class.__name__ lowerCamelCase_ =infer_framework(__snake_case ) if framework == "tf": lowerCamelCase_ =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase_ =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase_ =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a_ ( __snake_case : MutableMapping , __snake_case : str = "" , __snake_case : str = "." ) -> str: """simple docstring""" def _flatten_dict(__snake_case : List[str] , __snake_case : Tuple="" , __snake_case : str="." ): for k, v in d.items(): lowerCamelCase_ =str(__snake_case ) + delimiter + str(__snake_case ) if parent_key else k if v and isinstance(__snake_case , __snake_case ): yield from flatten_dict(__snake_case , __snake_case , delimiter=__snake_case ).items() else: yield key, v return dict(_flatten_dict(__snake_case , __snake_case , __snake_case ) ) @contextmanager def a_ ( __snake_case : Tuple , __snake_case : bool = False ) -> Tuple: """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a_ ( __snake_case : Dict , __snake_case : List[str]=None ) -> List[str]: """simple docstring""" if is_numpy_array(__snake_case ): return np.transpose(__snake_case , axes=__snake_case ) elif is_torch_tensor(__snake_case ): return array.T if axes is None else array.permute(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.transpose(__snake_case , perm=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.transpose(__snake_case , axes=__snake_case ) else: raise ValueError(F'''Type not supported for transpose: {type(__snake_case )}.''' ) def a_ ( __snake_case : List[Any] , __snake_case : Tuple ) -> Dict: """simple docstring""" if is_numpy_array(__snake_case ): return np.reshape(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.reshape(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.reshape(__snake_case , __snake_case ) elif is_jax_tensor(__snake_case ): return jnp.reshape(__snake_case , __snake_case ) else: raise ValueError(F'''Type not supported for reshape: {type(__snake_case )}.''' ) def a_ ( __snake_case : Optional[int] , __snake_case : Optional[int]=None ) -> Optional[int]: """simple docstring""" if is_numpy_array(__snake_case ): return np.squeeze(__snake_case , axis=__snake_case ) elif is_torch_tensor(__snake_case ): return array.squeeze() if axis is None else array.squeeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.squeeze(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.squeeze(__snake_case , axis=__snake_case ) else: raise ValueError(F'''Type not supported for squeeze: {type(__snake_case )}.''' ) def a_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if is_numpy_array(__snake_case ): return np.expand_dims(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.unsqueeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.expand_dims(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.expand_dims(__snake_case , axis=__snake_case ) else: raise ValueError(F'''Type not supported for expand_dims: {type(__snake_case )}.''' ) def a_ ( __snake_case : Dict ) -> List[str]: """simple docstring""" if is_numpy_array(__snake_case ): return np.size(__snake_case ) elif is_torch_tensor(__snake_case ): return array.numel() elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.size(__snake_case ) elif is_jax_tensor(__snake_case ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(__snake_case )}.''' ) def a_ ( __snake_case : Tuple , __snake_case : int ) -> Optional[int]: """simple docstring""" for key, value in auto_map.items(): if isinstance(__snake_case , (tuple, list) ): lowerCamelCase_ =[F'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase_ =F'''{repo_id}--{value}''' return auto_map def a_ ( __snake_case : Optional[Any] ) -> Tuple: """simple docstring""" for base_class in inspect.getmro(__snake_case ): lowerCamelCase_ =base_class.__module__ lowerCamelCase_ =base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
75
def A ( lowercase ) -> list: '''simple docstring''' UpperCamelCase = len(lowercase ) for i in range(1 , lowercase ): UpperCamelCase = collection[i] UpperCamelCase = 0 UpperCamelCase = i - 1 while low <= high: UpperCamelCase = (low + high) // 2 if val < collection[mid]: UpperCamelCase = mid - 1 else: UpperCamelCase = mid + 1 for j in range(lowercase , lowercase , -1 ): UpperCamelCase = collection[j - 1] UpperCamelCase = val return collection if __name__ == "__main__": _UpperCAmelCase : List[Any] = input("Enter numbers separated by a comma:\n").strip() _UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
222
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput snake_case_ = 8 def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=BITS ): '''simple docstring''' lowercase__ : Union[str, Any] = x.device lowercase__ : Dict = (x * 255).int().clamp(0 , 255 ) lowercase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase ) lowercase__ : Optional[int] = rearrange(__lowerCAmelCase , 'd -> d 1 1' ) lowercase__ : Dict = rearrange(__lowerCAmelCase , 'b c h w -> b c 1 h w' ) lowercase__ : Tuple = ((x & mask) != 0).float() lowercase__ : str = rearrange(__lowerCAmelCase , 'b c d h w -> b (c d) h w' ) lowercase__ : List[Any] = bits * 2 - 1 return bits def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any]=BITS ): '''simple docstring''' lowercase__ : Any = x.device lowercase__ : Union[str, Any] = (x > 0).int() lowercase__ : List[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCAmelCase , dtype=torch.intaa ) lowercase__ : str = rearrange(__lowerCAmelCase , 'd -> d 1 1' ) lowercase__ : List[str] = rearrange(__lowerCAmelCase , 'b (c d) h w -> b c d h w' , d=8 ) lowercase__ : int = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict = 0.0 , SCREAMING_SNAKE_CASE_ : Dict = True , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Optional[Any] = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase__ : Optional[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase__ : Optional[int] = self.alphas_cumprod[timestep] lowercase__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase__ : Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase__ : Optional[int] = self.bit_scale if self.config.clip_sample: lowercase__ : Tuple = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase__ : Union[str, Any] = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Optional[Any] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase__ : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : int = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase__ : List[Any] = model_output.device if torch.is_tensor(__lowerCAmelCase ) else '''cpu''' lowercase__ : Optional[int] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase ).to(__lowerCAmelCase ) lowercase__ : List[str] = self._get_variance(__lowerCAmelCase , __lowerCAmelCase ) ** 0.5 * eta * noise lowercase__ : Optional[int] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def snake_case__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str]="epsilon" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Any = True , ): '''simple docstring''' lowercase__ : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase__ : Tuple = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowercase__ : Dict = None # 1. compute alphas, betas lowercase__ : Tuple = self.alphas_cumprod[t] lowercase__ : str = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase__ : int = 1 - alpha_prod_t lowercase__ : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase__ : Optional[int] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowercase__ : Optional[int] = self.bit_scale if self.config.clip_sample: lowercase__ : str = torch.clamp(__lowerCAmelCase , -scale , __lowerCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : str = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase__ : List[Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : List[str] = 0 if t > 0: lowercase__ : Any = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCAmelCase ).to(model_output.device ) lowercase__ : str = (self._get_variance(__lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise lowercase__ : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ (__lowerCamelCase ): def __init__( self , a , a , a = 1.0 , ): super().__init__() lowercase__ : Optional[int] = bit_scale lowercase__ : Optional[Any] = ( ddim_bit_scheduler_step if isinstance(__lowercase , __lowercase) else ddpm_bit_scheduler_step ) self.register_modules(unet=__lowercase , scheduler=__lowercase) @torch.no_grad() def __call__( self , a = 256 , a = 256 , a = 50 , a = None , a = 1 , a = "pil" , a = True , **a , ): lowercase__ : Tuple = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__lowercase , ) lowercase__ : int = decimal_to_bits(__lowercase) * self.bit_scale lowercase__ : Optional[Any] = latents.to(self.device) self.scheduler.set_timesteps(__lowercase) for t in self.progress_bar(self.scheduler.timesteps): # predict the noise residual lowercase__ : List[Any] = self.unet(__lowercase , __lowercase).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[Any] = self.scheduler.step(__lowercase , __lowercase , __lowercase).prev_sample lowercase__ : List[str] = bits_to_decimal(__lowercase) if output_type == "pil": lowercase__ : Optional[int] = self.numpy_to_pil(__lowercase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase)
350
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case_ = logging.get_logger(__name__) snake_case_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) snake_case_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) snake_case_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) snake_case_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) snake_case_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) snake_case_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) snake_case_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) snake_case_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) snake_case_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) snake_case_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) snake_case_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) snake_case_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) snake_case_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : str = FLAX_MODEL_MAPPING snake_case_ = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : str = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : Tuple = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class SCREAMING_SNAKE_CASE__ (_BaseAutoModelClass ): __lowerCamelCase : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
216
0
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : float ) ->float: return 1_0 - x * x def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float ) ->float: # Bolzano theory in order to find if there is a root between a and b if equation(snake_case_ ) * equation(snake_case_ ) >= 0: raise ValueError('Wrong space!' ) lowerCamelCase__ : List[Any] =a while (b - a) >= 0.01: # Find middle point lowerCamelCase__ : Any =(a + b) / 2 # Check if middle point is root if equation(snake_case_ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_ ) * equation(snake_case_ ) < 0: lowerCamelCase__ : str =c else: lowerCamelCase__ : Tuple =c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
126
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A_ : """simple docstring""" def __init__( self :str , lowerCamelCase_ :int , lowerCamelCase_ :List[str]=13 , lowerCamelCase_ :List[Any]=7 , lowerCamelCase_ :str=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Any=99 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Dict=5 , lowerCamelCase_ :Any=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=512 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :List[str]=0.02 , lowerCamelCase_ :List[Any]=3 , lowerCamelCase_ :Dict=4 , lowerCamelCase_ :Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Any =parent lowerCamelCase__ : Union[str, Any] =batch_size lowerCamelCase__ : Dict =seq_length lowerCamelCase__ : List[str] =is_training lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Optional[Any] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Optional[int] =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : str =attention_probs_dropout_prob lowerCamelCase__ : Tuple =max_position_embeddings lowerCamelCase__ : Union[str, Any] =type_vocab_size lowerCamelCase__ : Dict =type_sequence_label_size lowerCamelCase__ : str =initializer_range lowerCamelCase__ : Any =num_labels lowerCamelCase__ : int =num_choices lowerCamelCase__ : List[str] =scope lowerCamelCase__ : List[str] =self.vocab_size - 1 def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Union[str, Any] =None if self.use_token_type_ids: lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any =None lowerCamelCase__ : Any =None lowerCamelCase__ : str =None if self.use_labels: lowerCamelCase__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : int =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : List[str] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , *lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Any =OpenAIGPTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : int =OpenAIGPTLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :str , *lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : Tuple =OpenAIGPTDoubleHeadsModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , *lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =self.num_labels lowerCamelCase__ : Tuple =OpenAIGPTForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] =model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict =config_and_inputs lowerCamelCase__ : Tuple ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class A_ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any]=False ): """simple docstring""" lowerCamelCase__ : str =super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Dict =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Union[str, Any] =inputs_dict['labels'] lowerCamelCase__ : Tuple =inputs_dict['labels'] lowerCamelCase__ : int =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase_ , ) lowerCamelCase__ : Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[str] =OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] =ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def UpperCAmelCase__ ( self :int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] =OpenAIGPTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCamelCase_ ) lowerCamelCase__ : List[str] =torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCamelCase_ ) # the president is lowerCamelCase__ : List[Any] =[ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : Tuple =model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase_ )
126
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
81
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :torch.FloatTensor lowerCamelCase :torch.FloatTensor class a ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 20_00 , lowerCAmelCase_ = 0.15 , lowerCAmelCase_ = 0.01 , lowerCAmelCase_ = 1348.0 , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = 1 , ) -> Tuple: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None self.set_sigmas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Tuple: _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps _A = torch.linspace(1 , lowerCAmelCase_ , lowerCAmelCase_ , device=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Any: _A = sigma_min if sigma_min is not None else self.config.sigma_min _A = sigma_max if sigma_max is not None else self.config.sigma_max _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ ) _A = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _A = torch.exp(torch.linspace(math.log(lowerCAmelCase_ ) , math.log(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) _A = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _A = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _A = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _A = timesteps.to(self.discrete_sigmas.device ) _A = self.discrete_sigmas[timesteps].to(sample.device ) _A = self.get_adjacent_sigma(lowerCAmelCase_ , lowerCAmelCase_ ).to(sample.device ) _A = torch.zeros_like(lowerCAmelCase_ ) _A = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _A = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _A = diffusion.unsqueeze(-1 ) _A = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _A = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase_ , device=sample.device , dtype=sample.dtype ) _A = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _A = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase_ , prev_sample_mean=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _A = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _A = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _A = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _A = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _A = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _A = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _A = step_size.unsqueeze(-1 ) _A = sample + step_size * model_output _A = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A = timesteps.to(original_samples.device ) _A = self.discrete_sigmas.to(original_samples.device )[timesteps] _A = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase_ ) * sigmas[:, None, None, None] ) _A = noise + original_samples return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
81
1
"""simple docstring""" from math import ceil def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase : Any = list(range(0 , _UpperCAmelCase ) ) lowercase : str = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase : List[Any] = [] for i in device_map_blocks: if device_map_blocks.count(_UpperCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_UpperCAmelCase ) # Missing blocks lowercase : Any = [i for i in blocks if i not in device_map_blocks] lowercase : int = [i for i in device_map_blocks if i not in blocks] if len(_UpperCAmelCase ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_UpperCAmelCase ) ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase : str = list(range(_UpperCAmelCase ) ) lowercase : Dict = int(ceil(n_layers / len(_UpperCAmelCase ) ) ) lowercase : Optional[int] = [layers[i : i + n_blocks] for i in range(0 , _UpperCAmelCase , _UpperCAmelCase )] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) )
255
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: List[Any] = logging.get_logger(__name__) _UpperCamelCase: int = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'megatron-bert' def __init__( self : int, lowerCAmelCase : List[Any]=29056, lowerCAmelCase : int=1024, lowerCAmelCase : List[str]=24, lowerCAmelCase : Union[str, Any]=16, lowerCAmelCase : Union[str, Any]=4096, lowerCAmelCase : Dict="gelu", lowerCAmelCase : List[str]=0.1, lowerCAmelCase : Any=0.1, lowerCAmelCase : str=512, lowerCAmelCase : str=2, lowerCAmelCase : Any=0.02, lowerCAmelCase : Any=1e-12, lowerCAmelCase : List[str]=0, lowerCAmelCase : List[str]="absolute", lowerCAmelCase : Any=True, **lowerCAmelCase : Union[str, Any], ) -> Tuple: super().__init__(pad_token_id=lowerCAmelCase, **lowerCAmelCase ) lowercase : Tuple = vocab_size lowercase : Any = hidden_size lowercase : int = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Optional[int] = hidden_act lowercase : Optional[int] = intermediate_size lowercase : List[Any] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : Optional[int] = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Any = initializer_range lowercase : Any = layer_norm_eps lowercase : Optional[int] = position_embedding_type lowercase : Optional[int] = use_cache
255
1
# Lint as: python3 import itertools import os import re UpperCAmelCase_ = re.compile(r'([A-Z]+)([A-Z][a-z])') UpperCAmelCase_ = re.compile(r'([a-z\d])([A-Z])') UpperCAmelCase_ = re.compile(r'(?<!_)_(?!_)') UpperCAmelCase_ = re.compile(r'(_{2,})') UpperCAmelCase_ = r'^\w+(\.\w+)*$' UpperCAmelCase_ = r'<>:/\|?*' def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , A__ ) __lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , A__ ) return name.lower() def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' __lowerCamelCase = _single_underscore_re.split(A__ ) __lowerCamelCase = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != """""" ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(A__ ) def lowerCamelCase__ ( A__ : int , A__ : Tuple ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , A__ ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(A__ )}-{split}' def lowerCamelCase__ ( A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] , A__ : Union[str, Any]=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) if filetype_suffix: prefix += f'.{filetype_suffix}' __lowerCamelCase = os.path.join(A__ , A__ ) return f'{filepath}*' def lowerCamelCase__ ( A__ : List[str] , A__ : Dict , A__ : List[Any] , A__ : Union[str, Any]=None , A__ : str=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) __lowerCamelCase = os.path.join(A__ , A__ ) if shard_lengths: __lowerCamelCase = len(A__ ) __lowerCamelCase = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(A__ )] if filetype_suffix: __lowerCamelCase = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: __lowerCamelCase = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
"""simple docstring""" import operator def lowerCamelCase ( _UpperCamelCase : list , _UpperCamelCase : bool = False , _UpperCamelCase : list | None = None ) -> list: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = operator.lt if reverse else operator.gt __UpperCAmelCase : List[str] = solution or [] if not arr: return solution __UpperCAmelCase : str = [arr.pop(0 )] for i, item in enumerate(_UpperCamelCase ): if _operator(_UpperCamelCase , sublist[-1] ): sublist.append(_UpperCamelCase ) arr.pop(_UpperCamelCase ) # merging sublist into solution list if not solution: solution.extend(_UpperCamelCase ) else: while sublist: __UpperCAmelCase : Optional[int] = sublist.pop(0 ) for i, xx in enumerate(_UpperCamelCase ): if not _operator(_UpperCamelCase , _UpperCamelCase ): solution.insert(_UpperCamelCase , _UpperCamelCase ) break else: solution.append(_UpperCamelCase ) strand_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
115
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = torch.device('cpu') def lowerCamelCase ( ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = dct.pop(_UpperCamelCase ) __UpperCAmelCase : List[str] = val def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [] for k in state_dict.keys(): __UpperCAmelCase : int = k if ".pwconv" in k: __UpperCAmelCase : Optional[int] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: __UpperCAmelCase : List[Any] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: __UpperCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: __UpperCAmelCase : int = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __UpperCAmelCase : str = k_new.split(""".""" ) if ls[2].isdigit(): __UpperCAmelCase : Dict = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __UpperCAmelCase : List[str] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase : Optional[int] = 1_0_0_0 __UpperCAmelCase : Optional[int] = """huggingface/label-files""" __UpperCAmelCase : str = """imagenet-1k-id2label.json""" __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Any = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = idalabel __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCAmelCase : Tuple = [3, 3, 6, 4] __UpperCAmelCase : List[Any] = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": __UpperCAmelCase : Optional[int] = [3, 3, 9, 6] __UpperCAmelCase : Tuple = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": __UpperCAmelCase : Dict = [4, 3, 1_0, 5] __UpperCAmelCase : Optional[Any] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": __UpperCAmelCase : str = [4, 4, 1_2, 6] __UpperCAmelCase : str = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="""cpu""" , check_hash=_UpperCamelCase ) else: __UpperCAmelCase : Dict = torch.load(_UpperCamelCase , map_location="""cpu""" ) __UpperCAmelCase : str = checkpoint __UpperCAmelCase : Union[str, Any] = create_rename_keys(_UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model __UpperCAmelCase : int = SwiftFormerForImageClassification(_UpperCamelCase ).eval() hf_model.load_state_dict(_UpperCamelCase ) # prepare test inputs __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __UpperCAmelCase : Optional[Any] = processor(images=_UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models __UpperCAmelCase : Tuple = get_expected_output(_UpperCamelCase ) __UpperCAmelCase : Dict = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _UpperCamelCase , atol=1E-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') UpperCAmelCase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
115
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowercase_ : def __init__( self , __UpperCamelCase , __UpperCamelCase=1_3 , __UpperCamelCase=7 , __UpperCamelCase=6 , __UpperCamelCase=1_7 , __UpperCamelCase=2_3 , __UpperCamelCase=1_1 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = act_dim UpperCamelCase_ = state_dim UpperCamelCase_ = hidden_size UpperCamelCase_ = max_length UpperCamelCase_ = is_training def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCamelCase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCamelCase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCamelCase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCamelCase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCamelCase_ = random_attention_mask((self.batch_size, self.seq_length) ) UpperCamelCase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase_ ( self ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = DecisionTransformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else () A__ : Optional[int] = () A__ : Any = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids A__ : List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features A__ : Dict = False A__ : str = False A__ : Optional[int] = False A__ : str = False A__ : Any = False A__ : Union[str, Any] = False A__ : str = False A__ : List[str] = False A__ : Union[str, Any] = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = DecisionTransformerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = DecisionTransformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(__UpperCamelCase )] , __UpperCamelCase ) @require_torch class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = 2 # number of steps of autoregressive prediction we will perform UpperCamelCase_ = 1_0 # defined by the RL environment, may be normalized UpperCamelCase_ = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) UpperCamelCase_ = model.to(__UpperCamelCase ) UpperCamelCase_ = model.config torch.manual_seed(0 ) UpperCamelCase_ = torch.randn(1 , 1 , config.state_dim ).to(device=__UpperCamelCase , dtype=torch.floataa ) # env.reset() UpperCamelCase_ = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=__UpperCamelCase ) UpperCamelCase_ = torch.tensor(__UpperCamelCase , device=__UpperCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCamelCase_ = state UpperCamelCase_ = torch.zeros(1 , 0 , config.act_dim , device=__UpperCamelCase , dtype=torch.floataa ) UpperCamelCase_ = torch.zeros(1 , 0 , device=__UpperCamelCase , dtype=torch.floataa ) UpperCamelCase_ = torch.tensor(0 , device=__UpperCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(__UpperCamelCase ): UpperCamelCase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__UpperCamelCase )] , dim=1 ) UpperCamelCase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=__UpperCamelCase )] , dim=1 ) UpperCamelCase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = model( states=__UpperCamelCase , actions=__UpperCamelCase , rewards=__UpperCamelCase , returns_to_go=__UpperCamelCase , timesteps=__UpperCamelCase , attention_mask=__UpperCamelCase , return_dict=__UpperCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__UpperCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) UpperCamelCase_ = action_pred[0, -1] UpperCamelCase_ = torch.cat([states, state] , dim=1 ) UpperCamelCase_ = returns_to_go[0, -1] - reward UpperCamelCase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCamelCase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=__UpperCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
356
import comet # From: unbabel-comet import torch import datasets _A = datasets.logging.get_logger(__name__) _A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.config_name == "default": UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: UpperCamelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ): """simple docstring""" if gpus is None: UpperCamelCase_ = 1 if torch.cuda.is_available() else 0 UpperCamelCase_ = {"""src""": sources, """mt""": predictions, """ref""": references} UpperCamelCase_ = [dict(zip(__UpperCamelCase , __UpperCamelCase ) ) for t in zip(*data.values() )] UpperCamelCase_ , UpperCamelCase_ = self.scorer.predict(__UpperCamelCase , gpus=__UpperCamelCase , progress_bar=__UpperCamelCase ) return {"mean_score": mean_score, "scores": scores}
261
0
from random import randint, random def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = False , lowercase_ = 5 , ) -> list: """simple docstring""" A__ = [[-1] * number_of_cells] # Create a highway without any car A__ = 0 A__ = max(lowercase_ , 0 ) while i < number_of_cells: A__ = ( randint(0 , lowercase_ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = 0 A__ = highway_now[car_index + 1 :] for cell in range(len(lowercase_ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowercase_ , -1 ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = len(lowercase_ ) # Beforce calculations, the highway is empty A__ = [-1] * number_of_cells for car_index in range(lowercase_ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed A__ = min(highway_now[car_index] + 1 , lowercase_ ) # Number of empty cell before the next car A__ = get_distance(lowercase_ , lowercase_ ) - 1 # We can't have the car causing an accident A__ = min(next_highway[car_index] , lowercase_ ) if random() < probability: # Randomly, a driver will slow down A__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = len(highway[0] ) for i in range(lowercase_ ): A__ = update(highway[i] , lowercase_ , lowercase_ ) A__ = [-1] * number_of_cells for car_index in range(lowercase_ ): A__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) A__ = (car_index + speed) % number_of_cells # Commit the change of position A__ = speed highway.append(lowercase_ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' import heapq def __UpperCamelCase ( lowercase__ : dict ): '''simple docstring''' __lowercase =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase__, [-1 * len(lowercase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowercase =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowercase =heapq.heappop(lowercase__ )[1][0] chosen_vertices.add(lowercase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowercase =elem[1][1].index(lowercase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
141
0
def lowerCamelCase__ (_UpperCAmelCase = 100_0000): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = {1: 1} for inputa in range(2 , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: SCREAMING_SNAKE_CASE = (3 * number) + 1 counter += 1 if inputa not in counters: SCREAMING_SNAKE_CASE = counter if counter > pre_counter: SCREAMING_SNAKE_CASE = inputa SCREAMING_SNAKE_CASE = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
327
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]: if rouge_types is None: SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a) if use_aggregator: SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE = [] for ref, pred in zip(a , a): SCREAMING_SNAKE_CASE = scorer.score(a , a) if use_aggregator: aggregator.add_scores(a) else: scores.append(a) if use_aggregator: SCREAMING_SNAKE_CASE = aggregator.aggregate() else: SCREAMING_SNAKE_CASE = {} for key in scores[0]: SCREAMING_SNAKE_CASE = [score[key] for score in scores] return result
327
1
'''simple docstring''' lowercase_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} lowercase_ = ["a", "b", "c", "d", "e"] def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = start # add current to visited visited.append(__A) _a = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _a = topological_sort(__A , __A , __A) # if all neighbors visited add current to sort sort.append(__A) # if all vertices haven't been visited select a new one to visit if len(__A) != len(__A): for vertice in vertices: if vertice not in visited: _a = topological_sort(__A , __A , __A) # return sort return sort if __name__ == "__main__": lowercase_ = topological_sort("a", [], []) print(sort)
211
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'gptj' __lowerCamelCase : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=50_400 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Tuple: """simple docstring""" _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __A ( A ): '''simple docstring''' def __init__(self , A , A = "default" , A = None , A = False , ) -> List[str]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? _a = 0 @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def a__ (self ) -> int: """simple docstring""" return self._config.n_head def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def a__ (self ) -> int: """simple docstring""" return 13
211
1
import copy import re class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Optional[int] = "hp" __UpperCamelCase : Any = {} __UpperCamelCase : Tuple = None @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = prefix UpperCamelCase : Tuple = defaults cls.build_naming_info() @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) == 0: return "" UpperCamelCase : Any = None if any(char.isdigit() for char in word ): raise Exception(f"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 ): UpperCamelCase : Optional[Any] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: UpperCamelCase : Dict = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = '''''' while integer != 0: UpperCamelCase : List[str] = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s UpperCamelCase : List[str] = 0 while True: UpperCamelCase : Union[str, Any] = word + '''#''' + int_to_alphabetic(__SCREAMING_SNAKE_CASE ) if sword in info["reverse_short_word"]: continue else: UpperCamelCase : List[Any] = sword break UpperCamelCase : Optional[int] = short_word UpperCamelCase : str = word return short_word @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = param_name.split('''_''' ) UpperCamelCase : Any = [TrialShortNamer.shortname_for_word(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name UpperCamelCase : int = ['''''', '''_'''] for separator in separators: UpperCamelCase : Dict = separator.join(__SCREAMING_SNAKE_CASE ) if shortname not in info["reverse_short_param"]: UpperCamelCase : Tuple = shortname UpperCamelCase : List[Any] = param_name return shortname return param_name @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = TrialShortNamer.shortname_for_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = short_name UpperCamelCase : Union[str, Any] = param_name @classmethod def _lowercase ( cls ): """simple docstring""" if cls.NAMING_INFO is not None: return UpperCamelCase : Union[str, Any] = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } UpperCamelCase : Optional[Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = info @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE ): """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None UpperCamelCase : Any = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue UpperCamelCase : Any = cls.NAMING_INFO['''short_param'''][k] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = 1 if v else 0 UpperCamelCase : List[Any] = '''''' if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) else '''-''' UpperCamelCase : str = f"""{key}{sep}{v}""" name.append(__SCREAMING_SNAKE_CASE ) return "_".join(__SCREAMING_SNAKE_CASE ) @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = repr[len(cls.PREFIX ) + 1 :] if repr == "": UpperCamelCase : Optional[int] = [] else: UpperCamelCase : str = repr.split('''_''' ) UpperCamelCase : Any = {} for value in values: if "-" in value: UpperCamelCase , UpperCamelCase : Any = value.split('''-''' ) else: UpperCamelCase : Tuple = re.sub('''[0-9.]''' , '''''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = float(re.sub('''[^0-9.]''' , '''''' , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[str] = cls.NAMING_INFO['''reverse_short_param'''][p_k] UpperCamelCase : Tuple = p_v for k in cls.DEFAULTS: if k not in parameters: UpperCamelCase : List[Any] = cls.DEFAULTS[k] return parameters
315
def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : Any = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 2_6 def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCamelCase : List[Any] = True elif char.isupper(): UpperCamelCase : List[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def a ( ): """simple docstring""" from timeit import timeit UpperCamelCase : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Any = {"vocab_file": "vocab.txt"} snake_case_ : List[Any] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } snake_case_ : Union[str, Any] = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def A (__A : Optional[int] ) -> Dict: """simple docstring""" with open(__A , '''r''' ) as f: UpperCAmelCase_ = f.read().splitlines() return [l.strip() for l in lines] class __snake_case ( a ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , _snake_case : int , _snake_case : Tuple="<unk>" , _snake_case : List[str]="<cls>" , _snake_case : str="<pad>" , _snake_case : str="<mask>" , _snake_case : Optional[Any]="<eos>" , **_snake_case : Dict , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = load_vocab_file(_snake_case) UpperCAmelCase_ = dict(enumerate(self.all_tokens)) UpperCAmelCase_ = {tok: ind for ind, tok in enumerate(self.all_tokens)} UpperCAmelCase_ = unk_token UpperCAmelCase_ = cls_token UpperCAmelCase_ = pad_token UpperCAmelCase_ = mask_token UpperCAmelCase_ = eos_token UpperCAmelCase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def lowerCamelCase ( self : str , _snake_case : int): """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token) def lowerCamelCase ( self : Union[str, Any] , _snake_case : str): """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token)) def lowerCamelCase ( self : List[Any] , _snake_case : List[Any] , **_snake_case : int): """simple docstring""" return text.split() def lowerCamelCase ( self : int , _snake_case : Optional[Any]=False): """simple docstring""" return len(self._id_to_token) def lowerCamelCase ( self : str): """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def lowerCamelCase ( self : Dict , _snake_case : str): """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token)) def lowerCamelCase ( self : Tuple , _snake_case : int): """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token) def lowerCamelCase ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCamelCase ( self : Tuple , _snake_case : List , _snake_case : Optional[List] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase_ = [1] + ([0] * len(_snake_case)) + [1] if token_ids_a is not None: mask += [0] * len(_snake_case) + [1] return mask def lowerCamelCase ( self : Any , _snake_case : List[str] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = os.path.join(_snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''') with open(_snake_case , '''w''') as f: f.write('''\n'''.join(self.all_tokens)) return (vocab_file,) @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return self.get_vocab_size(with_added_tokens=_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[List[str], List[AddedToken]] , _snake_case : bool = False): """simple docstring""" return super()._add_tokens(_snake_case , special_tokens=_snake_case)
51
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean snake_case_ : str = 0 snake_case_ : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case_ : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right snake_case_ : List[Any] = tuple[int, int] class __snake_case : def __init__( self : Any , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Node | None , ): """simple docstring""" UpperCAmelCase_ = pos_x UpperCAmelCase_ = pos_y UpperCAmelCase_ = (pos_y, pos_x) UpperCAmelCase_ = goal_x UpperCAmelCase_ = goal_y UpperCAmelCase_ = g_cost UpperCAmelCase_ = parent UpperCAmelCase_ = self.calculate_heuristic() UpperCAmelCase_ = self.g_cost + self.h_cost def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.pos_x - self.goal_x UpperCAmelCase_ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_snake_case) + abs(_snake_case) else: return sqrt(dy**2 + dx**2) def __lt__( self : Union[str, Any] , _snake_case : Node): """simple docstring""" return self.f_cost < other.f_cost class __snake_case : def __init__( self : str , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case) UpperCAmelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , _snake_case) UpperCAmelCase_ = [self.start] UpperCAmelCase_ = [] UpperCAmelCase_ = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(_snake_case) self.closed_nodes.append(_snake_case) UpperCAmelCase_ = self.get_successors(_snake_case) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = self.open_nodes.pop(self.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_snake_case) else: self.open_nodes.append(_snake_case) return [self.start.pos] def lowerCamelCase ( self : Tuple , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = [] for action in delta: UpperCAmelCase_ = parent.pos_x + action[1] UpperCAmelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_snake_case) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , )) return successors def lowerCamelCase ( self : Any , _snake_case : Node | None): """simple docstring""" UpperCAmelCase_ = node UpperCAmelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) UpperCAmelCase_ = current_node.parent path.reverse() return path class __snake_case : def __init__( self : Any , _snake_case : TPosition , _snake_case : TPosition): """simple docstring""" UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = AStar(_snake_case , _snake_case) UpperCAmelCase_ = False def lowerCamelCase ( self : List[Any]): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ = self.fwd_astar.open_nodes.pop(0) UpperCAmelCase_ = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _snake_case , _snake_case) self.fwd_astar.closed_nodes.append(_snake_case) self.bwd_astar.closed_nodes.append(_snake_case) UpperCAmelCase_ = current_bwd_node UpperCAmelCase_ = current_fwd_node UpperCAmelCase_ = { self.fwd_astar: self.fwd_astar.get_successors(_snake_case), self.bwd_astar: self.bwd_astar.get_successors(_snake_case), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = astar.open_nodes.pop( astar.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_snake_case) else: astar.open_nodes.append(_snake_case) return [self.fwd_astar.start.pos] def lowerCamelCase ( self : int , _snake_case : Node , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = self.fwd_astar.retrace_path(_snake_case) UpperCAmelCase_ = self.bwd_astar.retrace_path(_snake_case) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] snake_case_ : Any = (0, 0) snake_case_ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case_ : str = time.time() snake_case_ : List[str] = AStar(init, goal) snake_case_ : Optional[int] = a_star.search() snake_case_ : Optional[Any] = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") snake_case_ : int = time.time() snake_case_ : Dict = BidirectionalAStar(init, goal) snake_case_ : str = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
51
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): @property def __magic_name__ ( self : str ): torch.manual_seed(0 ) UpperCAmelCase : List[Any] = UNetaDModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def __magic_name__ ( self : Tuple ): UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Any = PNDMScheduler() UpperCAmelCase : List[str] = PNDMPipeline(unet=__A, scheduler=__A ) pndm.to(__A ) pndm.set_progress_bar_config(disable=__A ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pndm(generator=__A, num_inference_steps=2_0, output_type='''numpy''' ).images UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pndm(generator=__A, num_inference_steps=2_0, output_type='''numpy''', return_dict=__A )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase : Dict = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : str ): UpperCAmelCase : Optional[int] = '''google/ddpm-cifar10-32''' UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained(__A ) UpperCAmelCase : Union[str, Any] = PNDMScheduler() UpperCAmelCase : List[Any] = PNDMPipeline(unet=__A, scheduler=__A ) pndm.to(__A ) pndm.set_progress_bar_config(disable=__A ) UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : Dict = pndm(generator=__A, output_type='''numpy''' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase : int = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
365
import logging import os from .state import PartialState class __UpperCAmelCase ( logging.LoggerAdapter ): @staticmethod def __magic_name__ ( __A : str ): UpperCAmelCase : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : Union[str, Any], *__A : Optional[int], **__A : Tuple ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) UpperCAmelCase : List[str] = kwargs.pop('''main_process_only''', __A ) UpperCAmelCase : int = kwargs.pop('''in_order''', __A ) if self.isEnabledFor(__A ): if self._should_log(__A ): UpperCAmelCase , UpperCAmelCase : Dict = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) elif in_order: UpperCAmelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) state.wait_for_everyone() def a__ ( UpperCAmelCase : str , UpperCAmelCase : str = None ) -> Dict: if log_level is None: UpperCAmelCase : Union[str, Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCAmelCase ) UpperCAmelCase : Tuple = logging.getLogger(UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCAmelCase , {} )
99
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _snake_case = 'src/diffusers' # Matches is_xxx_available() _snake_case = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _snake_case = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _snake_case = '\n{0} = None\n' _snake_case = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _snake_case = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _A ( snake_case ) -> Dict: _lowercase : List[Any] = _re_backend.findall(snake_case ) if len(snake_case ) == 0: return None return "_and_".join(snake_case ) def _A ( ) -> Dict: with open(os.path.join(snake_case , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: _lowercase : Any = f.readlines() # Get to the point we do the actual imports for type checking _lowercase : Union[str, Any] = 0 _lowercase : List[str] = {} # Go through the end of the file while line_index < len(snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _lowercase : Optional[int] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 _lowercase : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(snake_case ) and len(lines[line_index] ) > 1: _lowercase : str = lines[line_index] _lowercase : Tuple = _re_single_line_import.search(snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(snake_case ) > 0: _lowercase : int = objects else: line_index += 1 return backend_specific_objects def _A ( snake_case , snake_case ) -> Optional[Any]: if name.isupper(): return DUMMY_CONSTANT.format(snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(snake_case , snake_case ) else: return DUMMY_CLASS.format(snake_case , snake_case ) def _A ( snake_case=None ) -> str: if backend_specific_objects is None: _lowercase : str = read_init() # For special correspondence backend to module name as used in the function requires_modulename _lowercase : Optional[Any] = {} for backend, objects in backend_specific_objects.items(): _lowercase : str = "[" + ", ".join(F'''"{b}"''' for b in backend.split("_and_" ) ) + "]" _lowercase : List[str] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(snake_case , snake_case ) for o in objects] ) _lowercase : Union[str, Any] = dummy_file return dummy_files def _A ( snake_case=False ) -> Union[str, Any]: _lowercase : Any = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _lowercase : Any = {"torch": "pt"} # Locate actual dummy modules and read their content. _lowercase : Tuple = os.path.join(snake_case , "utils" ) _lowercase : Union[str, Any] = { backend: os.path.join(snake_case , F'''dummy_{short_names.get(snake_case , snake_case )}_objects.py''' ) for backend in dummy_files.keys() } _lowercase : Union[str, Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(snake_case ): with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: _lowercase : int = f.read() else: _lowercase : Optional[Any] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(snake_case , snake_case )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'''diffusers.utils.dummy_{short_names.get(snake_case , snake_case )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
250
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = inspect.getfile(accelerate.test_utils ) _lowercase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _lowercase : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() _lowercase : Tuple = [sys.executable] + distributed_args execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
250
1
def _UpperCamelCase ( snake_case__ ) -> int: assert isinstance(snake_case__, snake_case__ ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __UpperCAmelCase : Any = f'''The input value of [n={number}] has to be > 0''' raise ValueError(snake_case__ ) else: __UpperCAmelCase : int = sylvester(number - 1 ) __UpperCAmelCase : Tuple = num - 1 __UpperCAmelCase : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
342
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
1
'''simple docstring''' def a__ ( a__ ): # noqa: E741 """simple docstring""" __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [0] * n __SCREAMING_SNAKE_CASE = [False] * n __SCREAMING_SNAKE_CASE = [False] * n def dfs(a__ , a__ , a__ , a__ ): if parent == root: out_edge_count += 1 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = at for to in l[at]: if to == parent: pass elif not visited[to]: __SCREAMING_SNAKE_CASE = dfs(a__ , a__ , a__ , a__ ) __SCREAMING_SNAKE_CASE = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __SCREAMING_SNAKE_CASE = True # AP found via cycle if at == low[to]: __SCREAMING_SNAKE_CASE = True else: __SCREAMING_SNAKE_CASE = min(low[at] , a__ ) return out_edge_count for i in range(a__ ): if not visited[i]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = dfs(a__ , a__ , -1 , a__ ) __SCREAMING_SNAKE_CASE = out_edge_count > 1 for x in range(len(a__ ) ): if is_art[x] is True: print(a__ ) # Adjacency list of graph UpperCAmelCase : Any = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
267
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCAmelCase : str = logging.get_logger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "linear" lowerCAmelCase__ = "cosine" lowerCAmelCase__ = "cosine_with_restarts" lowerCAmelCase__ = "polynomial" lowerCAmelCase__ = "constant" lowerCAmelCase__ = "constant_with_warmup" lowerCAmelCase__ = "piecewise_constant" def a__ ( a__ , a__ = -1 ): """simple docstring""" return LambdaLR(a__ , lambda a__ : 1 , last_epoch=a__ ) def a__ ( a__ , a__ , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1.0 , a__ ) ) return 1.0 return LambdaLR(a__ , a__ , last_epoch=a__ ) def a__ ( a__ , a__ , a__ = -1 ): """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(a__ ) __SCREAMING_SNAKE_CASE = float(a__ ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(a__ , a__ ): def rule_func(a__ ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(a__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(a__ , a__ ) return LambdaLR(a__ , a__ , last_epoch=a__ ) def a__ ( a__ , a__ , a__ , a__=-1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__ = 0.5 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(a__ ) * 2.0 * progress )) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__ = 1 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(a__ ) * progress) % 1.0) )) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__=1E-7 , a__=1.0 , a__=-1 ): """simple docstring""" __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(a__ , a__ , a__ ) UpperCAmelCase : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a__ ( a__ , a__ , a__ = None , a__ = None , a__ = None , a__ = 1 , a__ = 1.0 , a__ = -1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE = SchedulerType(a__ ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(a__ , last_epoch=a__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(a__ , step_rules=a__ , last_epoch=a__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(a__ , num_warmup_steps=a__ , last_epoch=a__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , num_cycles=a__ , last_epoch=a__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , power=a__ , last_epoch=a__ , ) return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , last_epoch=a__ )
267
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = [False] * len(__lowerCamelCase ) __snake_case : Optional[int] = [] queue.append(__lowerCamelCase ) __snake_case : List[Any] = True while queue: __snake_case : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) __snake_case : Any = True __snake_case : Union[str, Any] = u return visited[t] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : int = [-1] * (len(__lowerCamelCase )) __snake_case : Tuple = 0 while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = float("""Inf""" ) __snake_case : Tuple = sink while s != source: # Find the minimum value in select path __snake_case : int = min(__lowerCamelCase , graph[parent[s]][s] ) __snake_case : Tuple = parent[s] max_flow += path_flow __snake_case : List[Any] = sink while v != source: __snake_case : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __snake_case : Any = parent[v] return max_flow __UpperCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __UpperCamelCase , __UpperCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
367
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" __snake_case : int = len(_lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _lowerCamelCase , _lowerCamelCase , ) def _a ( _lowerCamelCase ) -> None: """simple docstring""" __snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , _lowerCamelCase , _lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(_lowerCamelCase ) print("""""" ) print(len(_lowerCamelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : List[str] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
146
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __lowerCamelCase = HfArgumentParser(InitializationArguments) __lowerCamelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __lowerCamelCase = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) __lowerCamelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __lowerCamelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
358
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
0
"""simple docstring""" from manim import * class _a ( SCREAMING_SNAKE_CASE_): """simple docstring""" def lowercase__ ( self : List[str] )->int: _UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase = Rectangle(height=0.2_5 , width=0.2_5 ) _UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = Text('''CPU''' , font_size=2_4 ) _UpperCAmelCase = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) _UpperCAmelCase = [mem.copy() for i in range(4 )] _UpperCAmelCase = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = Text('''GPU''' , font_size=2_4 ) _UpperCAmelCase = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = Text('''Model''' , font_size=2_4 ) _UpperCAmelCase = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for i, rect in enumerate(__UpperCAmelCase ): rect.set_stroke(__UpperCAmelCase ) _UpperCAmelCase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__UpperCAmelCase , buff=0.0 ) self.add(__UpperCAmelCase ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = Text('''Loaded Checkpoint''' , font_size=2_4 ) _UpperCAmelCase = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [] for i, rect in enumerate(__UpperCAmelCase ): _UpperCAmelCase = fill.copy().set_fill(__UpperCAmelCase , opacity=0.7 ) target.move_to(__UpperCAmelCase ) ckpt_arr.append(__UpperCAmelCase ) _UpperCAmelCase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase ) _UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) _UpperCAmelCase = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=1_8 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) _UpperCAmelCase = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) _UpperCAmelCase = Text('''Disk''' , font_size=2_4 ) _UpperCAmelCase = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) , Write(__UpperCAmelCase , run_time=1 ) , Create(__UpperCAmelCase , run_time=1 ) ) _UpperCAmelCase = [] for i, rect in enumerate(__UpperCAmelCase ): _UpperCAmelCase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__UpperCAmelCase , run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(FadeOut(__UpperCAmelCase ) ) _UpperCAmelCase = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) ) self.play( FadeOut(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) , ) self.wait()
260
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Tuple: a_ = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") a_ = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") model.to(__UpperCAmelCase) from datasets import load_dataset a_ = load_dataset("nielsr/rvlcdip-demo") a_ = dataset["train"][0]["image"].convert("RGB") a_ = image_processor(__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) a_ = outputs.logits a_ = torch.Size((1, 16)) self.assertEqual(logits.shape , __UpperCAmelCase) a_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4))
243
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() lowerCAmelCase__ : Dict =logging.get_logger(__name__) lowerCAmelCase__ : int ='The Nymphenburg Palace is a beautiful palace in Munich!' def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } SCREAMING_SNAKE_CASE_ : Dict = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py SCREAMING_SNAKE_CASE_ : Any = BERTEncoder( attention_cell=predefined_args['attention_cell'], num_layers=predefined_args['num_layers'], units=predefined_args['units'], hidden_size=predefined_args['hidden_size'], max_length=predefined_args['max_length'], num_heads=predefined_args['num_heads'], scaled=predefined_args['scaled'], dropout=predefined_args['dropout'], output_attention=A__, output_all_encodings=A__, use_residual=predefined_args['use_residual'], activation=predefined_args.get('activation', 'gelu' ), layer_norm_eps=predefined_args.get('layer_norm_eps', A__ ), ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(get_home_dir(), 'models' ) SCREAMING_SNAKE_CASE_ : Tuple = _load_vocab(A__, A__, A__, cls=A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = nlp.model.BERTModel( A__, len(A__ ), units=predefined_args['units'], embed_size=predefined_args['embed_size'], embed_dropout=predefined_args['embed_dropout'], word_embed=predefined_args['word_embed'], use_pooler=A__, use_token_type_embed=A__, token_type_vocab_size=predefined_args['token_type_vocab_size'], use_classifier=A__, use_decoder=A__, ) original_bort.load_parameters(A__, cast_dtype=A__, ignore_extra=A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 SCREAMING_SNAKE_CASE_ : List[str] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(A__ ), } SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertConfig.from_dict(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = BertForMaskedLM(A__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A__, A__ ): SCREAMING_SNAKE_CASE_ : int = hf_param.shape SCREAMING_SNAKE_CASE_ : Dict = to_torch(params[gluon_param] ) SCREAMING_SNAKE_CASE_ : List[str] = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight, 'word_embed.0.weight' ) SCREAMING_SNAKE_CASE_ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight, 'encoder.position_weight' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias, 'encoder.layer_norm.beta' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight, 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) SCREAMING_SNAKE_CASE_ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): SCREAMING_SNAKE_CASE_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention SCREAMING_SNAKE_CASE_ : BertSelfAttention = layer.attention.self SCREAMING_SNAKE_CASE_ : List[str] = check_and_map_params( self_attn.key.bias.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) SCREAMING_SNAKE_CASE_ : List[Any] = check_and_map_params( self_attn.key.weight.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( self_attn.query.bias.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) SCREAMING_SNAKE_CASE_ : int = check_and_map_params( self_attn.query.weight.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) SCREAMING_SNAKE_CASE_ : List[Any] = check_and_map_params( self_attn.value.bias.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) SCREAMING_SNAKE_CASE_ : List[Any] = check_and_map_params( self_attn.value.weight.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output SCREAMING_SNAKE_CASE_ : BertSelfOutput = layer.attention.output SCREAMING_SNAKE_CASE_ : Tuple = check_and_map_params( self_output.dense.bias, F'''encoder.transformer_cells.{i}.proj.bias''' ) SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params( self_output.dense.weight, F'''encoder.transformer_cells.{i}.proj.weight''' ) SCREAMING_SNAKE_CASE_ : int = check_and_map_params( self_output.LayerNorm.bias, F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) SCREAMING_SNAKE_CASE_ : str = check_and_map_params( self_output.LayerNorm.weight, F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate SCREAMING_SNAKE_CASE_ : BertIntermediate = layer.intermediate SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params( intermediate.dense.bias, F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) SCREAMING_SNAKE_CASE_ : List[str] = check_and_map_params( intermediate.dense.weight, F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output SCREAMING_SNAKE_CASE_ : BertOutput = layer.output SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( bert_output.dense.bias, F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) SCREAMING_SNAKE_CASE_ : int = check_and_map_params( bert_output.dense.weight, F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias, F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params( bert_output.LayerNorm.weight, F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models SCREAMING_SNAKE_CASE_ : Optional[int] = RobertaTokenizer.from_pretrained('roberta-base' ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode_plus(A__ )['input_ids'] # Get gluon output SCREAMING_SNAKE_CASE_ : Tuple = mx.nd.array([input_ids] ) SCREAMING_SNAKE_CASE_ : Dict = original_bort(inputs=A__, token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(A__ ) SCREAMING_SNAKE_CASE_ : Any = BertModel.from_pretrained(A__ ) hf_bort_model.eval() SCREAMING_SNAKE_CASE_ : int = tokenizer.encode_plus(A__, return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = hf_bort_model(**A__ )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = output_gluon[0].asnumpy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_hf[0].detach().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() SCREAMING_SNAKE_CASE_ : List[Any] = np.allclose(A__, A__, atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:', A__ ) if __name__ == "__main__": lowerCAmelCase__ : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ : str =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
365
import socket def a__ ( ): SCREAMING_SNAKE_CASE_ : Dict = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_ : Any = socket.gethostname() SCREAMING_SNAKE_CASE_ : List[str] = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file', 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: SCREAMING_SNAKE_CASE_ : Tuple = sock.recv(1_0_2_4 ) if not data: break out_file.write(A__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
162
0
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a ( _lowerCamelCase ): def A_ ( self : Optional[int] ): snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase_ , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(lowercase_ , '''num_encoder_blocks''' ) ) class a : def __init__( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Optional[Any]=64 , lowercase_ : Any=3 , lowercase_ : Optional[Any]=4 , lowercase_ : Dict=[2, 2, 2, 2] , lowercase_ : int=[8, 4, 2, 1] , lowercase_ : str=[16, 32, 64, 128] , lowercase_ : Optional[Any]=[1, 4, 8, 16] , lowercase_ : Any=[1, 2, 4, 8] , lowercase_ : Optional[int]=True , lowercase_ : str=True , lowercase_ : List[str]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Any=0.02 , lowercase_ : Union[str, Any]=3 , lowercase_ : Union[str, Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_encoder_blocks snake_case_ = sr_ratios snake_case_ = depths snake_case_ = hidden_sizes snake_case_ = downsampling_rates snake_case_ = num_attention_heads snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope def A_ ( self : str ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def A_ ( self : int ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Any ): snake_case_ = SegformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) snake_case_ = snake_case_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def A_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = SegformerForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def A_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str ): snake_case_ = 1 snake_case_ = SegformerForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowercase_ ) snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertGreater(result.loss , 0.0 ) def A_ ( self : List[str] ): snake_case_ = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Any ): snake_case_ = SegformerModelTester(self ) snake_case_ = SegformerConfigTester(self , config_class=lowercase_ ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase_ ) def A_ ( self : Any ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase_ ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def A_ ( self : str ): pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def A_ ( self : List[Any] ): pass def A_ ( self : Optional[Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def A_ ( self : str ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.attentions snake_case_ = sum(self.model_tester.depths ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.attentions self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case_ = (self.model_tester.image_size // 32) ** 2 snake_case_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case_ = len(lowercase_ ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) snake_case_ = outputs.attentions self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def A_ ( self : str ): def check_hidden_states_output(lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[str] ): snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.hidden_states snake_case_ = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def A_ ( self : Union[str, Any] ): if not self.model_tester.is_training: return snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_ ): continue snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.train() snake_case_ = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) snake_case_ = model(**lowercase_ ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A_ ( self : List[Any] ): pass @slow def A_ ( self : Dict ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SegformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __magic_name__ ( ) -> Optional[int]: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : List[Any] ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase_ , atol=1e-4 ) ) @slow def A_ ( self : List[str] ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase_ , atol=1e-1 ) ) @slow def A_ ( self : str ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(500, 300)] ) snake_case_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowercase_ ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ) snake_case_ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowercase_ )
56
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
0
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _a = TypeVar('KEY') _a = TypeVar('VAL') @dataclass(frozen=lowercase__ ,slots=lowercase__ ) class A_ (Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : KEY SCREAMING_SNAKE_CASE__ : VAL class A_ (_Item ): '''simple docstring''' def __init__( self ): """simple docstring""" super().__init__(lowercase_ , lowercase_ ) def __bool__( self ): """simple docstring""" return False _a = _DeletedItem() class A_ (MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self , lowercase_ = 8 , lowercase_ = 0.75 ): """simple docstring""" UpperCAmelCase_ : Tuple = initial_block_size UpperCAmelCase_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 UpperCAmelCase_ : Optional[Any] = capacity_factor UpperCAmelCase_ : int = 0 def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return hash(lowercase_ ) % len(self._buckets ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return (ind + 1) % len(self._buckets ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self._buckets[ind] if not stored: UpperCAmelCase_ : List[Any] = _Item(lowercase_ , lowercase_ ) self._len += 1 return True elif stored.key == key: UpperCAmelCase_ : Tuple = _Item(lowercase_ , lowercase_ ) return True else: return False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False UpperCAmelCase_ : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self._buckets UpperCAmelCase_ : Any = [None] * new_size UpperCAmelCase_ : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self._get_bucket_index(lowercase_ ) for _ in range(len(self._buckets ) ): yield ind UpperCAmelCase_ : Tuple = self._get_next_ind(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" for ind in self._iterate_buckets(lowercase_ ): if self._try_set(lowercase_ , lowercase_ , lowercase_ ): break def __setitem__( self , lowercase_ , lowercase_ ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(lowercase_ , lowercase_ ) def __delitem__( self , lowercase_ ): """simple docstring""" for ind in self._iterate_buckets(lowercase_ ): UpperCAmelCase_ : Optional[Any] = self._buckets[ind] if item is None: raise KeyError(lowercase_ ) if item is _deleted: continue if item.key == key: UpperCAmelCase_ : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , lowercase_ ): """simple docstring""" for ind in self._iterate_buckets(lowercase_ ): UpperCAmelCase_ : Dict = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase_ ) def __len__( self ): """simple docstring""" return self._len def __iter__( self ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = " ,".join( F"""{item.key}: {item.val}""" for item in self._buckets if item ) return F"""HashMap({val_string})"""
61
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE__ = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __UpperCamelCase )-> str: if "://" in dataset_path: UpperCamelCase = dataset_path.split("""://""" )[1] return dataset_path def lowercase__ ( __UpperCamelCase )-> bool: if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCamelCase = not is_remote_filesystem(__UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__UpperCamelCase ) , fs._strip_protocol(__UpperCamelCase ) ) else: fs.mv(__UpperCamelCase , __UpperCamelCase , recursive=__UpperCamelCase ) def lowercase__ ( )-> None: if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = threading.Lock()
321
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def UpperCAmelCase_ ( self : Optional[Any] ) -> int: raise NotImplementedError()
195
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = R".*/layers_(\d+)" __SCREAMING_SNAKE_CASE = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = R"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase_ ) return s_dict a__ : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = str(activation[1] ) __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="./" , lowerCAmelCase_=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: __SCREAMING_SNAKE_CASE = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_params["target"] __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ , sep="/" ) __SCREAMING_SNAKE_CASE = rename_keys(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a__ : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
195
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowercase: int = logging.get_logger(__name__) def a( A : Any ) -> List[str]: """simple docstring""" a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a = 128 elif "12-12" in model_name: a = 12 a = 12 elif "14-14" in model_name: a = 14 a = 14 elif "16-16" in model_name: a = 16 a = 16 else: raise ValueError("Model not supported" ) a = "huggingface/label-files" if "speech-commands" in model_name: a = 35 a = "speech-commands-v2-id2label.json" else: a = 527 a = "audioset-id2label.json" a = json.load(open(hf_hub_download(a__ , a__ , repo_type="dataset" ) , "r" ) ) a = {int(a__ ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} return config def a( A : int ) -> Optional[Any]: """simple docstring""" if "module.v" in name: a = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: a = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: a = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: a = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: a = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a = name.replace("attn" , "attention.self" ) if "norm1" in name: a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: a = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: a = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def a( A : str , A : Optional[Any] ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(a__ ) if "qkv" in key: a = key.split("." ) a = int(key_split[3] ) a = config.hidden_size if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] else: a = val return orig_state_dict def a( A : List[Any] ) -> List[Any]: """simple docstring""" a = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(a__ , a__ ) @torch.no_grad() def a( A : Optional[Any] , A : Optional[int] , A : int=False ) -> int: """simple docstring""" a = get_audio_spectrogram_transformer_config(a__ ) a = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(a__ , map_location="cpu" ) # remove some keys remove_keys(a__ ) # rename some keys a = convert_state_dict(a__ , a__ ) # load 🤗 model a = ASTForAudioClassification(a__ ) model.eval() model.load_state_dict(a__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a = -4.2_677_393 if "speech-commands" not in model_name else -6.845_978 a = 4.5_689_974 if "speech-commands" not in model_name else 5.5_654_526 a = 1024 if "speech-commands" not in model_name else 128 a = ASTFeatureExtractor(mean=a__ , std=a__ , max_length=a__ ) if "speech-commands" in model_name: a = load_dataset("speech_commands" , "v0.02" , split="validation" ) a = dataset[0]["audio"]["array"] else: a = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) a , a = torchaudio.load(a__ ) a = waveform.squeeze().numpy() a = feature_extractor(a__ , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass a = model(**a__ ) a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": a = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , a__ , atol=1e-4 ): raise ValueError("Logits don\'t match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(a__ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _lowercase: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: Optional[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
227
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : List[str] = JukeboxTokenizer _a : List[Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
329
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer A__ : List[Any] =logging.get_logger(__name__) # pylint: disable=invalid-name A__ : Union[str, Any] =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class UpperCAmelCase ( _a ): _lowercase: List[Any] = 42 class UpperCAmelCase ( _a ): def __init__( self : Optional[Any] , __snake_case : PriorTransformer , __snake_case : CLIPVisionModel , __snake_case : CLIPImageProcessor , __snake_case : HeunDiscreteScheduler , __snake_case : ShapERenderer , ) -> Optional[int]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def lowercase__ ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any , __snake_case : Any , __snake_case : List[str] , __snake_case : Any ) -> List[str]: if latents is None: _lowerCAmelCase = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) _lowerCAmelCase = latents.to(_a ) _lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : Dict , __snake_case : str=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase = torch.device(f"cuda:{gpu_id}" ) _lowerCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def lowercase__ ( self : Optional[Any] ) -> Any: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase__ ( self : Any , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[str] , ) -> Any: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _lowerCAmelCase = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _lowerCAmelCase = image.to(dtype=self.image_encoder.dtype , device=_a ) _lowerCAmelCase = self.image_encoder(_a )["last_hidden_state"] _lowerCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCAmelCase = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self : List[Any] , __snake_case : Union[PIL.Image.Image, List[PIL.Image.Image]] , __snake_case : int = 1 , __snake_case : int = 25 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : float = 4.0 , __snake_case : int = 64 , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> str: if isinstance(_a , PIL.Image.Image ): _lowerCAmelCase = 1 elif isinstance(_a , torch.Tensor ): _lowerCAmelCase = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _lowerCAmelCase = len(_a ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}" ) _lowerCAmelCase = self._execution_device _lowerCAmelCase = batch_size * num_images_per_prompt _lowerCAmelCase = guidance_scale > 1.0 _lowerCAmelCase = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _lowerCAmelCase = self.scheduler.timesteps _lowerCAmelCase = self.prior.config.num_embeddings _lowerCAmelCase = self.prior.config.embedding_dim _lowerCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCAmelCase = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase = self.scheduler.scale_model_input(_a , _a ) _lowerCAmelCase = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _lowerCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCAmelCase = noise_pred.chunk(2 ) _lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCAmelCase = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _lowerCAmelCase = [] for i, latent in enumerate(_a ): print() _lowerCAmelCase = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(_a ) _lowerCAmelCase = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) _lowerCAmelCase = images.cpu().numpy() if output_type == "pil": _lowerCAmelCase = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
370
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if not (isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _lowerCAmelCase = len(lowerCAmelCase ) _lowerCAmelCase = len(lowerCAmelCase ) _lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _lowerCAmelCase = i _lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
220
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Dict = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class snake_case__ : """simple docstring""" def __init__( self : str , __lowerCamelCase : int = 14 ) -> None: if group not in primes: raise ValueError("Unsupported Group" ) a = primes[group]["prime"] a = primes[group]["generator"] a = int(hexlify(urandom(32 ) ) , base=16 ) def __UpperCAmelCase ( self : Optional[int] ) -> str: return hex(self.__private_key )[2:] def __UpperCAmelCase ( self : List[Any] ) -> str: a = pow(self.generator , self.__private_key , self.prime ) return hex(__lowerCamelCase )[2:] def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str ) -> str: a = int(__lowerCamelCase , base=16 ) if not self.is_valid_public_key(__lowerCamelCase ): raise ValueError("Invalid public key" ) a = pow(__lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__lowerCamelCase , (prime - 1) // 2 , __lowerCamelCase ) == 1 ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 14 ) -> str: a = int(__lowerCamelCase , base=16 ) a = int(__lowerCamelCase , base=16 ) a = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Invalid public key" ) a = pow(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
107
def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(__snake_case ) * abs(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
209
0
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = old_name if "patch_embed" in old_name: __UpperCAmelCase : int = old_name.split("." ) if layer == "0": __UpperCAmelCase : Dict = old_name.replace("0", "convolution1" ) elif layer == "1": __UpperCAmelCase : List[str] = old_name.replace("1", "batchnorm_before" ) elif layer == "3": __UpperCAmelCase : List[str] = old_name.replace("3", "convolution2" ) else: __UpperCAmelCase : Union[str, Any] = old_name.replace("4", "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d", lowerCAmelCase_ ): __UpperCAmelCase : Dict = r'\b\d{2}\b' if bool(re.search(lowerCAmelCase_, lowerCAmelCase_ ) ): __UpperCAmelCase : Dict = re.search(R"\d\.\d\d.", lowerCAmelCase_ ).group() else: __UpperCAmelCase : Optional[int] = re.search(R"\d\.\d.", lowerCAmelCase_ ).group() if int(match[0] ) < 6: __UpperCAmelCase : int = old_name.replace(lowerCAmelCase_, "" ) __UpperCAmelCase : Union[str, Any] = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1] ) __UpperCAmelCase : int = 'intermediate_stages.' + trimmed_name else: __UpperCAmelCase : Tuple = old_name.replace(lowerCAmelCase_, "" ) if int(match[2] ) < num_meta4D_last_stage: __UpperCAmelCase : str = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2] ) else: __UpperCAmelCase : int = str(int(match[2] ) - num_meta4D_last_stage ) __UpperCAmelCase : List[str] = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: __UpperCAmelCase : Union[str, Any] = trimmed_name.replace("norm1", "layernorm1" ) elif "norm2" in old_name: __UpperCAmelCase : List[Any] = trimmed_name.replace("norm2", "layernorm2" ) elif "fc1" in old_name: __UpperCAmelCase : Dict = trimmed_name.replace("fc1", "linear_in" ) elif "fc2" in old_name: __UpperCAmelCase : List[Any] = trimmed_name.replace("fc2", "linear_out" ) __UpperCAmelCase : Dict = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(R".\d.", lowerCAmelCase_ ): __UpperCAmelCase : List[str] = old_name.replace("network", "intermediate_stages" ) if "fc" in new_name: __UpperCAmelCase : Optional[int] = new_name.replace("fc", "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __UpperCAmelCase : Tuple = new_name.replace("norm1", "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __UpperCAmelCase : Union[str, Any] = new_name.replace("norm2", "batchnorm_after" ) if "proj" in new_name: __UpperCAmelCase : Tuple = new_name.replace("proj", "projection" ) if "dist_head" in new_name: __UpperCAmelCase : List[Any] = new_name.replace("dist_head", "distillation_classifier" ) elif "head" in new_name: __UpperCAmelCase : Dict = new_name.replace("head", "classifier" ) elif "patch_embed" in new_name: __UpperCAmelCase : Tuple = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __UpperCAmelCase : int = new_name.replace("norm", "layernorm" ) __UpperCAmelCase : Any = 'efficientformer.' + new_name else: __UpperCAmelCase : Optional[int] = 'efficientformer.encoder.' + new_name return new_name def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): for key in checkpoint.copy().keys(): __UpperCAmelCase : List[str] = checkpoint.pop(lowerCAmelCase_ ) __UpperCAmelCase : List[str] = val return checkpoint def __UpperCamelCase ( ): __UpperCAmelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCAmelCase : List[str] = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return image def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : int = torch.load(lowerCAmelCase_, map_location="cpu" )['model'] __UpperCAmelCase : Any = EfficientFormerConfig.from_json_file(lowerCAmelCase_ ) __UpperCAmelCase : Optional[int] = EfficientFormerForImageClassificationWithTeacher(lowerCAmelCase_ ) __UpperCAmelCase : List[Any] = '_'.join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) __UpperCAmelCase : Dict = config.depths[-1] - config.num_metaad_blocks + 1 __UpperCAmelCase : int = convert_torch_checkpoint(lowerCAmelCase_, lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() __UpperCAmelCase : Any = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : Dict = 256 __UpperCAmelCase : Dict = 224 __UpperCAmelCase : int = EfficientFormerImageProcessor( size={"shortest_edge": image_size}, crop_size={"height": crop_size, "width": crop_size}, resample=pillow_resamplings["bicubic"], ) __UpperCAmelCase : Optional[int] = processor(images=lowerCAmelCase_, return_tensors="pt" ).pixel_values # original processing pipeline __UpperCAmelCase : str = Compose( [ Resize(lowerCAmelCase_, interpolation=pillow_resamplings["bicubic"] ), CenterCrop(lowerCAmelCase_ ), ToTensor(), Normalize(lowerCAmelCase_, lowerCAmelCase_ ), ] ) __UpperCAmelCase : Any = image_transforms(lowerCAmelCase_ ).unsqueeze(0 ) assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ) __UpperCAmelCase : Tuple = model(lowerCAmelCase_ ) __UpperCAmelCase : Tuple = outputs.logits __UpperCAmelCase : List[Any] = (1, 1000) if "l1" in model_name: __UpperCAmelCase : Optional[Any] = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10], lowerCAmelCase_, atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __UpperCAmelCase : List[Any] = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10], lowerCAmelCase_, atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __UpperCAmelCase : Tuple = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(lowerCAmelCase_ ) print(F"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"Bearnardd/{pytorch_dump_path}", commit_message="Add model", use_temp_dir=lowerCAmelCase_, ) processor.push_to_hub( repo_id=F"Bearnardd/{pytorch_dump_path}", commit_message="Add image processor", use_temp_dir=lowerCAmelCase_, ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowerCAmelCase__ : int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
368
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ : Optional[Any] = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __UpperCamelCase ( _UpperCAmelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __UpperCAmelCase : List[str] = list(s_dict.keys() ) for key in keys: __UpperCAmelCase : int = R".*/layers_(\d+)" __UpperCAmelCase : List[str] = key if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = re.sub(R"layers_(\d+)", R"block/\1/layer", _UpperCAmelCase ) __UpperCAmelCase : Any = R"(encoder|decoder)\/" if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = re.match(_UpperCAmelCase, _UpperCAmelCase ).groups() if groups[0] == "encoder": __UpperCAmelCase : Optional[Any] = re.sub(R"/mlp/", R"/1/mlp/", _UpperCAmelCase ) __UpperCAmelCase : List[Any] = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", _UpperCAmelCase ) elif groups[0] == "decoder": __UpperCAmelCase : List[Any] = re.sub(R"/mlp/", R"/2/mlp/", _UpperCAmelCase ) __UpperCAmelCase : Any = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", _UpperCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __UpperCAmelCase : List[str] = new_key.replace(_UpperCAmelCase, _UpperCAmelCase ) print(F"{key} -> {new_key}" ) __UpperCAmelCase : Any = s_dict.pop(_UpperCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Tuple = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Optional[Any] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __UpperCAmelCase : Any = s_dict[key].shape[0] __UpperCAmelCase : str = s_dict[key] for idx in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"{key} -> {key.replace('expert/', 'nested fstring' )}" ) s_dict.pop(_UpperCAmelCase ) return s_dict lowerCAmelCase__ : Optional[Any] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(_UpperCAmelCase, "r" ) as f: __UpperCAmelCase : List[Any] = f.read() __UpperCAmelCase : Union[str, Any] = re.findall(R"(.*) = ([0-9.]*)", _UpperCAmelCase ) __UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __UpperCAmelCase : Tuple = float(_UpperCAmelCase ) if "." in value else int(_UpperCAmelCase ) __UpperCAmelCase : str = re.findall(R"(.*activations) = \(\'(.*)\',\)", _UpperCAmelCase )[0] __UpperCAmelCase : int = str(activation[1] ) __UpperCAmelCase : int = num_experts __UpperCAmelCase : List[str] = SwitchTransformersConfig(**_UpperCAmelCase ) return config def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase="./", _UpperCAmelCase=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) __UpperCAmelCase : Dict = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) if gin_file is not None: __UpperCAmelCase : int = convert_gin_to_config(_UpperCAmelCase, _UpperCAmelCase ) else: __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(_UpperCAmelCase ) __UpperCAmelCase : Any = SwitchTransformersForConditionalGeneration(_UpperCAmelCase ) __UpperCAmelCase : str = flax_params["target"] __UpperCAmelCase : Any = flatten_dict(_UpperCAmelCase, sep="/" ) __UpperCAmelCase : Optional[Any] = rename_keys(_UpperCAmelCase ) __UpperCAmelCase : Any = unflatten_dict(_UpperCAmelCase, sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCAmelCase, _UpperCAmelCase ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowerCAmelCase__ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
37
0
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_lowerCamelCase , n - 1 , _lowerCamelCase ) * a) % mod else: _lowerCAmelCase : List[Any] = binary_exponentiation(_lowerCamelCase , n / 2 , _lowerCamelCase ) return (b * b) % mod # a prime number _snake_case = 701 _snake_case = 10_0000_0000 _snake_case = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
36
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: with open(UpperCamelCase , """rb""" ) as flax_state_f: lowerCAmelCase__ : Union[str, Any] = from_bytes(UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowerCAmelCase__ : str = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase ) ).values() if any(UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowerCAmelCase__ : Dict = jax.tree_util.tree_map( lambda UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase ) lowerCAmelCase__ : Any = """""" lowerCAmelCase__ : Any = flatten_dict(UpperCamelCase , sep=""".""" ) lowerCAmelCase__ : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase__ : Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase__ : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = jnp.transpose(UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase__ : str = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase__ : int = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase ): lowerCAmelCase__ : List[str] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowerCAmelCase__ : Union[str, Any] = """.""".join(UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCAmelCase__ : int = np.asarray(UpperCamelCase ) if not isinstance(UpperCamelCase , np.ndarray ) else flax_tensor lowerCAmelCase__ : int = torch.from_numpy(UpperCamelCase ) # remove from missing keys missing_keys.remove(UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase ) pt_model.load_state_dict(UpperCamelCase ) # re-transform missing_keys to list lowerCAmelCase__ : Optional[int] = list(UpperCamelCase ) if len(UpperCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
37
0
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : List[str] , *__lowerCamelCase : str , **__lowerCamelCase : int ) -> None: warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
218
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
218
1
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCAmelCase_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowerCAmelCase_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowerCAmelCase_ = 'zero2' lowerCAmelCase_ = 'zero3' lowerCAmelCase_ = [ZEROa, ZEROa] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param lowercase__ : Optional[Any] = parameterized.to_safe_name('''_'''.join(str(__lowerCamelCase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test lowerCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A ( A_ ): '''simple docstring''' @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : Tuple ,_snake_case : str ) -> Union[str, Any]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) @require_torch_multi_gpu @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ,_snake_case : Dict ) -> List[str]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : str ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) @require_torch_multi_gpu @parameterized.expand(_snake_case ,name_func=_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : str ,_snake_case : str ) -> Optional[Any]: """simple docstring""" self.run_and_check( stage=_snake_case ,model=_snake_case ,distributed=_snake_case ,fpaa=_snake_case ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Any ) -> Any: """simple docstring""" pass def UpperCAmelCase ( self : Tuple ,_snake_case : str ,_snake_case : str ,_snake_case : int = 10 ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : bool = True ,) -> Any: """simple docstring""" lowercase__ : Optional[int] = models[model] lowercase__ : Optional[int] = self.run_trainer( stage=_snake_case ,model_name=_snake_case ,eval_steps=_snake_case ,num_train_epochs=1 ,distributed=_snake_case ,fpaa=_snake_case ,) self.do_checks(_snake_case ) return output_dir def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : str ,_snake_case : int = 10 ,_snake_case : int = 1 ,_snake_case : bool = True ,_snake_case : bool = True ,) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = self.get_auto_remove_tmp_dir('''./xxx''' ,after=_snake_case ) lowercase__ : Union[str, Any] = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowercase__ : Any = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() lowercase__ : Optional[int] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] lowercase__ : int = self.get_launcher(_snake_case ) lowercase__ : List[str] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_snake_case ,env=self.get_env() ) return output_dir def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[str]=False ) -> Any: """simple docstring""" lowercase__ : Optional[int] = min(2 ,get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class a ( _lowerCamelCase ): def __init__( self : List[Any] , lowercase_ : Any , lowercase_ : Any ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : Tuple , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: snake_case_ = self.unet.config.sample_size / self.unet.config.sample_rate snake_case_ = audio_length_in_s * self.unet.config.sample_rate snake_case_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) snake_case_ = int(lowercase_ ) if sample_size % down_scale_factor != 0: snake_case_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) snake_case_ = int(lowercase_ ) snake_case_ = next(iter(self.unet.parameters() ) ).dtype snake_case_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) snake_case_ = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) snake_case_ = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 snake_case_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample snake_case_ = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
371
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a : def __init__( self : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]=13 , lowercase_ : int=64 , lowercase_ : Tuple=2 , lowercase_ : List[str]=3 , lowercase_ : str=True , lowercase_ : Dict=True , lowercase_ : int=32 , lowercase_ : int=5 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[Any]=37 , lowercase_ : List[Any]="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : str=0.1 , lowercase_ : Any=10 , lowercase_ : List[str]=0.02 , lowercase_ : Tuple=[1, 16, 4, 4] , lowercase_ : Tuple=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size snake_case_ = (self.image_size // 32) ** 2 snake_case_ = num_patches + 1 def A_ ( self : List[Any] ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def A_ ( self : Any ): snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase_ , ) def A_ ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : int ): snake_case_ = ViTHybridModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Optional[int] ): snake_case_ = self.type_sequence_label_size snake_case_ = ViTHybridForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : List[Any] ): snake_case_ = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Optional[Any] ): snake_case_ = ViTHybridModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def A_ ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def A_ ( self : Any ): pass def A_ ( self : Dict ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def A_ ( self : Dict ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def A_ ( self : Optional[Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(lowercase_ ) for model_class in self.all_model_classes: snake_case_ = model_class(config=lowercase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": snake_case_ = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def A_ ( self : Tuple ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTHybridModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def A_ ( self : Any ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A_ ( self : List[str] ): snake_case_ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowercase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**lowercase_ ) # verify the logits snake_case_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) ) @slow @require_accelerate def A_ ( self : Dict ): snake_case_ = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) snake_case_ = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ) snake_case_ = model(**lowercase_ ) snake_case_ = outputs.logits # model predicts one of the 1000 ImageNet classes snake_case_ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
72
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableDiffusionDiffEditPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} SCREAMING_SNAKE_CASE__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ = frozenset([] ) def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowerCamelCase , ) a :int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) a :Tuple = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_zero=_lowerCamelCase , ) torch.manual_seed(0 ) a :Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) a :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) a :Optional[int] = CLIPTextModel(_lowerCamelCase ) a :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a :Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :Tuple = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): a :int = torch.manual_seed(_lowerCamelCase ) else: a :int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :Dict = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :str = image.cpu().permute(0 , 2 , 3 , 1 )[0] a :Optional[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ) if str(_lowerCamelCase ).startswith('''mps''' ): a :Dict = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :Union[str, Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :int = image.cpu().permute(0 , 2 , 3 , 1 )[0] a :Optional[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ) if str(_lowerCamelCase ).startswith('''mps''' ): a :Dict = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :List[Any] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): if not hasattr(self.pipeline_class , '''_optional_components''' ): return a :Any = self.get_dummy_components() a :str = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) a :Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase ) a :List[Any] = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) a :int = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) a :Dict = self.get_dummy_inputs(_lowerCamelCase ) a :Tuple = pipe_loaded(**_lowerCamelCase )[0] a :List[str] = np.abs(output - output_loaded ).max() self.assertLess(_lowerCamelCase , 1e-4 ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = '''cpu''' a :Optional[int] = self.get_dummy_components() a :List[str] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Any = self.get_dummy_mask_inputs(_lowerCamelCase ) a :str = pipe.generate_mask(**_lowerCamelCase ) a :List[str] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) a :List[Any] = np.array([0] * 9 ) a :str = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = '''cpu''' a :List[str] = self.get_dummy_components() a :List[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :str = self.get_dummy_inversion_inputs(_lowerCamelCase ) a :Any = pipe.invert(**_lowerCamelCase ).images a :Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) a :str = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) a :str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = '''cpu''' a :str = self.get_dummy_components() a :Union[str, Any] = {'''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} a :Dict = DPMSolverMultistepScheduler(**_lowerCamelCase ) a :List[str] = DPMSolverMultistepInverseScheduler(**_lowerCamelCase ) a :int = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :str = self.get_dummy_inversion_inputs(_lowerCamelCase ) a :Tuple = pipe.invert(**_lowerCamelCase ).images a :Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) a :int = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) a :Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): a :Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) a :Union[str, Any] = raw_image.convert('''RGB''' ).resize((768, 768) ) a :List[Any] = raw_image def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = torch.manual_seed(0 ) a :int = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) a :Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) a :Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Optional[Any] = '''a bowl of fruit''' a :Any = '''a bowl of pears''' a :Any = pipe.generate_mask( image=self.raw_image , source_prompt=_lowerCamelCase , target_prompt=_lowerCamelCase , generator=_lowerCamelCase , ) a :Dict = pipe.invert( prompt=_lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowerCamelCase ).latents a :List[str] = pipe( prompt=_lowerCamelCase , mask_image=_lowerCamelCase , image_latents=_lowerCamelCase , generator=_lowerCamelCase , negative_prompt=_lowerCamelCase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] a :List[str] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = torch.manual_seed(0 ) a :List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) a :Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) a :Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Dict = '''a bowl of fruit''' a :Optional[Any] = '''a bowl of pears''' a :Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=_lowerCamelCase , target_prompt=_lowerCamelCase , generator=_lowerCamelCase , ) a :Dict = pipe.invert( prompt=_lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowerCamelCase , num_inference_steps=25 , ).latents a :str = pipe( prompt=_lowerCamelCase , mask_image=_lowerCamelCase , image_latents=_lowerCamelCase , generator=_lowerCamelCase , negative_prompt=_lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] a :List[Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
94
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = KandinskyVaaPipeline __lowercase = [ """image_embeds""", """negative_image_embeds""", ] __lowercase = ["""image_embeds""", """negative_image_embeds"""] __lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase = False @property def UpperCAmelCase_ ( self :Optional[Any] )-> str: return 32 @property def UpperCAmelCase_ ( self :int )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self :Optional[Any] )-> Dict: return self.time_input_dim @property def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self :Any )-> List[Any]: return 1_00 @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Union[str, Any]: torch.manual_seed(0 ) A__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } A__ = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self :Any )-> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self :Dict )-> Union[str, Any]: torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowercase_ , ) A__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self :Dict , lowercase_ :int , lowercase_ :Union[str, Any]=0 )-> Dict: A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) if str(lowercase_ ).startswith("mps" ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) A__ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = pipe(**self.get_dummy_inputs(lowercase_ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Dict )-> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self :Any )-> List[Any]: A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) A__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) A__ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) A__ = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) A__ = "red cat, 4k photo" A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__, A__ = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__ = pipeline( image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=1_00 , output_type="np" , ) A__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
237
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __lowerCamelCase ( __magic_name__ : List[Any] ): if hor == 128: a__: Union[str, Any] =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: Optional[int] =(32, 128, 256) a__: Tuple =("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a__: Tuple =("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a__: List[Any] =(32, 64, 128, 256) a__: List[str] =("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a__: Dict =torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) a__: Optional[int] =model.state_dict() a__: str ={ "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a__: List[Any] =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: Tuple =dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: Dict =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) def __lowerCamelCase ( ): a__: Union[str, Any] ={ "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a__: Union[str, Any] =torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) a__: Any =model a__: str =UNetaDModel(**__magic_name__ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) a__: List[str] =dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a__: List[Any] =state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
42
0
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def UpperCAmelCase ( self , __a=0) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = np.random.RandomState(__a) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCamelCase = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCamelCase = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCamelCase = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCamelCase = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCamelCase = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCamelCase = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * [inputs['''prompt''']] # forward _UpperCamelCase = pipe(**__a) _UpperCamelCase = output.images[0, -3:, -3:, -1] _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * [inputs.pop('''prompt''')] _UpperCamelCase = pipe.tokenizer( __a , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=__a , return_tensors='''np''' , ) _UpperCamelCase = text_inputs['''input_ids'''] _UpperCamelCase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0] _UpperCamelCase = prompt_embeds # forward _UpperCamelCase = pipe(**__a) _UpperCamelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * ['''this is a negative prompt'''] _UpperCamelCase = negative_prompt _UpperCamelCase = 3 * [inputs['''prompt''']] # forward _UpperCamelCase = pipe(**__a) _UpperCamelCase = output.images[0, -3:, -3:, -1] _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * [inputs.pop('''prompt''')] _UpperCamelCase = [] for p in [prompt, negative_prompt]: _UpperCamelCase = pipe.tokenizer( __a , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=__a , return_tensors='''np''' , ) _UpperCamelCase = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]) _UpperCamelCase , _UpperCamelCase = embeds # forward _UpperCamelCase = pipe(**__a) _UpperCamelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase( unittest.TestCase ): @property def UpperCAmelCase ( self) -> str: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ort.SessionOptions() _UpperCamelCase = False return options def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' # using the PNDM scheduler by default _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''A painting of a squirrel eating a burger''' np.random.seed(0) _UpperCamelCase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='''np''') _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''') _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''open neural network exchange''' _UpperCamelCase = np.random.RandomState(0) _UpperCamelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type='''np''') _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''') _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''open neural network exchange''' _UpperCamelCase = np.random.RandomState(0) _UpperCamelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type='''np''') _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = 0 def test_callback_fn(__a , __a , __a) -> None: _UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 _UpperCamelCase = False _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''Andromeda galaxy in a bottle''' _UpperCamelCase = np.random.RandomState(0) pipe( prompt=__a , num_inference_steps=5 , guidance_scale=7.5 , generator=__a , callback=__a , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__a , __a) assert pipe.safety_checker is None _UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a) _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(__a) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None
194
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if isinstance(__a , __a): _UpperCamelCase = [label.strip() for label in labels.split(''',''') if label.strip()] return labels def __call__( self , __a , __a , __a) -> Optional[int]: '''simple docstring''' if len(__a) == 0 or len(__a) == 0: raise ValueError('''You must include at least one label and at least one sequence.''') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(__a)) if isinstance(__a , __a): _UpperCamelCase = [sequences] _UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase ) class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = args_parser super().__init__(*__a , **__a) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''') @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail'''): return ind return -1 def UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''') _UpperCamelCase = self.tokenizer.eos_token try: _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase ( self , **__a) -> Any: '''simple docstring''' if kwargs.get('''multi_class''' , __a) is not None: _UpperCamelCase = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''') _UpperCamelCase = {} if "candidate_labels" in kwargs: _UpperCamelCase = self._args_parser._parse_labels(kwargs['''candidate_labels''']) if "hypothesis_template" in kwargs: _UpperCamelCase = kwargs['''hypothesis_template'''] _UpperCamelCase = {} if "multi_label" in kwargs: _UpperCamelCase = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self , __a , *__a , **__a , ) -> int: '''simple docstring''' if len(__a) == 0: pass elif len(__a) == 1 and "candidate_labels" not in kwargs: _UpperCamelCase = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''') return super().__call__(__a , **__a) def UpperCAmelCase ( self , __a , __a=None , __a="This example is {}.") -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self._args_parser(__a , __a , __a) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a)): _UpperCamelCase = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a) - 1, **model_input, } def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = inputs['''candidate_label'''] _UpperCamelCase = inputs['''sequence'''] _UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCamelCase = self.model(**__a) _UpperCamelCase = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def UpperCAmelCase ( self , __a , __a=False) -> Dict: '''simple docstring''' _UpperCamelCase = [outputs['''candidate_label'''] for outputs in model_outputs] _UpperCamelCase = [outputs['''sequence'''] for outputs in model_outputs] _UpperCamelCase = np.concatenate([output['''logits'''].numpy() for output in model_outputs]) _UpperCamelCase = logits.shape[0] _UpperCamelCase = len(__a) _UpperCamelCase = N // n _UpperCamelCase = logits.reshape((num_sequences, n, -1)) if multi_label or len(__a) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCamelCase = self.entailment_id _UpperCamelCase = -1 if entailment_id == 0 else 0 _UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCamelCase = reshaped_outputs[..., self.entailment_id] _UpperCamelCase = np.exp(__a) / np.exp(__a).sum(-1 , keepdims=__a) _UpperCamelCase = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
194
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCAmelCase : Tuple = None UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : str = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } UpperCAmelCase : List[str] = { 'google/rembert': 256, } UpperCAmelCase : List[Any] = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = RemBertTokenizer def __init__( self : Optional[int] , UpperCamelCase : str=None , UpperCamelCase : Tuple=None , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Any="[CLS]" , UpperCamelCase : Optional[Any]="[SEP]" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : Dict="[CLS]" , UpperCamelCase : Union[str, Any]="[MASK]" , **UpperCamelCase : Tuple , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : Tuple = do_lower_case __UpperCAmelCase : List[str] = remove_space __UpperCAmelCase : Dict = keep_accents __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Tuple = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCamelCase ) ) return __UpperCAmelCase : int = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( lowerCamelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowercase__ , unet=lowercase__ , scheduler=lowercase__ ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 50 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowercase__ , ) lowerCAmelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ = {} if accepts_eta: lowerCAmelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase__ = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) # predict the noise residual lowerCAmelCase__ = self.unet(lowercase__ , lowercase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample # decode the image latents with the VAE lowerCAmelCase__ = self.vqvae.decode(lowercase__ ).sample lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
340
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : Union[str, Any] = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] ,lowercase__ : Dict=None ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Tuple ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Any]=None ,**lowercase__ : int ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*lowercase__ : List[str] ,**lowercase__ : int ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : Union[str, Any] ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,) return self.image_processor
104
0
from string import ascii_uppercase lowerCAmelCase__ : int ={char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase__ : int =dict(enumerate(ascii_uppercase)) def __lowercase ( a__ , a__ ) -> str: __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = 0 while True: if x == i: __SCREAMING_SNAKE_CASE = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowercase ( a__ , a__ ) -> str: __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = 0 for letter in message: if letter == " ": cipher_text += " " else: __SCREAMING_SNAKE_CASE = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowercase ( a__ , a__ ) -> str: __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __SCREAMING_SNAKE_CASE = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowercase ( ) -> None: __SCREAMING_SNAKE_CASE = 'THE GERMAN ATTACK' __SCREAMING_SNAKE_CASE = 'SECRET' __SCREAMING_SNAKE_CASE = generate_key(a__ , a__ ) __SCREAMING_SNAKE_CASE = cipher_text(a__ , a__ ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
118
from __future__ import annotations from collections.abc import Generator def __lowercase ( ) -> Generator[int, None, None]: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 2 while True: __SCREAMING_SNAKE_CASE = factor_map.pop(a__ , a__ ) if factor: __SCREAMING_SNAKE_CASE = factor + prime while x in factor_map: x += factor __SCREAMING_SNAKE_CASE = factor else: __SCREAMING_SNAKE_CASE = prime yield prime prime += 1 def __lowercase ( a__ = 1E10 ) -> int: __SCREAMING_SNAKE_CASE = sieve() __SCREAMING_SNAKE_CASE = 1 while True: __SCREAMING_SNAKE_CASE = next(a__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(a__ ) n += 2 if __name__ == "__main__": print(solution())
118
1
'''simple docstring''' from __future__ import annotations from statistics import mean def UpperCAmelCase_ (__a : list[int] , __a : list[int] , __a : int ): """simple docstring""" _a : str = [0] * no_of_processes _a : Optional[int] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__a ): _a : Optional[Any] = burst_time[i] _a : list[int] = [] _a : Tuple = 0 _a : int = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _a : Optional[int] = [] _a : int = -1 for i in range(__a ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__a ) if len(__a ) > 0: _a : List[str] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _a : Dict = i total_time += burst_time[target_process] completed += 1 _a : Tuple = 0 _a : Optional[int] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCAmelCase_ (__a : list[int] , __a : int , __a : list[int] ): """simple docstring""" _a : Dict = [0] * no_of_processes for i in range(__a ): _a : Tuple = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __lowerCAmelCase = 4 __lowerCAmelCase = [2, 5, 3, 7] __lowerCAmelCase = [0, 0, 0, 0] __lowerCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
271
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : Optional[Any]=None ,_a : Dict=None ,*_a : int ,**_a : str ): '''simple docstring''' super().__init__(*_a ,**_a ) if config is None: assert isinstance(self.model ,_a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _a : List[Any] = self.model.config else: _a : Optional[int] = config _a : List[str] = data_args _a : List[Any] = self.config.tgt_vocab_size if isinstance(self.config ,_a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: _a : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _a : Tuple = label_smoothed_nll_loss def __lowercase ( self : List[str] ,_a : int ): '''simple docstring''' if self.optimizer is None: _a : Union[str, Any] = ['bias', 'LayerNorm.weight'] _a : Tuple = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] _a : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _a : Any = Adafactor _a : Dict = {'scale_parameter': False, 'relative_step': False} else: _a : Union[str, Any] = AdamW _a : str = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } _a : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: _a : str = OSS( params=_a ,optim=_a ,**_a ,) else: _a : Tuple = optimizer_cls(_a ,**_a ) if self.lr_scheduler is None: _a : List[Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __lowercase ( self : List[Any] ,_a : List[Any] ): '''simple docstring''' _a : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _a : int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _a : List[str] = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: _a : Optional[int] = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=_a ) return scheduler def __lowercase ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __lowercase ( self : Dict ,_a : Dict ,_a : Any ,_a : Dict ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Union[str, Any] = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models _a, _a : Union[str, Any] = model(**_a ,labels=_a ,use_cache=_a )[:2] else: # compute label smoothed loss _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Any = torch.nn.functional.log_softmax(_a ,dim=-1 ) _a, _a : List[str] = self.loss_fn(_a ,_a ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def __lowercase ( self : Optional[int] ,_a : Union[str, Any] ,_a : List[Any] ): '''simple docstring''' _a : Optional[int] = inputs.pop('labels' ) _a, _a : int = self._compute_loss(_a ,_a ,_a ) return loss def __lowercase ( self : Optional[Any] ,_a : nn.Module ,_a : Dict[str, Union[torch.Tensor, Any]] ,_a : bool ,_a : Optional[List[str]] = None ,): '''simple docstring''' _a : int = self._prepare_inputs(_a ) _a : Any = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _a : int = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**_a ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _a : int = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) _a : Union[str, Any] = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data _a, _a : Optional[int] = self._compute_loss(_a ,_a ,_a ) _a : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _a : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _a : Dict = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) return (loss, logits, labels) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ): '''simple docstring''' _a : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) _a : int = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) _a : Union[str, Any] = tensor return padded_tensor
271
1
'''simple docstring''' from __future__ import annotations class lowerCamelCase_ : def __init__( self : Optional[int] , _A : int=None ): '''simple docstring''' UpperCAmelCase__ : Any = data UpperCAmelCase__ : str = None def __repr__( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[int] = self while temp: string_rep.append(f"""{temp.data}""" ) UpperCAmelCase__ : Optional[int] = temp.next return "->".join(lowercase_ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if not elements_list: raise Exception('''The Elements List is empty''' ) UpperCAmelCase__ : str = Node(elements_list[0] ) for i in range(1 , len(UpperCAmelCase__ ) ): UpperCAmelCase__ : List[str] = Node(elements_list[i] ) UpperCAmelCase__ : int = current.next return head def a__ ( lowerCAmelCase__ ) -> None: if head_node is not None and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def a__ ( ) -> Union[str, Any]: from doctest import testmod testmod() UpperCAmelCase__ : Any = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(UpperCAmelCase__ ) print('''Elements in Reverse:''' ) print_reverse(UpperCAmelCase__ ) if __name__ == "__main__": main()
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase ( enum.Enum ): '''simple docstring''' snake_case_ = 0 snake_case_ = 1 snake_case_ = 2 @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] ,*A : Optional[Any] ,**A : str ): super().__init__(*A ,**A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __A = None if self.model.config.prefix is not None: __A = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __A = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __A , __A , __A = self._sanitize_parameters(prefix=A ,**self._forward_params ) __A = {**self._preprocess_params, **preprocess_params} __A = {**self._forward_params, **forward_params} def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, Any]=None ,A : int=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Tuple=None ,A : int=None ,A : str=None ,A : Dict=None ,**A : Optional[Any] ,): __A = {} if prefix is not None: __A = prefix if prefix: __A = self.tokenizer( A ,padding=A ,add_special_tokens=A ,return_tensors=self.framework ) __A = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) __A = handle_long_generation preprocess_params.update(A ) __A = generate_kwargs __A = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) __A = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) __A = ReturnType.TENSORS if return_type is not None: __A = return_type if clean_up_tokenization_spaces is not None: __A = clean_up_tokenization_spaces if stop_sequence is not None: __A = self.tokenizer.encode(A ,add_special_tokens=A ) if len(A ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) __A = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase_ ( self : Union[str, Any] ,*A : Any ,**A : int ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*A ,**A ) def __call__( self : List[str] ,A : int ,**A : Dict ): return super().__call__(A ,**A ) def UpperCamelCase_ ( self : str ,A : Optional[int] ,A : Any="" ,A : Union[str, Any]=None ,**A : Any ): __A = self.tokenizer( prefix + prompt_text ,padding=A ,add_special_tokens=A ,return_tensors=self.framework ) __A = prompt_text if handle_long_generation == "hole": __A = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: __A = generate_kwargs["max_new_tokens"] else: __A = generate_kwargs.get("max_length" ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: __A = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) __A = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: __A = inputs["attention_mask"][:, -keep_length:] return inputs def UpperCamelCase_ ( self : int ,A : str ,**A : List[Any] ): __A = model_inputs["input_ids"] __A = model_inputs.get("attention_mask" ,A ) # Allow empty prompts if input_ids.shape[1] == 0: __A = None __A = None __A = 1 else: __A = input_ids.shape[0] __A = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __A = generate_kwargs.pop("prefix_length" ,0 ) if prefix_length > 0: __A = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: __A = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __A = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __A = self.model.generate(input_ids=A ,attention_mask=A ,**A ) __A = generated_sequence.shape[0] if self.framework == "pt": __A = generated_sequence.reshape(A ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": __A = tf.reshape(A ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : Optional[int]=ReturnType.FULL_TEXT ,A : Dict=True ): __A = model_outputs["generated_sequence"][0] __A = model_outputs["input_ids"] __A = model_outputs["prompt_text"] __A = generated_sequence.numpy().tolist() __A = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __A = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __A = self.tokenizer.decode( A ,skip_special_tokens=A ,clean_up_tokenization_spaces=A ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __A = 0 else: __A = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=A ,clean_up_tokenization_spaces=A ,) ) if return_type == ReturnType.FULL_TEXT: __A = prompt_text + text[prompt_length:] else: __A = text[prompt_length:] __A = {"generated_text": all_text} records.append(A ) return records
15
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE :Optional[Any] = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,A : Optional[Any] ,A : Optional[int]=False ,A : int=False ,A : Union[str, Any]=False ,A : int=None ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : Optional[Any]=None ,A : Optional[Dict[str, Any]] = None ,**A : Tuple ,): __A = {} if sp_model_kwargs is None else sp_model_kwargs __A = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) __A = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A = "<|endoftext|>" if eos_token is None else eos_token __A = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A = unk_token if pad_token is None else pad_token __A = eos_token if bos_token is None else bos_token else: __A = "<pad>" if pad_token is None else pad_token __A = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=A ,remove_space=A ,keep_accents=A ,bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = do_lower_case __A = remove_space __A = keep_accents __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off __A = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A = re.compile( f'''[{''.join(map(A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(1_27 ,1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' ) def __getstate__( self : Optional[int] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Optional[Any] ,A : Union[str, Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self : List[str] ): return len(self.sp_model ) def UpperCamelCase_ ( self : int ,A : str ): __A = self.non_printing_characters_re.sub("" ,A ) # Normalize whitespaces __A = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization __A = unicodedata.normalize("NFC" ,A ) return text def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,**A : Optional[int] ): __A = self.preprocess_text(A ) return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : int ): return self.sp_model.IdToPiece(A ) @staticmethod def UpperCamelCase_ ( A : str ): return out_string def UpperCamelCase_ ( self : str ,A : List[str] ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string def UpperCamelCase_ ( self : str ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[str, bool] = False ): if isinstance(A ,A ): __A = self.preprocess_text(A ) __A = self.sp_model.encode(A ) else: __A = [self.preprocess_text(A ) for t in text] __A = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": __A = torch.tensor(A ) return token_ids def UpperCamelCase_ ( self : List[Any] ,A : Union[int, List[int]] ): return self.sp_model.decode(A ) def UpperCamelCase_ ( self : List[str] ,A : "Conversation" ): __A = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __A = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
15
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowercase = 250004 __lowercase = 250020 @require_sentencepiece @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Optional[Any] = MBartTokenizer UpperCAmelCase : Dict = MBartTokenizerFast UpperCAmelCase : Optional[Any] = True UpperCAmelCase : str = True def __snake_case ( self : List[Any]): super().setUp() # We have a SentencePiece fixture for testing a : Any = MBartTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __snake_case ( self : List[Any]): a : str = MBartTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase) a : Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a : int = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a : Tuple = tokenizer.convert_ids_to_tokens(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __snake_case ( self : Any): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a : Optional[Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): a : Dict = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase) a : List[Any] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase) a : Optional[int] = tempfile.mkdtemp() a : Optional[int] = tokenizer_r.save_pretrained(__UpperCAmelCase) a : List[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) a : Optional[int] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase) # Checks everything loads correctly in the same way a : Dict = tokenizer_r.from_pretrained(__UpperCAmelCase) a : int = tokenizer_p.from_pretrained(__UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCAmelCase) # Save tokenizer rust, legacy_format=True a : Optional[Any] = tempfile.mkdtemp() a : Tuple = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase) a : List[str] = tokenizer_p.save_pretrained(__UpperCAmelCase) # Checks it save with the same files self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase) # Checks everything loads correctly in the same way a : Dict = tokenizer_r.from_pretrained(__UpperCAmelCase) a : Optional[Any] = tokenizer_p.from_pretrained(__UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase)) shutil.rmtree(__UpperCAmelCase) # Save tokenizer rust, legacy_format=False a : Dict = tempfile.mkdtemp() a : List[str] = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase) a : Optional[int] = tokenizer_p.save_pretrained(__UpperCAmelCase) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way a : Any = tokenizer_r.from_pretrained(__UpperCAmelCase) a : Any = tokenizer_p.from_pretrained(__UpperCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase)) shutil.rmtree(__UpperCAmelCase) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[str] = """facebook/mbart-large-en-ro""" UpperCAmelCase : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCAmelCase : str = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCAmelCase : str = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __snake_case ( cls : str): a : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO") a : Optional[int] = 1 return cls def __snake_case ( self : Optional[Any]): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020) def __snake_case ( self : Union[str, Any]): a : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase) def __snake_case ( self : int): self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids) a : Tuple = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] a : List[Any] = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase) a : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase) def __snake_case ( self : List[str]): a : List[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __UpperCAmelCase) a : Tuple = 10 a : Dict = self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , __UpperCAmelCase) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) def __snake_case ( self : List[str]): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]) , [250026, 250001]) def __snake_case ( self : str): a : List[str] = tempfile.mkdtemp() a : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCAmelCase) a : Dict = MBartTokenizer.from_pretrained(__UpperCAmelCase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase) @require_torch def __snake_case ( self : Dict): a : Union[str, Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="pt") a : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __snake_case ( self : List[Any]): a : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens) , return_tensors="pt" , ) a : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) self.assertEqual((2, 14) , batch.input_ids.shape) self.assertEqual((2, 14) , batch.attention_mask.shape) a : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE]) def __snake_case ( self : Optional[int]): a : List[str] = self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors="pt") a : List[str] = self.tokenizer( text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=10 , return_tensors="pt") a : str = targets["input_ids"] a : Optional[Any] = shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def __snake_case ( self : Any): a : Tuple = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR") self.assertEqual( nested_simplify(__UpperCAmelCase) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
40
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ ) -> Tuple: __lowercase : Any = n __lowercase : Any = [None] * self.n __lowercase : Optional[int] = 0 # index of the first element __lowercase : Optional[int] = 0 __lowercase : Any = 0 def __len__( self ) -> int: return self.size def _lowerCamelCase ( self ) -> bool: return self.size == 0 def _lowerCamelCase ( self ) -> Optional[Any]: return False if self.is_empty() else self.array[self.front] def _lowerCamelCase ( self , UpperCamelCase_ ) -> Dict: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) __lowercase : Any = data __lowercase : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def _lowerCamelCase ( self ) -> List[Any]: if self.size == 0: raise Exception('''UNDERFLOW''' ) __lowercase : Any = self.array[self.front] __lowercase : int = None __lowercase : Optional[int] = (self.front + 1) % self.n self.size -= 1 return temp
249
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=4 , ): lowerCAmelCase : str = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Tuple = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : str = use_attention_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : str = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : Union[str, Any] = num_choices def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_attention_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : int = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : int ): lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase_ : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = FlaxAlbertModelTester(self ) @slow def lowercase__ ( self : List[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase : str = model_class_name.from_pretrained('albert-base-v2' ) lowerCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase ) @require_flax class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase )[0] lowerCAmelCase : Optional[int] = (1, 11, 768) self.assertEqual(output.shape , __lowercase ) lowerCAmelCase : List[str] = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1E-4 ) )
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """bloom""" UpperCAmelCase_ : List[Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[Any] = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : Any , lowercase_ : Tuple=250_880 , lowercase_ : List[str]=64 , lowercase_ : List[str]=2 , lowercase_ : Tuple=8 , lowercase_ : List[str]=1E-5 , lowercase_ : List[str]=0.02 , lowercase_ : int=True , lowercase_ : Dict=1 , lowercase_ : List[Any]=2 , lowercase_ : List[str]=False , lowercase_ : Dict=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : int=1 , lowercase_ : Dict=False , **lowercase_ : Union[str, Any] , ) -> Optional[int]: UpperCAmelCase : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase : Optional[int] = kwargs.pop('n_embed' , lowercase_ ) UpperCAmelCase : List[Any] = hidden_size if n_embed is None else n_embed UpperCAmelCase : str = n_layer UpperCAmelCase : Optional[Any] = n_head UpperCAmelCase : Optional[Any] = layer_norm_epsilon UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : str = use_cache UpperCAmelCase : Union[str, Any] = pretraining_tp UpperCAmelCase : int = apply_residual_connection_post_layernorm UpperCAmelCase : List[str] = hidden_dropout UpperCAmelCase : List[Any] = attention_dropout UpperCAmelCase : str = bos_token_id UpperCAmelCase : Any = eos_token_id UpperCAmelCase : Optional[int] = slow_but_exact super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = version.parse("""1.12""" ) def __init__( self : Any , lowercase_ : PretrainedConfig , lowercase_ : str = "default" , lowercase_ : List[PatchingSpec] = None , lowercase_ : bool = False , ) -> Union[str, Any]: super().__init__(lowercase_ , task=lowercase_ , patching_specs=lowercase_ , use_past=lowercase_ ) if not getattr(self._config , 'pad_token_id' , lowercase_ ): # TODO: how to do that better? UpperCAmelCase : str = 0 @property def UpperCAmelCase_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : Dict = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase_ , direction='inputs' , inverted_values_shape=lowercase_ ) UpperCAmelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCAmelCase : str = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase_ ( self : int ) -> int: return self._config.n_layer @property def UpperCAmelCase_ ( self : Tuple ) -> int: return self._config.n_head @property def UpperCAmelCase_ ( self : Dict ) -> float: return 1E-3 def UpperCAmelCase_ ( self : Tuple , lowercase_ : "PreTrainedTokenizer" , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: UpperCAmelCase : List[Any] = super(lowercase_ , self ).generate_dummy_inputs( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Union[str, Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCAmelCase , UpperCAmelCase : Optional[int] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCAmelCase : List[Any] = seqlen + 2 UpperCAmelCase : int = self._config.hidden_size // self.num_attention_heads UpperCAmelCase : Dict = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCAmelCase : Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCAmelCase : Optional[Any] = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(self.num_layers ) ] UpperCAmelCase : List[str] = common_inputs['attention_mask'] if self.use_past: UpperCAmelCase : Union[str, Any] = ordered_inputs['attention_mask'].dtype UpperCAmelCase : Optional[int] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self : List[Any] ) -> int: return 13
151
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCAmelCase : Tuple = sum(array[:k] ) for i in range(len(UpperCAmelCase_ ) - k ): UpperCAmelCase : Optional[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase : List[Any] = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase__ = [randint(-1000, 1000) for i in range(100)] lowercase__ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
151
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _snake_case = get_logger(__name__) _snake_case = r'''\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n''' class _snake_case : @add_start_docstrings(_a ) def __call__( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] ) -> int: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case : @add_start_docstrings(_a ) def __call__( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] ) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case ( __SCREAMING_SNAKE_CASE ): @add_start_docstrings(_a ) def __call__( self: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: Dict , **__lowerCamelCase: Dict ) -> List[Any]: for processor in self: __UpperCAmelCase : Union[str, Any] = inspect.signature(processor.__call__ ).parameters if len(_a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) __UpperCAmelCase : Tuple = processor(_a , _a , _a , **_a ) else: __UpperCAmelCase : List[str] = processor(_a , _a , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Tuple , __lowerCamelCase: Optional[Any] ) -> Optional[Any]: if not isinstance(_a , _a ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) __UpperCAmelCase : str = temperature def __call__( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: str ) -> Dict: __UpperCAmelCase : List[Any] = scores / self.temperature return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: int = -float("Inf" ) , __lowerCamelCase: Any = 1 ) -> int: if not isinstance(_a , _a ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_a , _a ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) __UpperCAmelCase : Any = top_p __UpperCAmelCase : str = filter_value __UpperCAmelCase : List[str] = min_tokens_to_keep def __call__( self: str , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: int ) -> str: __UpperCAmelCase , __UpperCAmelCase : Dict = lax.top_k(_a , scores.shape[-1] ) __UpperCAmelCase : Optional[Any] = jnp.full_like(_a , self.filter_value ) __UpperCAmelCase : Optional[int] = jax.nn.softmax(_a , axis=-1 ).cumsum(axis=-1 ) __UpperCAmelCase : Union[str, Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCAmelCase : List[str] = jnp.roll(_a , 1 ) score_mask |= score_mask.at[:, 0].set(_a ) # min tokens to keep __UpperCAmelCase : Any = score_mask.at[:, : self.min_tokens_to_keep].set(_a ) __UpperCAmelCase : List[str] = jnp.where(_a , _a , _a ) __UpperCAmelCase : Optional[int] = jax.lax.sort_key_val(_a , _a )[-1] return next_scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any = -float("Inf" ) , __lowerCamelCase: List[str] = 1 ) -> Union[str, Any]: if not isinstance(_a , _a ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) __UpperCAmelCase : Any = max(_a , _a ) __UpperCAmelCase : int = filter_value def __call__( self: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase : List[str] = scores.shape __UpperCAmelCase : Dict = jnp.full(batch_size * vocab_size , self.filter_value ) __UpperCAmelCase : Tuple = min(self.top_k , scores.shape[-1] ) # Safety check __UpperCAmelCase , __UpperCAmelCase : str = lax.top_k(_a , _a ) __UpperCAmelCase : Optional[Any] = jnp.broadcast_to((jnp.arange(_a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __UpperCAmelCase : str = topk_scores.flatten() __UpperCAmelCase : Union[str, Any] = topk_indices.flatten() + shift __UpperCAmelCase : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(_a ) __UpperCAmelCase : int = next_scores_flat.reshape(_a , _a ) return next_scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: List[str] , __lowerCamelCase: int ) -> Optional[int]: __UpperCAmelCase : List[str] = bos_token_id def __call__( self: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ) -> List[str]: __UpperCAmelCase : int = jnp.full(scores.shape , -float("inf" ) ) __UpperCAmelCase : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) __UpperCAmelCase : int = jnp.where(_a , new_scores.at[:, self.bos_token_id].set(0 ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase : Tuple = max_length __UpperCAmelCase : Dict = eos_token_id def __call__( self: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int ) -> Union[str, Any]: __UpperCAmelCase : Tuple = jnp.full(scores.shape , -float("inf" ) ) __UpperCAmelCase : Optional[Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __UpperCAmelCase : List[Any] = jnp.where(_a , new_scores.at[:, self.eos_token_id].set(0 ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] ) -> Dict: if not isinstance(_a , _a ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_a , _a ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) __UpperCAmelCase : List[str] = min_length __UpperCAmelCase : Dict = eos_token_id def __call__( self: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple ) -> Optional[Any]: # create boolean flag to decide if min length penalty should be applied __UpperCAmelCase : int = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __UpperCAmelCase : Optional[int] = jnp.where(_a , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Any ) -> Optional[Any]: __UpperCAmelCase : str = list(_a ) __UpperCAmelCase : Any = begin_index def __call__( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ) -> Tuple: __UpperCAmelCase : Any = 1 - jnp.bool_(cur_len - self.begin_index ) __UpperCAmelCase : str = jnp.where(_a , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Optional[Any] , __lowerCamelCase: Optional[Any] ) -> Tuple: __UpperCAmelCase : int = list(_a ) def __call__( self: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] ) -> Dict: __UpperCAmelCase : int = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Dict , __lowerCamelCase: int ) -> Optional[int]: __UpperCAmelCase : List[str] = dict(_a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCAmelCase : str = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCAmelCase : Optional[Any] = force_token_array.at[index].set(_a ) __UpperCAmelCase : Union[str, Any] = jnp.intaa(_a ) def __call__( self: str , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] ) -> Optional[Any]: def _force_token(__lowerCamelCase: Dict ): __UpperCAmelCase : Optional[Any] = scores.shape[0] __UpperCAmelCase : Dict = self.force_token_array[generation_idx] __UpperCAmelCase : Union[str, Any] = jnp.ones_like(_a , dtype=scores.dtype ) * -float("inf" ) __UpperCAmelCase : List[str] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __UpperCAmelCase : Optional[Any] = lax.dynamic_update_slice(_a , _a , (0, current_token) ) return new_scores __UpperCAmelCase : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_a ) , lambda: scores , ) , ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = generate_config.eos_token_id __UpperCAmelCase : int = generate_config.no_timestamps_token_id __UpperCAmelCase : List[Any] = generate_config.no_timestamps_token_id + 1 __UpperCAmelCase : str = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_a , "max_initial_timestamp_index" ): __UpperCAmelCase : Union[str, Any] = generate_config.max_initial_timestamp_index else: __UpperCAmelCase : Dict = model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCAmelCase : int = model_config.vocab_size def __call__( self: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Optional[int]: # suppress <|notimestamps|> which is handled by without_timestamps __UpperCAmelCase : List[Any] = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(__lowerCamelCase: Any , __lowerCamelCase: str ): __UpperCAmelCase : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , _a , _a ) __UpperCAmelCase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _a , ) __UpperCAmelCase : List[Any] = jnp.where((cur_len - self.begin_index) < 2 , _a , _a ) __UpperCAmelCase : Optional[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _a , _a , ) return jnp.where( _a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _a , ) __UpperCAmelCase : int = jax.vmap(_a )(_a , _a ) __UpperCAmelCase : List[Any] = jnp.where(cur_len == self.begin_index , _a , _a ) __UpperCAmelCase : Optional[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _a , ) __UpperCAmelCase : Optional[int] = self.timestamp_begin + self.max_initial_timestamp_index __UpperCAmelCase : List[Any] = jnp.where( _a , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _a , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCAmelCase : Any = jax.nn.log_softmax(_a , axis=-1 ) def handle_cumulative_probs(__lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ): __UpperCAmelCase : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __UpperCAmelCase : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _a , ) __UpperCAmelCase : Tuple = jax.vmap(_a )(_a , _a ) return scores
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = '''▁''' _snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''} _snake_case = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } _snake_case = { '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off _snake_case = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : List[str] = VOCAB_FILES_NAMES __A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Dict = PRETRAINED_VOCAB_FILES_MAP __A : Union[str, Any] = ["input_ids", "attention_mask"] __A : List[int] = [] __A : List[int] = [] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=None , __A=None , __A=None , __A = None , __A=None , __A=False , **__A , ): """simple docstring""" lowerCamelCase : Optional[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token lowerCamelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase : Optional[Any] = legacy_behaviour super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , tokenizer_file=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__A , **__A , ) lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) lowerCamelCase : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase : int = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase : List[str] = 1 lowerCamelCase : Optional[Any] = len(self.sp_model ) lowerCamelCase : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__A ) } lowerCamelCase : int = {v: k for k, v in self.lang_code_to_id.items()} lowerCamelCase : str = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCamelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCamelCase : Any = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCamelCase : Union[str, Any] = src_lang if src_lang is not None else "eng_Latn" lowerCamelCase : Union[str, Any] = self.lang_code_to_id[self._src_lang] lowerCamelCase : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowerCamelCase : int = self.__dict__.copy() lowerCamelCase : Any = None lowerCamelCase : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __A ): """simple docstring""" lowerCamelCase : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : Optional[Any] = {} lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __A , __A = None , __A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) lowerCamelCase : Optional[Any] = [1] * len(self.prefix_tokens ) lowerCamelCase : List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def _snake_case ( self , __A , __A = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : str = [self.sep_token_id] lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __A , __A , __A , __A , **__A ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase : Any = src_lang lowerCamelCase : Optional[int] = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) lowerCamelCase : int = self.convert_tokens_to_ids(__A ) lowerCamelCase : List[str] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __A ): """simple docstring""" return self.sp_model.encode(__A , out_type=__A ) def _snake_case ( self , __A ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase : str = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __A ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Tuple = "".join(__A ).replace(__A , " " ).strip() return out_string def _snake_case ( self , __A , __A = None ): """simple docstring""" if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase : Union[str, Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , "wb" ) as fi: lowerCamelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def _snake_case ( self , __A , __A = "eng_Latn" , __A = None , __A = "fra_Latn" , **__A , ): """simple docstring""" lowerCamelCase : str = src_lang lowerCamelCase : Tuple = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowerCamelCase : Optional[int] = [] lowerCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase : int = [self.cur_lang_code] lowerCamelCase : Tuple = [self.eos_token_id] def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: lowerCamelCase : Union[str, Any] = [] lowerCamelCase : Tuple = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase : List[str] = [self.cur_lang_code] lowerCamelCase : Optional[Any] = [self.eos_token_id]
283
def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCamelCase : List[Any] = 1 lowerCamelCase : Union[str, Any] = 1 while repunit: lowerCamelCase : Union[str, Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowercase_( SCREAMING_SNAKE_CASE_ = 1000000 ): '''simple docstring''' lowerCamelCase : List[str] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(SCREAMING_SNAKE_CASE_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
283
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = 'T5Config' class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'mt5' UpperCAmelCase_ = MTaConfig class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'mt5' UpperCAmelCase_ = MTaConfig class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 'mt5' UpperCAmelCase_ = MTaConfig
119
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 1_6 ): lowerCAmelCase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase__ , padding='longest' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['train'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase__ = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowerCAmelCase__ ) == "1": lowerCAmelCase__ = 2 # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['lr'] lowerCAmelCase__ = int(config['num_epochs'] ) lowerCAmelCase__ = int(config['seed'] ) lowerCAmelCase__ = int(config['batch_size'] ) lowerCAmelCase__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase__ = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
119
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A ( A ): '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=True , A=False , A=False , A=False , A=2 , A=99 , A=0 , A=32 , A=5 , A=4 , A=0.1 , A=0.1 , A=512 , A=12 , A=2 , A=0.02 , A=3 , A=4 , A="last" , A=None , A=None , ) -> Dict: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope def a__ (self ) -> Tuple: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ (self ) -> int: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = FlaubertModel(config=A ) model.to(A ) model.eval() _a = model(A , lengths=A , langs=A ) _a = model(A , langs=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = FlaubertWithLMHeadModel(A ) model.to(A ) model.eval() _a = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = FlaubertForQuestionAnsweringSimple(A ) model.to(A ) model.eval() _a = model(A ) _a = model(A , start_positions=A , end_positions=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = FlaubertForQuestionAnswering(A ) model.to(A ) model.eval() _a = model(A ) _a = model( A , start_positions=A , end_positions=A , cls_index=A , is_impossible=A , p_mask=A , ) _a = model( A , start_positions=A , end_positions=A , cls_index=A , is_impossible=A , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(A , start_positions=A , end_positions=A ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: """simple docstring""" _a = FlaubertForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A ) _a = model(A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> str: """simple docstring""" _a = self.num_labels _a = FlaubertForTokenClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: """simple docstring""" _a = self.num_choices _a = FlaubertForMultipleChoice(config=A ) model.to(A ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ (self ) -> int: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __lowerCamelCase : Tuple = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a__ (self , A , A , A , A , A ) -> Optional[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ (self , A , A , A=False ) -> Tuple: """simple docstring""" _a = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def a__ (self ) -> List[Any]: """simple docstring""" _a = FlaubertModelTester(self ) _a = ConfigTester(self , config_class=A , emb_dim=37 ) def a__ (self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*A ) def a__ (self ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*A ) def a__ (self ) -> Any: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*A ) @slow def a__ (self ) -> Dict: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = FlaubertModel.from_pretrained(A ) self.assertIsNotNone(A ) @slow @require_torch_gpu def a__ (self ) -> Union[str, Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _a = True _a = model_class(config=A ) _a = self._prepare_for_class(A , A ) _a = torch.jit.trace( A , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A , os.path.join(A , '''traced_model.pt''' ) ) _a = torch.jit.load(os.path.join(A , '''traced_model.pt''' ) , map_location=A ) loaded(inputs_dict['''input_ids'''].to(A ) , inputs_dict['''attention_mask'''].to(A ) ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> List[str]: """simple docstring""" _a = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _a = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): _a = model(A )[0] _a = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1E-4 ) )
211
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __lowerCamelCase : bool = None __lowerCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __lowerCamelCase : int = datasets.Audio() __lowerCamelCase : str = 'audio' __lowerCamelCase : Optional[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Union[str, Any] = AudioClassification(audio_column='audio' , label_column='label' ) lowercase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowercase_ = AUDIO_EXTENSIONS
211
1
A : List[str] = "Alexander Joslin" import operator as op from .stack import Stack def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} SCREAMING_SNAKE_CASE_ = Stack() SCREAMING_SNAKE_CASE_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__UpperCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__UpperCamelCase ) elif i == ")": # RULE 4 SCREAMING_SNAKE_CASE_ = operator_stack.peek() operator_stack.pop() SCREAMING_SNAKE_CASE_ = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ = operators[opr](__UpperCamelCase , __UpperCamelCase ) operand_stack.push(__UpperCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A : List[str] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase : Tuple = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
136
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCAmelCase : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "sequence-classification" def __init__( self : Optional[Any] , lowerCAmelCase_ : int): """simple docstring""" if type(lowerCAmelCase_) == dict: lowercase_ = Namespace(**lowerCAmelCase_) lowercase_ = glue_output_modes[hparams.task] lowercase_ = glue_tasks_num_labels[hparams.task] super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , self.mode) def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Optional[int]): """simple docstring""" return self.model(**lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ = outputs[0] lowercase_ = self.trainer.lr_schedulers[0]["""scheduler"""] lowercase_ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.hparams lowercase_ = processors[args.task]() lowercase_ = processor.get_labels() for mode in ["train", "dev"]: lowercase_ = self._feature_file(lowerCAmelCase_) if os.path.exists(lowerCAmelCase_) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir) lowercase_ = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) lowercase_ = convert_examples_to_features( lowerCAmelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , lowerCAmelCase_) torch.save(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False): """simple docstring""" lowercase_ = """dev""" if mode == """test""" else mode lowercase_ = self._feature_file(lowerCAmelCase_) logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) lowercase_ = torch.load(lowerCAmelCase_) lowercase_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ , lowercase_ = outputs[:2] lowercase_ = logits.detach().cpu().numpy() lowercase_ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item() lowercase_ = np.concatenate([x["""pred"""] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": lowercase_ = np.argmax(lowerCAmelCase_ , axis=1) elif self.hparams.glue_output_mode == "regression": lowercase_ = np.squeeze(lowerCAmelCase_) lowercase_ = np.concatenate([x["""target"""] for x in outputs] , axis=0) lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase_ , lowerCAmelCase_)} lowercase_ = dict(results.items()) lowercase_ = results return ret, preds_list, out_label_list def _UpperCAmelCase ( self : int , lowerCAmelCase_ : list): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowerCAmelCase_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""") return parser def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = argparse.ArgumentParser() add_generic_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = GLUETransformer.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase_ = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) lowercase_ = GLUETransformer(__lowerCAmelCase ) lowercase_ = generic_train(__lowerCAmelCase , __lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase_ = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__lowerCAmelCase ) ) lowercase_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCAmelCase ) if __name__ == "__main__": main()
136
1
"""simple docstring""" from __future__ import annotations def _A ( lowercase , lowercase ): """simple docstring""" a , a =set(lowercase ), [start] while stack: a =stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored lowerCamelCase_ : Any = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
215
"""simple docstring""" from __future__ import annotations def _A ( lowercase , lowercase , lowercase , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
215
1
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
from random import randint from tempfile import TemporaryFile import numpy as np def A ( lowercase , lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 if start < end: UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(lowercase , lowercase , lowercase ) count += _in_place_quick_sort(lowercase , lowercase , p - 1 ) count += _in_place_quick_sort(lowercase , p + 1 , lowercase ) return count def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(lowercase , lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count _UpperCAmelCase : Union[str, Any] = TemporaryFile() _UpperCAmelCase : List[Any] = 100 # 1000 elements are to be sorted _UpperCAmelCase ,_UpperCAmelCase : Any = 0, 1 # mean and standard deviation _UpperCAmelCase : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _UpperCAmelCase : Any = np.load(outfile) _UpperCAmelCase : str = len(M) - 1 _UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
222
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = len(lowerCamelCase__ ) UpperCAmelCase_ = len(lowerCamelCase__ ) UpperCAmelCase_ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCAmelCase_ = True for i in range(lowerCamelCase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCAmelCase_ = True if a[i].islower(): UpperCAmelCase_ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase = """""" lowerCamelCase = """""" lowerCamelCase = """""" lowerCamelCase = 1 # (0 is vertical, 1 is horizontal) def a__ ( ): UpperCAmelCase_ , UpperCAmelCase_ = get_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) print("Processing..." ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = update_image_and_anno(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for index, image in enumerate(lowerCAmelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase_ = random_chars(32 ) UpperCAmelCase_ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase_ = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , lowerCAmelCase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(lowerCAmelCase__ )} with {file_name}""" ) UpperCAmelCase_ = [] for anno in new_annos[index]: UpperCAmelCase_ = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(lowerCAmelCase__ ) with open(f"""/{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] for label_file in glob.glob(os.path.join(lowerCAmelCase__ , "*.txt" ) ): UpperCAmelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(lowerCAmelCase__ ) as in_file: UpperCAmelCase_ = in_file.readlines() UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""{label_name}.jpg""" ) UpperCAmelCase_ = [] for obj_list in obj_lists: UpperCAmelCase_ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(lowerCAmelCase__ ) labels.append(lowerCAmelCase__ ) return img_paths, labels def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for idx in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = [] UpperCAmelCase_ = img_list[idx] path_list.append(lowerCAmelCase__ ) UpperCAmelCase_ = anno_list[idx] UpperCAmelCase_ = cva.imread(lowerCAmelCase__ ) if flip_type == 1: UpperCAmelCase_ = cva.flip(lowerCAmelCase__ , lowerCAmelCase__ ) for bbox in img_annos: UpperCAmelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase_ = cva.flip(lowerCAmelCase__ , lowerCAmelCase__ ) for bbox in img_annos: UpperCAmelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(lowerCAmelCase__ ) new_imgs_list.append(lowerCAmelCase__ ) return new_imgs_list, new_annos_lists, path_list def a__ ( lowerCAmelCase__ = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase_ = ascii_lowercase + digits return "".join(random.choice(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
241
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : str , lowercase : str , lowercase : Path , lowercase : str = None , lowercase : str = None , lowercase : str = None , ) -> Optional[int]: if config_name_or_path is None: __snake_case : List[str] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: __snake_case : List[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __snake_case : Union[str, Any] = question_encoder_name_or_path __snake_case : int = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. __snake_case : Tuple = RagConfig.from_pretrained(lowercase ) __snake_case : int = AutoConfig.from_pretrained(lowercase ) __snake_case : str = AutoConfig.from_pretrained(lowercase ) __snake_case : Dict = gen_config __snake_case : Optional[Any] = question_encoder_config __snake_case : List[str] = model_class.from_pretrained_question_encoder_generator( lowercase , lowercase , config=lowercase ) rag_model.save_pretrained(lowercase ) # Sanity check. model_class.from_pretrained(lowercase ) # Save tokenizers. __snake_case : Tuple = AutoTokenizer.from_pretrained(lowercase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) __snake_case : int = AutoTokenizer.from_pretrained(lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCamelCase ( ) -> List[Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
1
'''simple docstring''' class A__ : # Public class to implement a graph """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[bool]] ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = row _UpperCAmelCase : Tuple = col _UpperCAmelCase : Union[str, Any] = graph def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[bool]] ) -> Any: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[list[bool]] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _UpperCAmelCase : Tuple = [-1, 0, 1, -1, 1, -1, 0, 1] _UpperCAmelCase : Tuple = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowercase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowercase_ ) def _lowerCAmelCase ( self : int ) -> Dict: # And finally, count all islands. """simple docstring""" _UpperCAmelCase : str = [[False for j in range(self.COL )] for i in range(self.ROW )] _UpperCAmelCase : Dict = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowercase_ , lowercase_ , lowercase_ ) count += 1 return count
145
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase_ : int = logging.get_logger(__name__) def _A (__a ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__a ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["pixel_values"] def __init__( self : Dict , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Dict , ): '''simple docstring''' super().__init__(**lowercase_) SCREAMING_SNAKE_CASE_ : str = size if size is not None else {'''shortest_edge''': 256} SCREAMING_SNAKE_CASE_ : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(lowercase_ , param_name='''crop_size''') SCREAMING_SNAKE_CASE_ : Optional[int] = do_resize SCREAMING_SNAKE_CASE_ : List[Any] = size SCREAMING_SNAKE_CASE_ : Tuple = do_center_crop SCREAMING_SNAKE_CASE_ : Dict = crop_size SCREAMING_SNAKE_CASE_ : List[Any] = resample SCREAMING_SNAKE_CASE_ : List[str] = do_rescale SCREAMING_SNAKE_CASE_ : List[str] = rescale_factor SCREAMING_SNAKE_CASE_ : List[Any] = offset SCREAMING_SNAKE_CASE_ : List[Any] = do_normalize SCREAMING_SNAKE_CASE_ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ : List[Any] = get_resize_output_image_size(lowercase_ , size['''shortest_edge'''] , default_to_square=lowercase_) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE_ : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}') return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}') return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : bool = True , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = image.astype(np.floataa) if offset: SCREAMING_SNAKE_CASE_ : Tuple = image - (scale / 2) return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ): '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''') # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : List[str] = to_numpy_array(lowercase_) if do_resize: SCREAMING_SNAKE_CASE_ : List[Any] = self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) if do_center_crop: SCREAMING_SNAKE_CASE_ : Dict = self.center_crop(lowercase_ , size=lowercase_) if do_rescale: SCREAMING_SNAKE_CASE_ : int = self.rescale(image=lowercase_ , scale=lowercase_ , offset=lowercase_) if do_normalize: SCREAMING_SNAKE_CASE_ : Dict = self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = to_channel_dimension_format(lowercase_ , lowercase_) return image def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Dict = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE_ : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Dict = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[str] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : Any = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(lowercase_ , param_name='''crop_size''') if not valid_images(lowercase_): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') SCREAMING_SNAKE_CASE_ : Tuple = make_batched(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [ self._preprocess_image( image=lowercase_ , do_resize=lowercase_ , size=lowercase_ , resample=lowercase_ , do_center_crop=lowercase_ , crop_size=lowercase_ , do_rescale=lowercase_ , rescale_factor=lowercase_ , offset=lowercase_ , do_normalize=lowercase_ , image_mean=lowercase_ , image_std=lowercase_ , data_format=lowercase_ , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE_ : int = {'''pixel_values''': videos} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
91
0
import requests from bsa import BeautifulSoup def UpperCamelCase ( snake_case__ : str = "AAPL" ) -> str: UpperCamelCase : Union[str, Any] = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Dict = BeautifulSoup(requests.get(snake_case__ ).text , 'html.parser' ) UpperCamelCase : str = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
350
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = ["input_values", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 1_6000, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = 80, SCREAMING_SNAKE_CASE_ = 16, SCREAMING_SNAKE_CASE_ = 64, SCREAMING_SNAKE_CASE_ = "hann_window", SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = 80, SCREAMING_SNAKE_CASE_ = 7600, SCREAMING_SNAKE_CASE_ = 1e-10, SCREAMING_SNAKE_CASE_ = 2, SCREAMING_SNAKE_CASE_ = True, **SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: super().__init__(feature_size=SCREAMING_SNAKE_CASE_, sampling_rate=SCREAMING_SNAKE_CASE_, padding_value=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = do_normalize UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Union[str, Any] = num_mel_bins UpperCamelCase : int = hop_length UpperCamelCase : Any = win_length UpperCamelCase : Dict = win_function UpperCamelCase : Any = frame_signal_scale UpperCamelCase : str = fmin UpperCamelCase : int = fmax UpperCamelCase : Dict = mel_floor UpperCamelCase : Any = reduction_factor UpperCamelCase : List[str] = win_length * sampling_rate // 1000 UpperCamelCase : Union[str, Any] = hop_length * sampling_rate // 1000 UpperCamelCase : Tuple = optimal_fft_length(self.sample_size ) UpperCamelCase : int = (self.n_fft // 2) + 1 UpperCamelCase : Any = window_function(window_length=self.sample_size, name=self.win_function, periodic=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.num_mel_bins, min_frequency=self.fmin, max_frequency=self.fmax, sampling_rate=self.sampling_rate, norm='slaney', mel_scale='slaney', ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers', SCREAMING_SNAKE_CASE_, ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers', SCREAMING_SNAKE_CASE_, ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: UpperCamelCase : Dict = np.array(SCREAMING_SNAKE_CASE_, np.intaa ) UpperCamelCase : int = [] for vector, length in zip(SCREAMING_SNAKE_CASE_, attention_mask.sum(-1 ) ): UpperCamelCase : Any = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[Any] = padding_value normed_input_values.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def snake_case_ ( self, SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCamelCase : int = spectrogram( SCREAMING_SNAKE_CASE_, window=self.window, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, mel_filters=self.mel_filters, mel_floor=self.mel_floor, log_mel='log10', ) return log_mel_spec.T def __call__( self, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: UpperCamelCase : Dict = self._process_audio( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) else: UpperCamelCase : str = None if audio_target is not None: UpperCamelCase : str = self._process_audio( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if inputs is None: return inputs_target else: UpperCamelCase : Dict = inputs_target['input_values'] UpperCamelCase : str = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: UpperCamelCase : str = decoder_attention_mask return inputs def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchFeature: UpperCamelCase : Any = isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Any = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ) and (isinstance(speech[0], (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): UpperCamelCase : int = np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Any = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : str = [speech] # needed to make pad() work on spectrogram inputs UpperCamelCase : Optional[Any] = self.feature_size # convert into correct format for padding if is_target: UpperCamelCase : Optional[int] = [self._extract_mel_features(SCREAMING_SNAKE_CASE_ ) for waveform in speech] UpperCamelCase : Union[str, Any] = BatchFeature({'input_values': features} ) UpperCamelCase : List[str] = self.num_mel_bins else: UpperCamelCase : Dict = BatchFeature({'input_values': speech} ) UpperCamelCase : Tuple = self.pad( SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : int = feature_size_hack # convert input values to correct format UpperCamelCase : Optional[int] = padded_inputs['input_values'] if not isinstance(input_values[0], np.ndarray ): UpperCamelCase : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) for array in input_values] elif ( not isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and isinstance(input_values[0], np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCamelCase : Optional[int] = [array.astype(np.floataa ) for array in input_values] elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCamelCase : Dict = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCamelCase : Dict = padded_inputs.get('attention_mask' ) if attention_mask is not None: UpperCamelCase : int = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCamelCase : Dict = ( attention_mask if self._get_padding_strategies(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['input_values'], attention_mask=SCREAMING_SNAKE_CASE_, padding_value=self.padding_value ) if return_tensors is not None: UpperCamelCase : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs def snake_case_ ( self ) -> Dict[str, Any]: UpperCamelCase : Any = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCamelCase : Any = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
103
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE :Optional[int] , **SCREAMING_SNAKE_CASE :int ) -> Any: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class A__ ( unittest.TestCase ): __UpperCamelCase : Optional[int] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : Dict =ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Any ) -> Any: '''simple docstring''' _a : int =object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE , { """score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE ), """ymin""": ANY(SCREAMING_SNAKE_CASE ), """xmax""": ANY(SCREAMING_SNAKE_CASE ), """ymax""": ANY(SCREAMING_SNAKE_CASE )}, } , ) import datasets _a : List[Any] =datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) _a : Optional[int] =[ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] _a : Optional[int] =object_detector(SCREAMING_SNAKE_CASE , threshold=0.0 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for outputs in batch_outputs: self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE , { """score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE ), """ymin""": ANY(SCREAMING_SNAKE_CASE ), """xmax""": ANY(SCREAMING_SNAKE_CASE ), """ymax""": ANY(SCREAMING_SNAKE_CASE )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __UpperCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' pass @require_torch def __UpperCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' _a : Optional[int] ="""hf-internal-testing/tiny-detr-mobilenetsv3""" _a : List[str] =AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE ) _a : int =AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) _a : List[Any] =ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE ) _a : Optional[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ] , ) _a : Optional[int] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' _a : int ="""facebook/detr-resnet-50""" _a : Any =AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE ) _a : Dict =AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) _a : Dict =ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) _a : str =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' _a : Dict ="""facebook/detr-resnet-50""" _a : List[str] =pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE ) _a : Any =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) _a : List[Any] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' _a : List[str] =0.9_985 _a : int ="""facebook/detr-resnet-50""" _a : Optional[Any] =pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE ) _a : List[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCAmelCase ( self :Dict ) -> Optional[Any]: '''simple docstring''' _a : str ="""Narsil/layoutlmv3-finetuned-funsd""" _a : str =0.9_993 _a : List[str] =pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE , threshold=SCREAMING_SNAKE_CASE ) _a : Optional[Any] =object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, {"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, ] , )
276
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
276
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _A : List[Any] = 'base_with_context' def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) lowerCamelCase__ : List[str] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Any = weights[f"layers_{lyr_num}"] lowerCamelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : int = ly_weight['''attention'''] lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Tuple = weights[f"layers_{lyr_num}"] lowerCamelCase__ : str = ly_weight['''attention'''] lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=UpperCAmelCase ) lowerCamelCase__ : Tuple = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase__ : List[Any] = weights[f"layers_{lyr_num}"] lowerCamelCase__ : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = ly_weight['''self_attention'''] lowerCamelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : Dict = ly_weight['''MultiHeadDotProductAttention_0'''] lowerCamelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCamelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCamelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCamelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCamelCase__ : Any = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) lowerCamelCase__ : Tuple = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase__ : Optional[int] = jnp.tree_util.tree_map(onp.array , UpperCAmelCase ) lowerCamelCase__ : List[str] = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowerCamelCase__ : List[Any] = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) lowerCamelCase__ : Optional[Any] = inference.parse_training_gin_file(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase ) lowerCamelCase__ : int = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) lowerCamelCase__ : str = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCamelCase__ : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase__ : Optional[int] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : int = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = load_decoder(ta_checkpoint['''target''']['''decoder'''] , UpperCAmelCase ) lowerCamelCase__ : List[str] = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) lowerCamelCase__ : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase , continuous_encoder=UpperCAmelCase , decoder=UpperCAmelCase , scheduler=UpperCAmelCase , melgan=UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) _A : Tuple = parser.parse_args() main(args)
265
1
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCamelCase , lowerCamelCase :int = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCamelCase :Tuple = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCamelCase :Union[str, Any] = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase :str = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
206
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Optional[Any] = 10 def _a (self ): A_ : Dict = [1, 2, 3, 4] A_ : List[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def _a (self ): A_ : List[str] = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" A_, A_ : Dict = process_story(lowercase ) self.assertEqual(lowercase , [] ) def _a (self ): A_ : Optional[int] = """""" A_, A_ : List[str] = process_story(lowercase ) self.assertEqual(lowercase , [] ) self.assertEqual(lowercase , [] ) def _a (self ): A_ : Optional[Any] = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) A_, A_ : int = process_story(lowercase ) A_ : Optional[Any] = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(lowercase , lowercase ) A_ : Dict = ["""It was the best of times."""] self.assertEqual(lowercase , lowercase ) def _a (self ): A_ : Optional[int] = torch.tensor([1, 2, 3, 4] ) A_ : Dict = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase , 0 ).numpy() , expected.numpy() ) def _a (self ): A_ : str = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 23 ).numpy() , expected.numpy() ) def _a (self ): A_ : Any = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A_ : List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 1 ).numpy() , expected.numpy() ) def _a (self ): A_ : List[Any] = 101 A_ : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A_ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A_ : Dict = compute_token_type_ids(lowercase , lowercase ) np.testing.assert_array_equal(lowercase , lowercase )
206
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __A (snake_case__): '''simple docstring''' __lowercase: Dict = """big_bird""" def __init__( self : str , UpperCAmelCase_ : Dict=50_358 , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=3_072 , UpperCAmelCase_ : List[Any]="gelu_new" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=4_096 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=1E-12 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=66 , UpperCAmelCase_ : str="block_sparse" , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : str , ) ->Dict: """simple docstring""" super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , sep_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = rescale_embeddings snake_case_ = attention_type snake_case_ = use_bias snake_case_ = block_size snake_case_ = num_random_blocks snake_case_ = classifier_dropout class __A (snake_case__): '''simple docstring''' @property def lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": snake_case_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
361
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __A (snake_case__): '''simple docstring''' __lowercase: List[str] = """canine""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=16_384 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=0XE000 , UpperCAmelCase_ : Optional[int]=0XE001 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : Dict=16_384 , UpperCAmelCase_ : Optional[int]=128 , **UpperCAmelCase_ : Any , ) ->int: """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps # Character config: snake_case_ = downsampling_rate snake_case_ = upsampling_kernel_size snake_case_ = num_hash_functions snake_case_ = num_hash_buckets snake_case_ = local_transformer_stride
233
0
def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0 for i in range(r + 1 )] # nc0 = 1 SCREAMING_SNAKE_CASE__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
314
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__: List[Any] = logging.getLogger() def UpperCamelCase__( )->Union[str, Any]: A__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A__ = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self ): A__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0,'''run_glue_deebert.py''' ) with patch.object(__lowerCamelCase,'''argv''',__lowerCamelCase ): A__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCamelCase,0.666 ) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self ): A__ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase )
193
0
"""simple docstring""" _lowerCAmelCase : int = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _lowerCAmelCase : Optional[int] = [{"type": "code", "content": INSTALL_CONTENT}] _lowerCAmelCase : int = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
361
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_5_5 , A : bool = True , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A : List[Any] , ): super().__init__(**A ) _UpperCAmelCase : int = size if size is not None else {"shortest_edge": 2_2_4} _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : int = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _UpperCAmelCase : Union[str, Any] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Tuple = resample _UpperCAmelCase : List[Any] = do_center_crop _UpperCAmelCase : List[Any] = crop_size _UpperCAmelCase : Tuple = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Dict = do_normalize _UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ): _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((2_5_6 / 2_2_4) * size["shortest_edge"] ) _UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(A , size=A , default_to_square=A ) _UpperCAmelCase : str = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( A , size=(size_dict["height"], size_dict["width"]) , resample=A , data_format=A , **A ) def snake_case_ ( self : int , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[Any] , ): _UpperCAmelCase : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(A , size=(size["height"], size["width"]) , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ): return rescale(A , scale=A , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : str , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_ ( self : Tuple , A : ImageInput , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : PILImageResampling = None , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[TensorType] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Dict , ): _UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = resample if resample is not None else self.resample _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : Optional[int] = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[str] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : List[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = [to_numpy_array(A ) for image in images] if do_resize: _UpperCAmelCase : str = [self.resize(A , A , A ) for image in images] if do_center_crop: _UpperCAmelCase : Dict = [self.center_crop(A , A ) for image in images] if do_rescale: _UpperCAmelCase : Dict = [self.rescale(A , A ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(A , A , A ) for image in images] _UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] _UpperCAmelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=A , tensor_type=A )
202
0
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_1_2, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __SCREAMING_SNAKE_CASE ( A_ ): if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
106
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : List[str] = '''true''' def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=16 ): set_seed(42 ) lowerCAmelCase__ : Union[str, Any] = RegressionModel() lowerCAmelCase__ : Optional[int] = deepcopy(A_ ) lowerCAmelCase__ : Any = RegressionDataset(length=A_ ) lowerCAmelCase__ : List[str] = DataLoader(A_ , batch_size=A_ ) model.to(accelerator.device ) lowerCAmelCase__ ,lowerCAmelCase__ : Dict = accelerator.prepare(A_ , A_ ) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( A_ , A_=False ): lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowerCAmelCase__ : List[str] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A_ ): lowerCAmelCase__ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A_ , max_length=A_ ) return outputs with accelerator.main_process_first(): lowerCAmelCase__ : Dict = dataset.map( A_ , batched=A_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowerCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A_ ): if use_longest: return tokenizer.pad(A_ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A_ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(A_ , shuffle=A_ , collate_fn=A_ , batch_size=16 ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = Accelerator(dispatch_batches=A_ , split_batches=A_ ) lowerCAmelCase__ : str = get_dataloader(A_ , not dispatch_batches ) lowerCAmelCase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = accelerator.prepare(A_ , A_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Union[str, Any] = [] for batch in dataloader: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = batch.values() with torch.no_grad(): lowerCAmelCase__ : List[str] = model(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase__ ,lowerCAmelCase__ : int = [], [] for logit, targ in logits_and_targets: logits.append(A_ ) targs.append(A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = torch.cat(A_ ), torch.cat(A_ ) return logits, targs def __SCREAMING_SNAKE_CASE ( A_ , A_=82 , A_=False , A_=False , A_=16 ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = get_basic_setup(A_ , A_ , A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = generate_predictions(A_ , A_ , A_ ) assert ( len(A_ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A_ )}' def __SCREAMING_SNAKE_CASE ( A_ = False , A_ = False ): lowerCAmelCase__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = get_mrpc_setup(A_ , A_ ) # First do baseline lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = setup['''no'''] model.to(A_ ) model.eval() for batch in dataloader: batch.to(A_ ) with torch.inference_mode(): lowerCAmelCase__ : Optional[int] = model(**A_ ) lowerCAmelCase__ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A_ , references=batch['''labels'''] ) lowerCAmelCase__ : Dict = metric.compute() # Then do distributed lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase__ : Union[str, Any] = model(**A_ ) lowerCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ : int = batch['''labels'''] lowerCAmelCase__ ,lowerCAmelCase__ : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A_ , references=A_ ) lowerCAmelCase__ : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(A_ , A_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase__ : Optional[Any] = Accelerator(split_batches=A_ , dispatch_batches=A_ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(A_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowerCAmelCase__ : List[str] = Accelerator() test_torch_metrics(A_ , 5_12 ) accelerator.state._reset_state() def __SCREAMING_SNAKE_CASE ( A_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
106
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[int] = "roformer" def __init__( self: Optional[int] ,lowerCamelCase_: Tuple=50000 ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: List[Any]=768 ,lowerCamelCase_: List[Any]=12 ,lowerCamelCase_: Optional[int]=12 ,lowerCamelCase_: Optional[Any]=3072 ,lowerCamelCase_: int="gelu" ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: Any=1536 ,lowerCamelCase_: str=2 ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-12 ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: Any=False ,lowerCamelCase_: Union[str, Any]=True ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size if embedding_size is None else embedding_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = rotary_value UpperCAmelCase_ : str = use_cache class _snake_case ( __snake_case ): '''simple docstring''' @property def A__ ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ : Optional[Any] = {0: """batch""", 1: """sequence"""} UpperCAmelCase_ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
59
def lowerCamelCase_ ( _a : int = 50 ): '''simple docstring''' UpperCAmelCase_ : Dict = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
59
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A_ : int = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__(self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=400 , lowercase__=None , lowercase__=True , lowercase__=True , lowercase__=None , ) -> Union[str, Any]: __UpperCAmelCase = size if size is not None else {'''height''': 20, '''width''': 20} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = size __UpperCAmelCase = do_normalize __UpperCAmelCase = do_convert_rgb __UpperCAmelCase = [512, 1_024, 2_048, 4_096] __UpperCAmelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def lowerCAmelCase_ (self ) -> str: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __UpperCAmelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class A_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' a__ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase_ (self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_convert_rgb''' ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.image_processor_tester.prepare_dummy_image() __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) __UpperCAmelCase = 2_048 __UpperCAmelCase = image_processor(__snake_case , return_tensors='''pt''' , max_patches=__snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCAmelCase_ (self ) -> Tuple: # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __UpperCAmelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ (self ) -> Tuple: # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __UpperCAmelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __UpperCAmelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__snake_case ): __UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches __UpperCAmelCase = '''Hello''' __UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ (self ) -> Optional[int]: # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) __UpperCAmelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ (self ) -> Optional[Any]: # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __UpperCAmelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class A_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' a__ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __UpperCAmelCase = 3 @property def lowerCAmelCase_ (self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_convert_rgb''' ) ) def lowerCAmelCase_ (self ) -> Tuple: # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __UpperCAmelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
333
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : Any =logging.get_logger(__name__) A__ : List[Any] ='''▁''' A__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model'''} A__ : Union[str, Any] ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } A__ : Dict ={ '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off A__ : Union[str, Any] =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase ( snake_case_ ): _lowercase: int = VOCAB_FILES_NAMES _lowercase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase: str = ['''input_ids''', '''attention_mask'''] _lowercase: List[int] = [] _lowercase: List[int] = [] def __init__( self : int , __snake_case : Optional[Any] , __snake_case : Dict="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Dict="</s>" , __snake_case : str="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Optional[Dict[str, Any]] = None , __snake_case : str=None , __snake_case : str=False , **__snake_case : List[Any] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = legacy_behaviour super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , tokenizer_file=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__snake_case , **__snake_case , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __snake_case : Optional[Any] ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : List[Any] ) -> Any: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : int ) -> str: return self._src_lang @src_lang.setter def lowercase__ ( self : Dict , __snake_case : str ) -> None: _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Optional[int] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) _lowerCAmelCase = self.convert_tokens_to_ids(__snake_case ) _lowerCAmelCase = tgt_lang_id return inputs def lowercase__ ( self : List[Any] ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Optional[int] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Optional[int] , __snake_case : Union[str, Any] ) -> str: _lowerCAmelCase = """""".join(__snake_case ).replace(__snake_case , """ """ ).strip() return out_string def lowercase__ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowercase__ ( self : Optional[Any] , __snake_case : List[str] , __snake_case : str = "eng_Latn" , __snake_case : Optional[List[str]] = None , __snake_case : str = "fra_Latn" , **__snake_case : Optional[int] , ) -> BatchEncoding: _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowercase__ ( self : str ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Dict ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , __snake_case : int ) -> None: _lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] def lowercase__ ( self : Any , __snake_case : str ) -> None: _lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id]
70
0
def lowerCamelCase_ (UpperCamelCase__ : Optional[int]=2_8123 ): _UpperCAmelCase : Optional[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _UpperCAmelCase : Optional[int] = set() _UpperCAmelCase : int = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCamelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
368
"""simple docstring""" from itertools import count def lowerCamelCase_ (UpperCamelCase__ : int = 50 ): _UpperCAmelCase : Tuple = [1] * min_block_length for n in count(UpperCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(f"{solution() = }")
68
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCamelCase_ = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase_ = DisjunctiveConstraint(lowercase ) self.assertTrue(isinstance(dc.token_ids , lowercase ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCamelCase_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase ): DisjunctiveConstraint(lowercase ) # fails here def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = [[1, 2, 3], [1, 2, 4]] lowerCamelCase_ = DisjunctiveConstraint(lowercase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(3 ) lowerCamelCase_ = stepped is True and completed is True and reset is False self.assertTrue(lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase_ = DisjunctiveConstraint(lowercase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
19
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCamelCase ( __lowerCamelCase : List[Any] ): return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : Tuple = np.max(_outputs , axis=-1 , keepdims=__lowerCamelCase ) snake_case : int = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowerCamelCase ) class UpperCAmelCase ( A_ ): A__ : Any = "sigmoid" A__ : str = "softmax" A__ : int = "none" @add_end_docstrings( A_ ,r"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " ,) class UpperCAmelCase ( A_ ): A__ : int = False A__ : Union[str, Any] = ClassificationFunction.NONE def __init__(self : List[str] , **snake_case__ : int ) -> str: '''simple docstring''' super().__init__(**snake_case__ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : Union[str, Any]="" , **snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = tokenizer_kwargs snake_case : List[Any] = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: snake_case : Optional[int] = self.model.config.return_all_scores if isinstance(snake_case__ , snake_case__ ) or top_k is None: snake_case : List[Any] = top_k snake_case : str = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , snake_case__ , ) if return_all_scores: snake_case : List[str] = None else: snake_case : Optional[int] = 1 if isinstance(snake_case__ , snake_case__ ): snake_case : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: snake_case : Optional[int] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self : Dict , *snake_case__ : List[str] , **snake_case__ : int ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = super().__call__(*snake_case__ , **snake_case__ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. snake_case : Tuple = "top_k" not in kwargs if isinstance(args[0] , snake_case__ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple , **snake_case__ : Union[str, Any] ) -> Dict[str, GenericTensor]: '''simple docstring''' snake_case : int = self.framework if isinstance(snake_case__ , snake_case__ ): return self.tokenizer(**snake_case__ , return_tensors=snake_case__ , **snake_case__ ) elif isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) == 1 and isinstance(inputs[0] , snake_case__ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case__ , **snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] ) -> int: '''simple docstring''' return self.model(**snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Optional[Any] , snake_case__ : List[str]=None , snake_case__ : Dict=1 , snake_case__ : Tuple=True ) -> str: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: snake_case : Tuple = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: snake_case : Tuple = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: snake_case : Tuple = self.model.config.function_to_apply else: snake_case : int = ClassificationFunction.NONE snake_case : Any = model_outputs["logits"][0] snake_case : List[str] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: snake_case : Optional[Any] = sigmoid(snake_case__ ) elif function_to_apply == ClassificationFunction.SOFTMAX: snake_case : Union[str, Any] = softmax(snake_case__ ) elif function_to_apply == ClassificationFunction.NONE: snake_case : Optional[Any] = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} snake_case : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(snake_case__ ) ] if not _legacy: dict_scores.sort(key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k is not None: snake_case : Optional[int] = dict_scores[:top_k] return dict_scores
59
0
from __future__ import annotations from fractions import Fraction def __UpperCamelCase ( _A : int , _A : int ) ->bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __UpperCamelCase ( _A : int ) ->list[str]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =11 lowerCamelCase_ =int("""1""" + """0""" * digit_len ) for num in range(_A , _A ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_A , _A ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 lowerCamelCase_ =10 return solutions def __UpperCamelCase ( _A : int = 2 ) ->int: """simple docstring""" lowerCamelCase_ =1.0 for fraction in fraction_list(_A ): lowerCamelCase_ =Fraction(_A ) result *= frac.denominator / frac.numerator return int(_A ) if __name__ == "__main__": print(solution())
49
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =jnp.ones((batch_size, length) ) / length return scores def _snake_case ( self )-> Dict: lowerCamelCase_ =None lowerCamelCase_ =20 lowerCamelCase_ =self._get_uniform_logits(batch_size=2 , length=_SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore lowerCamelCase_ =scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ =scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ =jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ =jax.nn.softmax(temp_dist_warper_sharper(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) lowerCamelCase_ =jax.nn.softmax(temp_dist_warper_smoother(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _snake_case ( self )-> Any: lowerCamelCase_ =None lowerCamelCase_ =10 lowerCamelCase_ =2 # create ramp distribution lowerCamelCase_ =np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ =ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ =FlaxTopKLogitsWarper(3 ) lowerCamelCase_ =top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ =5 lowerCamelCase_ =FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ =np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ =top_k_warp_safety_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =None lowerCamelCase_ =10 lowerCamelCase_ =2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ =np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ =FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ =np.exp(top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ =np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ =np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ =ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ =FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ =top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =20 lowerCamelCase_ =4 lowerCamelCase_ =0 lowerCamelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 lowerCamelCase_ =ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ =5 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =15 lowerCamelCase_ =min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =20 lowerCamelCase_ =4 lowerCamelCase_ =0 lowerCamelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ =ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ =1 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ =3 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )-> int: lowerCamelCase_ =20 lowerCamelCase_ =4 lowerCamelCase_ =0 lowerCamelCase_ =5 lowerCamelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ =ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ =4 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ =3 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )-> Dict: lowerCamelCase_ =4 lowerCamelCase_ =10 lowerCamelCase_ =15 lowerCamelCase_ =2 lowerCamelCase_ =1 lowerCamelCase_ =15 # dummy input_ids and scores lowerCamelCase_ =ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =input_ids.copy() lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scores.copy() # instantiate all dist processors lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ =FlaxTopKLogitsWarper(3 ) lowerCamelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =10 # no processor list lowerCamelCase_ =temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # with processor list lowerCamelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ =processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =4 lowerCamelCase_ =10 lowerCamelCase_ =15 lowerCamelCase_ =2 lowerCamelCase_ =1 lowerCamelCase_ =15 # dummy input_ids and scores lowerCamelCase_ =ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =input_ids.copy() lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scores.copy() # instantiate all dist processors lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ =FlaxTopKLogitsWarper(3 ) lowerCamelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =10 # no processor list def run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ =processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores lowerCamelCase_ =jax.jit(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =jax.jit(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =jitted_run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =jitted_run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
49
1
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
105
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase_ = True lowerCAmelCase_ = "ml.p3.2xlarge" lowerCAmelCase_ = "accelerate_sagemaker_execution_role" lowerCAmelCase_ = "hf-sm" lowerCAmelCase_ = "us-east-1" lowerCAmelCase_ = 1 lowerCAmelCase_ = "accelerate-sagemaker-1" lowerCAmelCase_ = "1.6" lowerCAmelCase_ = "4.4" lowerCAmelCase_ = "train.py" lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __snake_case ( unittest.TestCase ): def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , _lowercase ) assert isinstance(converted_args["""do_train"""] , _lowercase ) assert isinstance(converted_args["""epochs"""] , _lowercase ) assert isinstance(converted_args["""learning_rate"""] , _lowercase ) assert isinstance(converted_args["""max_steps"""] , _lowercase ) with pytest.raises(_lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
219
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCAmelCase__ : Tuple = re.compile(R"\s+") def __UpperCamelCase ( _UpperCAmelCase ): return {"hash": hashlib.mda(re.sub(_UpperCAmelCase, "", example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = [len(_UpperCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : int = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase=5 ): __UpperCAmelCase : Optional[Any] = ["auto-generated", "autogenerated", "automatically generated"] __UpperCAmelCase : Optional[Any] = example["content"].splitlines() for _, line in zip(range(_UpperCAmelCase ), _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase=5, _UpperCAmelCase=0.05 ): __UpperCAmelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] __UpperCAmelCase : List[str] = example["content"].splitlines() __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Optional[int] = 0 # first test for _, line in zip(range(_UpperCAmelCase ), _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __UpperCAmelCase : Union[str, Any] = example["content"].count("\n" ) __UpperCAmelCase : List[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : List[str] = ["def ", "class ", "for ", "while "] __UpperCAmelCase : Tuple = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase=4 ): __UpperCAmelCase : Dict = example["content"].splitlines() __UpperCAmelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Tuple = tokenizer(example["content"], truncation=_UpperCAmelCase )["input_ids"] __UpperCAmelCase : Dict = len(example["content"] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : int = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if not check_uniques(_UpperCAmelCase, _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCamelCase ( _UpperCAmelCase ): with open(_UpperCAmelCase, "rb" ) as f_in: with gzip.open(str(_UpperCAmelCase ) + ".gz", "wb", compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase, _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings lowerCAmelCase__ : List[Any] = HfArgumentParser(PreprocessingArguments) lowerCAmelCase__ : str = parser.parse_args() if args.num_workers is None: lowerCAmelCase__ : Optional[int] = multiprocessing.cpu_count() lowerCAmelCase__ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCAmelCase__ : List[Any] = time.time() lowerCAmelCase__ : Dict = load_dataset(args.dataset_name, split="train") print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCAmelCase__ : Tuple = time.time() lowerCAmelCase__ : Tuple = ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCAmelCase__ : Any = set(ds.unique("hash")) lowerCAmelCase__ : Optional[int] = len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCAmelCase__ : Tuple = time.time() lowerCAmelCase__ : List[Any] = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCAmelCase__ : Dict = time.time() lowerCAmelCase__ : Any = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCAmelCase__ : Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) lowerCAmelCase__ : Any = output_dir / "data" data_dir.mkdir(exist_ok=True) lowerCAmelCase__ : Union[str, Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCAmelCase__ : Union[str, Any] = str(data_dir / f"file-{file_number+1:012}.json") lowerCAmelCase__ : Any = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
362
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ : Dict = get_tests_dir("fixtures/dummy-config.json") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = 0 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[str] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Any = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCAmelCase : int = os.path.join(UpperCAmelCase_ , "fake-roberta" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register("custom" , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("model" , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("bert" , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def lowerCamelCase_ ( self : int ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision="aaaaaa" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''new-model''' try: AutoConfig.register("new-model" , UpperCAmelCase_ ) # If remote code is not set, the default is to use local __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
37
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :Tuple = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys A_ :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =tempfile.mkdtemp() __UpperCamelCase : Optional[int] =8 # DPR tok __UpperCamelCase : str =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : Optional[Any] =os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __UpperCamelCase : Optional[int] =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase : str =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : Optional[int] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase : Any ={'unk_token': '<unk>'} __UpperCamelCase : Any =os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Any =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =os.path.join(self.tmpdirname , 'rag_tokenizer' ) __UpperCamelCase : Dict =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __UpperCamelCase : List[Any] =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase__ ) rag_tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =RagTokenizer.from_pretrained(lowerCamelCase__ , config=lowerCamelCase__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : int =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : Any =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
71
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase ( __UpperCamelCase ): lowercase : List[str] = ["""image_processor""", """tokenizer"""] lowercase : Any = """LayoutLMv2ImageProcessor""" lowercase : Optional[Any] = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : List[str] = kwargs.pop("""feature_extractor""" ) UpperCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor UpperCamelCase : List[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase : Any = features["""words"""] UpperCamelCase : str = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # add pixel values UpperCamelCase : List[Any] = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase : Optional[Any] = self.get_overflowing_images(SCREAMING_SNAKE_CASE_ , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase : List[str] = images return encoded_inputs def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCamelCase : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f' {len(SCREAMING_SNAKE_CASE_ )} and {len(SCREAMING_SNAKE_CASE_ )}' ) return images_with_overflow def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def a_ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def a_ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def a_ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
355
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : Any = AudioLDMPipeline lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS lowercase : Tuple = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase : int = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def a_ ( self ): UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Any = self.get_dummy_components() UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Tuple = audio[:10] UpperCamelCase : Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[str] = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) UpperCamelCase : Tuple = prompt_embeds # forward UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""] UpperCamelCase : List[Any] = negative_prompt UpperCamelCase : str = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[Any] = [] for p in [prompt, negative_prompt]: UpperCamelCase : int = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) embeds.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Tuple = embeds # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Optional[int] = self.get_dummy_components() UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = """egg cracking""" UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Union[str, Any] = audio[:10] UpperCamelCase : Dict = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase : Dict = 2 UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase : List[str] = 2 UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase : Any = 2 UpperCamelCase : str = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016 UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = ["""hey"""] UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : str = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a_ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a_ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @slow class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) ) UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def a_ ( self ): UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 25 UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240] UpperCamelCase : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def a_ ( self ): UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790] UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
27
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase__ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): """simple docstring""" a : bool =field(default=lowercase__ , metadata={"help": "Whether to use SortishSampler or not."} ) a : bool =field( default=lowercase__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) a : Optional[int] =field( default=lowercase__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) a : Optional[int] =field( default=lowercase__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) a : Optional[Union[str, Path, GenerationConfig]] =field( default=lowercase__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = super().to_dict() for k, v in d.items(): if isinstance(_a , _a ): lowerCAmelCase : Tuple = v.to_dict() return d
108
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCAmelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = 'https://pypi.org/pypi/diffusers/json' _a : int = json.loads(request.urlopen(__a ).read() )['releases'].keys() return sorted(__a , key=lambda __a : version.Version(__a ) ) def UpperCAmelCase_ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a , exist_ok=__a ) _a : str = Path(__a ) / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _a : Dict = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a , exist_ok=__a ) _a : Optional[int] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase_ (__a : str ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : int = f.read() # Imports of the form `import .xxx` _a : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , __a , flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Optional[int] = False _a : Optional[int] = [module_file] _a : List[str] = [] # Let's recurse through all relative imports while not no_change: _a : str = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _a : Union[str, Any] = Path(__a ).parent _a : str = [str(module_path / m ) for m in new_imports] _a : Tuple = [f for f in new_import_files if f not in all_relative_imports] _a : Dict = [f"""{f}.py""" for f in new_import_files] _a : List[str] = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def UpperCAmelCase_ (__a : Tuple ): """simple docstring""" with open(__a , 'r' , encoding='utf-8' ) as f: _a : Dict = f.read() # Imports of the form `import xxx` _a : Optional[int] = re.findall('^\s*import\s+(\S+)\s*$' , __a , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , __a , flags=re.MULTILINE ) # Only keep the top-level module _a : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all _a : Optional[int] = list(set(__a ) ) _a : List[str] = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{', '.join(__a )}. Run `pip install {' '.join(__a )}`""" ) return get_relative_imports(__a ) def UpperCAmelCase_ (__a : Any , __a : str ): """simple docstring""" _a : Any = module_path.replace(os.path.sep , '.' ) _a : Union[str, Any] = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a , __a ) def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" from ..pipelines import DiffusionPipeline _a : List[str] = dict(inspect.getmembers(__a , inspect.isclass ) ) _a : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __a ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) _a : Any = cls return pipeline_class def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , ): """simple docstring""" _a : str = str(__a ) _a : Optional[Any] = os.path.join(__a , __a ) if os.path.isfile(__a ): _a : Tuple = module_file_or_url _a : Optional[Any] = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: _a : int = get_diffusers_versions() # cut ".dev0" _a : Any = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: _a : Any = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _a : Any = f"""v{revision}""" elif revision == "main": _a : Optional[int] = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _a : Tuple = COMMUNITY_PIPELINES_URL.format(revision=__a , pipeline=__a ) try: _a : Any = cached_download( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = 'git' _a : Any = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _a : Optional[Any] = hf_hub_download( __a , __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , ) _a : List[Any] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _a : Optional[int] = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _a : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _a : Any = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a , submodule_path / module_file ) for module_needed in modules_needed: _a : Dict = f"""{module_needed}.py""" shutil.copy(os.path.join(__a , __a ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a , __a ): _a : Optional[Any] = use_auth_token elif use_auth_token is True: _a : List[Any] = HfFolder.get_token() else: _a : Dict = None _a : int = model_info(__a , revision=__a , token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _a : Optional[int] = submodule_path / commit_hash _a : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a , f"""{module_needed}.py""" , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return os.path.join(__a , __a ) def UpperCAmelCase_ (__a : Union[str, os.PathLike] , __a : str , __a : Optional[str] = None , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , **__a : str , ): """simple docstring""" _a : Dict = get_cached_module_file( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) return get_class_in_module(__a , final_module.replace('.py' , '' ) )
271
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _lowerCamelCase( _a ): lowercase_ : Dict = """unispeech""" def __init__( self, lowerCamelCase=32, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=1E-5, lowerCamelCase="group", lowerCamelCase="gelu", lowerCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12), lowerCamelCase=(5, 2, 2, 2, 2, 2, 2), lowerCamelCase=(10, 3, 3, 3, 3, 2, 2), lowerCamelCase=False, lowerCamelCase=1_28, lowerCamelCase=16, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=0.0_5, lowerCamelCase=10, lowerCamelCase=2, lowerCamelCase=0.0, lowerCamelCase=10, lowerCamelCase=0, lowerCamelCase=3_20, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=1_00, lowerCamelCase=2_56, lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase="mean", lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=2_56, lowerCamelCase=80, lowerCamelCase=0, lowerCamelCase=1, lowerCamelCase=2, lowerCamelCase=0.5, **lowerCamelCase, ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase, pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase) _lowercase : Optional[Any] = hidden_size _lowercase : List[str] = feat_extract_norm _lowercase : Dict = feat_extract_activation _lowercase : List[str] = list(lowerCamelCase) _lowercase : List[str] = list(lowerCamelCase) _lowercase : Any = list(lowerCamelCase) _lowercase : Optional[Any] = conv_bias _lowercase : List[Any] = num_conv_pos_embeddings _lowercase : Dict = num_conv_pos_embedding_groups _lowercase : Any = len(self.conv_dim) _lowercase : Any = num_hidden_layers _lowercase : List[Any] = intermediate_size _lowercase : Any = hidden_act _lowercase : Any = num_attention_heads _lowercase : Optional[Any] = hidden_dropout _lowercase : Optional[Any] = attention_dropout _lowercase : str = activation_dropout _lowercase : List[str] = feat_proj_dropout _lowercase : int = final_dropout _lowercase : Optional[int] = layerdrop _lowercase : Dict = layer_norm_eps _lowercase : Dict = initializer_range _lowercase : Optional[int] = num_ctc_classes _lowercase : List[str] = vocab_size _lowercase : Optional[Any] = do_stable_layer_norm _lowercase : List[str] = use_weighted_layer_sum _lowercase : Any = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : str = apply_spec_augment _lowercase : Tuple = mask_time_prob _lowercase : Dict = mask_time_length _lowercase : Tuple = mask_time_min_masks _lowercase : List[Any] = mask_feature_prob _lowercase : Tuple = mask_feature_length _lowercase : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowercase : List[Any] = num_codevectors_per_group _lowercase : Optional[int] = num_codevector_groups _lowercase : str = contrastive_logits_temperature _lowercase : Tuple = feat_quantizer_dropout _lowercase : Dict = num_negatives _lowercase : Dict = codevector_dim _lowercase : Union[str, Any] = proj_codevector_dim _lowercase : int = diversity_loss_weight # ctc loss _lowercase : Union[str, Any] = ctc_loss_reduction _lowercase : Optional[Any] = ctc_zero_infinity # pretraining loss _lowercase : str = replace_prob @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return functools.reduce(operator.mul, self.conv_stride, 1)
84
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : List[str] = CTRLTokenizer lowercase_ : Union[str, Any] = False lowercase_ : Optional[int] = False def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : List[Any] = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowercase : List[Any] = dict(zip(lowerCamelCase, range(len(lowerCamelCase)))) _lowercase : Optional[int] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowercase : Union[str, Any] = {'unk_token': '<unk>'} _lowercase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCamelCase) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(lowerCamelCase)) def UpperCamelCase ( self, **lowerCamelCase) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = 'adapt react readapt apt' _lowercase : Tuple = 'adapt react readapt apt' return input_text, output_text def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowercase : List[str] = 'adapt react readapt apt' _lowercase : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowercase : Optional[Any] = tokenizer.tokenize(lowerCamelCase) self.assertListEqual(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = tokens + [tokenizer.unk_token] _lowercase : int = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase), lowerCamelCase)
84
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case_ = TypeVar('''T''') snake_case_ = TypeVar('''U''') class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): def __init__( self , a , a): lowercase__ : List[Any] = key lowercase__ : List[Any] = val lowercase__ : DoubleLinkedListNode[T, U] | None = None lowercase__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self): return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next)}, has prev: {bool(self.prev)}""" ) class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): def __init__( self): lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a) lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a) lowercase__ , lowercase__ : Union[str, Any] = self.rear, self.head def __repr__( self): lowercase__ : Any = ['DoubleLinkedList'] lowercase__ : List[str] = self.head while node.next is not None: rep.append(str(a)) lowercase__ : Tuple = node.next rep.append(str(self.rear)) return ",\n ".join(a) def snake_case_ ( self , a): lowercase__ : Optional[Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase__ : Dict = node lowercase__ : int = previous lowercase__ : Union[str, Any] = node lowercase__ : Optional[int] = self.rear def snake_case_ ( self , a): if node.prev is None or node.next is None: return None lowercase__ : Union[str, Any] = node.next lowercase__ : Tuple = node.prev lowercase__ : Union[str, Any] = None lowercase__ : List[Any] = None return node class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): __lowerCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , a): lowercase__ : DoubleLinkedList[T, U] = DoubleLinkedList() lowercase__ : Optional[Any] = capacity lowercase__ : Union[str, Any] = 0 lowercase__ : Tuple = 0 lowercase__ : int = 0 lowercase__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self): return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , a): return key in self.cache def snake_case_ ( self , a): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase__ : DoubleLinkedListNode[T, U] = self.cache[key] lowercase__ : str = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(a) return node.val self.miss += 1 return None def snake_case_ ( self , a , a): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase__ : Optional[int] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(a) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase__ : Optional[Any] = DoubleLinkedListNode(a , a) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase__ : Any = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list lowercase__ : Union[str, Any] = value self.list.add(a) @classmethod def snake_case_ ( cls , a = 128): def cache_decorator_inner(a) -> Callable[..., U]: def cache_decorator_wrapper(*a) -> U: if func not in cls.decorator_function_to_instance_map: lowercase__ : Dict = LRUCache(a) lowercase__ : str = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: lowercase__ : str = func(*a) cls.decorator_function_to_instance_map[func].put(args[0] , a) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(a , 'cache_info' , a) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
214
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case_ = logging.getLogger(__name__) snake_case_ = 50 # max width of layer names snake_case_ = 70 # max width of quantizer names def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : str = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=SCREAMING_SNAKE_CASE_ , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=SCREAMING_SNAKE_CASE_ , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=SCREAMING_SNAKE_CASE_ , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=SCREAMING_SNAKE_CASE_ , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=SCREAMING_SNAKE_CASE_ , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=SCREAMING_SNAKE_CASE_ , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' if args.calibrator == "max": lowercase__ : Optional[int] = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) lowercase__ : Optional[Any] = 'histogram' elif args.calibrator == "mse": lowercase__ : int = 'histogram' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) lowercase__ : Any = QuantDescriptor(num_bits=args.aprec , calib_method=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(SCREAMING_SNAKE_CASE_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Any=False ): '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , ['embeddings'] , which='weight' , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [''] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable_keyword: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , args.quant_disable_keyword , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_disable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.quant_enable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE_ , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=SCREAMING_SNAKE_CASE_ ) if args.recalibrate_weights: recalibrate_weights(SCREAMING_SNAKE_CASE_ ) if args.fuse_qkv: fuse_qkv(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if args.clip_gelu: clip_gelu(SCREAMING_SNAKE_CASE_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' def fusea(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): for mod in [qq, qk, qv]: if not hasattr(SCREAMING_SNAKE_CASE_ , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return lowercase__ : List[Any] = qq._amax.detach().item() lowercase__ : Optional[int] = qk._amax.detach().item() lowercase__ : List[str] = qv._amax.detach().item() lowercase__ : Tuple = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) qq._amax.fill_(SCREAMING_SNAKE_CASE_ ) qk._amax.fill_(SCREAMING_SNAKE_CASE_ ) qv._amax.fill_(SCREAMING_SNAKE_CASE_ ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): lowercase__ : Any = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: lowercase__ : Union[str, Any] = mod.weight.shape[0] lowercase__ : str = mod._weight_quantizer._amax.detach() lowercase__ : Any = torch.ones(SCREAMING_SNAKE_CASE_ , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowercase__ : Dict = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowercase__ : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set lowercase__ : str = pytorch_quantization.utils.reduce_amax(mod.weight , axis=SCREAMING_SNAKE_CASE_ , keepdims=SCREAMING_SNAKE_CASE_ ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) lowercase__ : Union[str, Any] = amax def snake_case__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any]=25 , SCREAMING_SNAKE_CASE_ : Any=180 , SCREAMING_SNAKE_CASE_ : Optional[int]=None ): '''simple docstring''' if ignore is None: lowercase__ : Tuple = [] elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : str = [ignore] lowercase__ : Optional[Any] = 0 for name, mod in model.named_modules(): if not hasattr(SCREAMING_SNAKE_CASE_ , 'weight' ): continue lowercase__ : Optional[Any] = max(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) for name, mod in model.named_modules(): lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , '_input_quantizer' , SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' , SCREAMING_SNAKE_CASE_ ) if not hasattr(SCREAMING_SNAKE_CASE_ , 'weight' ): continue if type(SCREAMING_SNAKE_CASE_ ) in ignore: continue if [True for s in ignore if type(SCREAMING_SNAKE_CASE_ ) is str and s in name]: continue lowercase__ : Optional[int] = f"""Act:{input_q.extra_repr()}""" lowercase__ : Dict = f"""Wgt:{weight_q.extra_repr()}""" lowercase__ : Tuple = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(SCREAMING_SNAKE_CASE_ ) <= line_width: logger.info(SCREAMING_SNAKE_CASE_ ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : List[str] = 0 for name, mod in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if quantizer_mod is not None: assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: logger.warning(f"""{name} has no {quantizer}""" ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]="both" , **SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : Optional[int] = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '_input_quantizer' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if which in ["weight", "both"]: set_quantizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '_weight_quantizer' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE_ , '_input_quantizer' ) or hasattr(SCREAMING_SNAKE_CASE_ , '_weight_quantizer' ): for n in names: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): set_quantizers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif name.endswith('_quantizer' ): for n in names: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : Any = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(SCREAMING_SNAKE_CASE_ )
214
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if len(snake_case__ ) <= 1: return lst _snake_case : List[Any] = 1 while i < len(snake_case__ ): if lst[i - 1] <= lst[i]: i += 1 else: _snake_case , _snake_case : List[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: _snake_case : Dict = 1 return lst if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
132
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = WavaVecaPhonemeCTCTokenizer lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() _snake_case : List[Any] = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _snake_case : List[str] = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : Union[str, Any] = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: List[str]=False, a_: str=20, a_: Optional[int]=5 ): '''simple docstring''' _snake_case : Union[str, Any] = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=a_ )) for i in range(len(a_ ) )] _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], do_phonemize=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Dict = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[Any] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : str = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Optional[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : str = """ """ + output_txt _snake_case : Tuple = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int, **a_: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _snake_case : Optional[Any] = tokenizer("""m xxx ɪ""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _snake_case : Union[str, Any] = tokenizer("""m aaa ɪ ccc""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa _snake_case : Any = tokenizer("""maɪ c""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [3, 200] ) # mai should be <unk> (=3) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Tuple = """Hello how are you""" _snake_case : Optional[int] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(a_, """h ə l oʊ h aʊ ɑːɹ j uː""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : int = """Hello how are you""" _snake_case : int = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a_ ).input_ids, tokenizer(a_, do_phonemize=a_ ).input_ids ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Tuple = """Hello how are you""" _snake_case : List[str] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Optional[Any] = tokenizer.decode(tokenizer(a_ ).input_ids ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _snake_case : List[Any] = tokenizer.decode(sample_ids[0] ) _snake_case : str = tokenizer.batch_decode(a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : Union[str, Any] = """Hello how are you""" _snake_case : Tuple = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(a_, """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : int = """Hello how are you""" _snake_case : Dict = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a_ ).input_ids, tokenizer(a_, do_phonemize=a_ ).input_ids ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _snake_case : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _snake_case : List[str] = tokenizer.decode(sample_ids[0] ) _snake_case : Optional[int] = tokenizer.batch_decode(a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _snake_case : int = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=a_ ) _snake_case : Dict = tokenizer.batch_decode(a_, filter_word_delimiter_token=a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : str = """Hello how are you""" _snake_case : List[Any] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Union[str, Any] = tokenizer.decode(tokenizer(a_ ).input_ids, filter_word_delimiter_token=a_ ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : Any = """Hello how are you""" _snake_case : Any = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Any = tokenizer.decode(tokenizer(a_ ).input_ids, filter_word_delimiter_token=a_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip(), a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token=a_ ) _snake_case : str = """Hello how are you""" _snake_case : str = tokenizer(a_, phonemizer_lang="""en-us""" ).input_ids _snake_case : List[str] = tokenizer(a_, phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(a_, a_ ) _snake_case : Dict = tokenizer.decode(a_ ) _snake_case : Union[str, Any] = tokenizer.decode(a_ ) self.assertEqual(a_, """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(a_, """ɛ l o h aʊ a ʁ j u""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Optional[Any] = """Hello how Are you""" _snake_case : Optional[int] = """hello how are you""" _snake_case : List[str] = tokenizer(a_ ).input_ids _snake_case : int = tokenizer(a_ ).input_ids self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on _snake_case : List[Any] = tokenizer.batch_decode(a_ ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def UpperCamelCase_ ( a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _snake_case : Optional[int] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _snake_case : Any = tokenizer.decode(a_, output_char_offsets=a_, filter_word_delimiter_token=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ), 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(a_, a_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""], """char""" ) ), outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """char""" ), ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """start_offset""" ), [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """end_offset""" ), [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(a_: List[str], a_: Optional[Any] ): self.assertTrue(isinstance(a_, a_ ) ) self.assertTrue(isinstance(outputs_list[0], a_ ) ) # transform list to ModelOutput _snake_case : int = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""], outputs_batch_a["""text"""] ) def recursive_check(a_: Union[str, Any], a_: Optional[Any] ): if isinstance(a_, a_ ): [recursive_check(a_, a_ ) for la, la in zip(a_, a_ )] self.assertEqual(a_, a_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""], outputs_batch_a["""char_offsets"""] ) # fmt: off _snake_case : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _snake_case : int = tokenizer.batch_decode(a_, output_char_offsets=a_ ) _snake_case : Union[str, Any] = [tokenizer.decode(a_, output_char_offsets=a_ ) for ids in sample_ids] check_list_tuples_equal(a_, a_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : int = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[Any] = tokenizer.vocab_size _snake_case : int = len(a_ ) self.assertNotEqual(a_, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case : Optional[int] = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _snake_case : Any = tokenizer.add_tokens(a_ ) _snake_case : Tuple = tokenizer.vocab_size _snake_case : List[str] = len(a_ ) self.assertNotEqual(a_, 0 ) self.assertEqual(a_, a_ ) self.assertEqual(a_, len(a_ ) ) self.assertEqual(a_, all_size + len(a_ ) ) _snake_case : Optional[Any] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""", add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) _snake_case : Optional[int] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _snake_case : Dict = tokenizer.add_special_tokens(a_ ) _snake_case : List[str] = tokenizer.vocab_size _snake_case : List[Any] = len(a_ ) self.assertNotEqual(a_, 0 ) self.assertEqual(a_, a_ ) self.assertEqual(a_, len(a_ ) ) self.assertEqual(a_, all_size_a + len(a_ ) ) _snake_case : Dict = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""", add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : str = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : str = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _snake_case : Optional[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(output["""text"""], a_ )
132
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ReformerTokenizer lowerCamelCase__ : Tuple = ReformerTokenizerFast lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Union[str, Any] = True def _UpperCAmelCase ( self ) -> List[Any]: super().setUp() lowercase__ : Union[str, Any] = ReformerTokenizer(a , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = '<s>' lowercase__ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(a ) , 1_0_0_0 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def _UpperCAmelCase ( self ) -> int: if not self.test_rust_tokenizer: return lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Dict = self.get_rust_tokenizer() lowercase__ : List[Any] = 'I was born in 92000, and this is falsé.' lowercase__ : Dict = tokenizer.tokenize(a ) lowercase__ : Tuple = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowercase__ : str = tokenizer.encode(a , add_special_tokens=a ) lowercase__ : Tuple = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowercase__ : Any = self.get_rust_tokenizer() lowercase__ : Optional[int] = tokenizer.encode(a ) lowercase__ : Tuple = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _UpperCAmelCase ( self , a=1_5 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained(a , **a ) # Simple input lowercase__ : Tuple = 'This is a simple input' lowercase__ : List[str] = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ : Optional[int] = ('This is a simple input', 'This is a pair') lowercase__ : List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) # Pair input self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = ReformerTokenizer(a , keep_accents=a ) lowercase__ : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) lowercase__ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ : int = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = 'Hello World!' lowercase__ : Optional[int] = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : List[str] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowercase__ : int = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:1_0] lowercase__ : List[Any] = ' '.join(a ) lowercase__ : List[Any] = self.big_tokenizer.encode_plus(a , return_tensors='pt' ) lowercase__ : Optional[int] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='pt' ) lowercase__ : Optional[int] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase__ : Dict = encoded_sequence['input_ids'].shape lowercase__ : Dict = ReformerModel(a ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a ) model(**a ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: # fmt: off lowercase__ : Optional[Any] = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase__ : List[Any] = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=a , model_name='google/reformer-crime-and-punishment' , revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a' , padding=a , sequences=a , )
77
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Optional[Any] , A_ : Dict , A_ : Optional[Any]=2 , A_ : List[str]=True , A_ : Dict=False , A_ : Union[str, Any]=1_0 , A_ : Optional[Any]=3 , A_ : str=3_2 * 8 , A_ : List[str]=3_2 * 8 , A_ : Dict=4 , A_ : List[Any]=6_4 , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : int = use_auxiliary_loss lowerCAmelCase_ : str = num_queries lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Union[str, Any] = min_size lowerCAmelCase_ : Optional[int] = max_size lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : str = hidden_dim lowerCAmelCase_ : List[str] = hidden_dim def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( A_) lowerCAmelCase_ : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=A_) lowerCAmelCase_ : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=A_) > 0.5 ).float() lowerCAmelCase_ : Any = (torch.rand((self.batch_size, self.num_labels) , device=A_) > 0.5).long() lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase_ : Dict = self.num_queries lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : str = [1, 1, 1, 1] lowerCAmelCase_ : Dict = self.num_channels lowerCAmelCase_ : List[str] = 6_4 lowerCAmelCase_ : Union[str, Any] = 1_2_8 lowerCAmelCase_ : str = self.hidden_dim lowerCAmelCase_ : Optional[Any] = self.hidden_dim lowerCAmelCase_ : Any = self.hidden_dim return config def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] , A_ : List[Any] , A_ : Tuple): lowerCAmelCase_ : Any = output.encoder_hidden_states lowerCAmelCase_ : int = output.pixel_decoder_hidden_states lowerCAmelCase_ : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(A_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(A_) , config.decoder_layers) def UpperCAmelCase__ ( self : Optional[int] , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : str=False): with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = MaskaFormerModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : List[Any] = model(pixel_values=A_ , pixel_mask=A_) lowerCAmelCase_ : Any = model(A_ , output_hidden_states=A_) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(A_ , A_) def UpperCAmelCase__ ( self : List[Any] , A_ : Union[str, Any] , A_ : List[str] , A_ : List[Any] , A_ : Tuple , A_ : Any): lowerCAmelCase_ : Any = MaskaFormerForUniversalSegmentation(config=A_) model.to(A_) model.eval() def comm_check_on_output(A_ : Optional[int]): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(pixel_values=A_ , pixel_mask=A_) lowerCAmelCase_ : List[Any] = model(A_) comm_check_on_output(A_) lowerCAmelCase_ : Any = model( pixel_values=A_ , pixel_mask=A_ , mask_labels=A_ , class_labels=A_) comm_check_on_output(A_) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _a = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Tuple = MaskaFormerModelTester(self) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_) def UpperCAmelCase__ ( self : Optional[int]): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ , **A_ , output_hidden_states=A_) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''') def UpperCAmelCase__ ( self : Optional[Any]): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''') def UpperCAmelCase__ ( self : str): pass @unittest.skip(reason='''Mask2Former is not a generative model''') def UpperCAmelCase__ ( self : int): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''') def UpperCAmelCase__ ( self : Tuple): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase__ ( self : List[str]): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase__ ( self : Tuple): pass def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(A_) lowerCAmelCase_ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Tuple = [*signature.parameters.keys()] lowerCAmelCase_ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_) @slow def UpperCAmelCase__ ( self : List[str]): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase_ : List[str] = MaskaFormerModel.from_pretrained(A_) self.assertIsNotNone(A_) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Optional[int] = (self.model_tester.min_size,) * 2 lowerCAmelCase_ : str = { '''pixel_values''': torch.randn((2, 3, *size) , device=A_), '''mask_labels''': torch.randn((2, 1_0, *size) , device=A_), '''class_labels''': torch.zeros(2 , 1_0 , device=A_).long(), } lowerCAmelCase_ : Union[str, Any] = self.model_tester.get_config() lowerCAmelCase_ : Any = MaskaFormerForUniversalSegmentation(A_).to(A_) lowerCAmelCase_ : Union[str, Any] = model(**A_) self.assertTrue(outputs.loss is not None) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ , **A_ , output_hidden_states=A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(A_).to(A_) lowerCAmelCase_ : List[str] = model(**A_ , output_attentions=A_) self.assertTrue(outputs.attentions is not None) def UpperCAmelCase__ ( self : List[Any]): if not self.model_tester.is_training: return lowerCAmelCase_ : Dict = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Optional[Any] = model_class(A_) model.to(A_) model.train() lowerCAmelCase_ : List[Any] = model(A_ , mask_labels=A_ , class_labels=A_).loss loss.backward() def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Any = model_class(A_).to(A_) model.train() lowerCAmelCase_ : List[str] = model(A_ , mask_labels=A_ , class_labels=A_) lowerCAmelCase_ : int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase_ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase_ : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase_ : str = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) A__ : int = 1E-4 def UpperCamelCase( ): lowerCAmelCase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Tuple): return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self : Optional[Any]): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Any = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(A_) lowerCAmelCase_ : str = self.default_image_processor lowerCAmelCase_ : Tuple = prepare_img() lowerCAmelCase_ : Any = image_processor(A_ , return_tensors='''pt''').to(A_) lowerCAmelCase_ : str = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(A_ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**A_) lowerCAmelCase_ : List[str] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]]).to(A_) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , A_ , atol=A_)) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]]).to(A_) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , A_ , atol=A_)) lowerCAmelCase_ : Optional[int] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]]).to(A_) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , A_ , atol=A_)) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(A_).eval() lowerCAmelCase_ : Optional[int] = self.default_image_processor lowerCAmelCase_ : List[Any] = prepare_img() lowerCAmelCase_ : Tuple = image_processor(A_ , return_tensors='''pt''').to(A_) lowerCAmelCase_ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(A_ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**A_) # masks_queries_logits lowerCAmelCase_ : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) lowerCAmelCase_ : Tuple = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowerCAmelCase_ : Optional[Any] = torch.tensor(A_).to(A_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , A_ , atol=A_)) # class_queries_logits lowerCAmelCase_ : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) lowerCAmelCase_ : Any = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ]).to(A_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , A_ , atol=A_)) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(A_).eval() lowerCAmelCase_ : Optional[Any] = self.default_image_processor lowerCAmelCase_ : Optional[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors='''pt''' , ) lowerCAmelCase_ : Dict = inputs['''pixel_values'''].to(A_) lowerCAmelCase_ : Tuple = [el.to(A_) for el in inputs['''mask_labels''']] lowerCAmelCase_ : str = [el.to(A_) for el in inputs['''class_labels''']] with torch.no_grad(): lowerCAmelCase_ : int = model(**A_) self.assertTrue(outputs.loss is not None)
103
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch A : Optional[Any] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict =["""pixel_values"""] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = True , **__a , ): super().__init__(**__a ) __lowerCAmelCase = size if size is not None else {"shortest_edge": 2_24} __lowerCAmelCase = get_size_dict(__a , default_to_square=__a ) __lowerCAmelCase = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} __lowerCAmelCase = get_size_dict(__a , param_name="crop_size" ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_flip_channel_order def snake_case ( self , __a , __a , __a = PIL.Image.BILINEAR , __a = None , **__a , ): __lowerCAmelCase = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) __lowerCAmelCase = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def snake_case ( self , __a , __a , __a = None , **__a , ): __lowerCAmelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def snake_case ( self , __a , __a , __a = None , **__a , ): return rescale(__a , scale=__a , data_format=__a , **__a ) def snake_case ( self , __a , __a = None ): return flip_channel_order(__a , data_format=__a ) def snake_case ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__a , default_to_square=__a ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(__a , param_name="crop_size" ) __lowerCAmelCase = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__a ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__a , scale=__a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __lowerCAmelCase = [self.flip_channel_order(image=__a ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__a , __a ) for image in images] __lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a ) def snake_case ( self , __a , __a = None ): __lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a ) != len(__a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__a ): __lowerCAmelCase = target_sizes.numpy() __lowerCAmelCase = [] for idx in range(len(__a ) ): __lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__a ) __lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__a ) else: __lowerCAmelCase = logits.argmax(dim=1 ) __lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
259
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : List[str] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] ="""distilbert""" __UpperCAmelCase : int ={ """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , __a=3_05_22 , __a=5_12 , __a=False , __a=6 , __a=12 , __a=7_68 , __a=4 * 7_68 , __a=0.1 , __a=0.1 , __a="gelu" , __a=0.0_2 , __a=0.1 , __a=0.2 , __a=0 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = sinusoidal_pos_embds __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dim __lowerCAmelCase = hidden_dim __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation __lowerCAmelCase = initializer_range __lowerCAmelCase = qa_dropout __lowerCAmelCase = seq_classif_dropout super().__init__(**__a , pad_token_id=__a ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def snake_case ( self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
259
1